1
|
Wu S, Zhang W, Wang D, Balcazar JL, Wang G, Ye M, Chao H, Sun M, Hu F. Bacteriophage-Bacteria Interactions Promote Ecological Multifunctionality in Compost-Applied Soils. Environ Microbiol 2025; 27:e70074. [PMID: 40109201 DOI: 10.1111/1462-2920.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/01/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Bacteriophages (phages) influence biogeochemical cycling in soil ecosystems by mediating bacterial metabolism. However, the participation of phages in soil's overall ecological functions (multifunctionality) remains unclear. Hence, this study investigated the potential for phages and bacterial communities to shape the multifunctionality of compost-applied soils. The findings revealed that cow compost and vermicompost applications enhanced the soil's multifunctionality; consequently, the highest multifunctionality was observed in the soil with vermicompost application (p < 0.05). The composition and diversity of bacteria and phages, as well as the abundance of functional genes of bacteria and phages related to carbon, nitrogen, phosphorus and sulphur metabolism, were dramatically altered following the application of both compost types. Moreover, the impact of phage diversity on soil multifunctionality is crucial for multi-threshold calculations. Structural equation modelling indicated that the effects of bacterial diversity on soil multifunctionality following compost application were paramount, with a path coefficient of 0.88 (p < 0.01). The rise in phage diversity and the enrichment of functional genes indirectly led to a dramatic increase in the soil's ecological multifunctionality by affecting the host bacteria's metabolic processes. These results offer a novel avenue to improve soil's functions and environmental services by transforming the phage community composition and functions of soils.
Collapse
Affiliation(s)
- Shimao Wu
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Wen Zhang
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Danrui Wang
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona, Girona, Spain
| | - Guanghao Wang
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mao Ye
- University of Girona, Girona, Spain
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Huizhen Chao
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Zhou X, Yu Z, Deng W, Deng Z, Wang Y, Zhuang L, Zhou S. Hyperthermophilic composting coupled with vermicomposting stimulates transformation of organic matter by altering bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176676. [PMID: 39383961 DOI: 10.1016/j.scitotenv.2024.176676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Hyperthermophilic composting (HTC) has been proven to be an effective strategy to recycle organic wastes, while vermicomposting (VC) has been widely applied to produce humic fertilizer. The combination of HTC with VC (HVC) is expected to integrate the advantages of both. This study showed that HTC pre-fermentation provided plentiful substances such as dissolved organic matter (DOM) for the subsequent VC enriching humic acid (HA). Compared to thermophilic composting (TC), HVC significantly stimulated the degradation of organic matter (OM) and the production of N-rich HA, and incubated higher diversity of bacterial community. SHapley Additive exPlanations (SHAP), correlation network, Mantel test and PLS-LM model were constructed to identify the potential roles of the key bacterial groups contributing to OM transformation. Firmicutes (e.g., Bacillus and Tuberibacillus) dominant in HTC may mineralize and mobilize OM, providing affluent bioavailable nutrients as part of DOM for microbial metabolism and abundant precursors for HA formation in the further VC. Actinobacteriota (e.g., Microbacterium) and Bacteroidota (e.g., Flavobacterium and Parapedobacter) prominent in VC metabolized DOM, mineralized OM and produced HA probably by enhancing the metabolic activity involved in OM degradation and amino acid generation. However, when DOM was exhausted, some members especially Proteobacteria (e.g., Ochrobactrum, Devosia and Cellvibrio) would change their roles from promoter to inhibitor of mineralization and humification. Altering the nutrient bioavailability and the composition of bacterial community can regulate the mineralization, mobilization and humification of OM. Overall, this study provides new insights into the roles of bacteria participating in transforming organic wastes into HA-rich composts.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Wenkang Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ziwei Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Das D, Tangjang S. Bio-stabilization of toxic weeds (Xanthium strumarium and Lantana camara) implementing mono- and polyculture of Eisenia fetida and Eudrilus eugeniae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49891-49904. [PMID: 39085693 DOI: 10.1007/s11356-024-34487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The present study investigates the synergistic impact of earthworms (Eisenia fetida and Eudrilus eugeniae) and microbes during vermicomposting of invasive weed phytomass (Xanthium strumarium and Lantana camara). This study aims introducing an onsite solution for weed control while producing valuable organic manure. Vermitransformation and detailed characterization of mono- (VC1, VC2, VC4, VC5) and polyculture (VC3, VC6) of X. strumarium and L. camara has been reported for the first time employing E. fetida and E. eugeniae. The study achieved 45.16 ± 2.48-76.73 ± 1.37% vermiconvertion rate. The pH, conductivity, and concentration of heavy metals are effectively stabilized. Furthermore, it observed a significant reduction in total organic carbon (TOC) alongside the augmentation of nitrogen, phosphorus, potassium, calcium, and other trace elements (Zn, Ni, Fe). The ash content, humification index, and C/N ratio analysis established the maturity of the vermicompost. The macronutrient enhancement in the vermicompost samples was recorded 1.5- to 2.47-fold for total N, 1.19- to 1.48-fold in available P, 1.1- to 1.2-fold in total K, and 1.1- to 1.18-fold in total Ca. The germination index reveals a significant reduction in phytotoxicity, suggesting the production of mature and suitable vermicompost for agricultural use. Evaluating mono- and polyculture techniques, the research highlights the superiority of E. fetida over E. eugeniae. Further, the earthworm population and biomass have significantly increased by the end of 60-day experimental trial.
Collapse
Affiliation(s)
- Dimbeswar Das
- Department of Botany, Rajiv Gandhi University, Rono Hills-79112, Doimukh, Arunachal Pradesh, India
- Department of Botany, Eastern Karbi Anglong College, Sarihajan-782480, Karbi Anglong, Assam, India
| | - Sumpam Tangjang
- Department of Botany, Rajiv Gandhi University, Rono Hills-79112, Doimukh, Arunachal Pradesh, India.
| |
Collapse
|
4
|
Srivastava PK, Tiwari GN, Sinha ASK. Enhanced vermicomposting of rice straw and pressmud with biogas slurry employing Eisenia fetida: Production, characterization, growth, and toxicological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120032. [PMID: 38184874 DOI: 10.1016/j.jenvman.2024.120032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The biogas plant plays a dual role: it directly provides energy and indirectly promotes organic farming through outlet slurry. However, agricultural biomass wastes such as rice straws (RS) and pressmud (PM), which can't be used as fertilizers on their own, were vermicomposted (60 days) with biogas slurry (BS), using earthworm, into four blends: T1(BS, 100%), T2(3:2, BS: RS), T3(3:2, BS: PM), and T4(3:1:1, BS: RS: PM). The characterization, elemental analysis, and toxicological risk assessment of derived vermimanure were carried out using various analytical tools, such as an organic elemental analyzer such as CHNS, FT-IR, FESEM-EDXA, XPS, and ICP-OES. The pH, electrical conductivity, and C/N values were within 7.1-7.8, 3.2-6.0 dSm-1, and 12-15, respectively, for all treatments. The proportions of N (38%), P (70%), K (58%), Mg (67%), Ca (42%), and ash (44%), increased significantly (P < 0.05) over the initial feedstocks. The ecological risks of heavy metals (Zn, Cu, Ni, Pb, Cd, and Cr) in all feedstocks were found to be under WHO-permitted levels. The growth performance of earthworms was also considerably higher (P < 0.05) over the control feedstock group. The analytical methods verified that feedstock T4 (3:1:1, BS: RS: PM) was more porous, containing NH4+, PO43-, K+, and other nutrients. Pellets of all vermimanure groups keep 65-75% of the original volume. As well, when these pellets have been employed for agronomy and dispersed in the field, they will cause less dust than traditional or powdered compost or manure. In comparison to the control group, the synergistic approach of RS, PM, and BS in vermimanure significantly (P < 0.05) enhanced seed germination (83%), vigour index (42.5%), and decreased mean germination time by 27%. Furthermore, pot trials with Abelmoschus esculentus seed indicated that seedlings cultivated with 40% vermimanure of T4 (3:1:1, BS: RS: PM) mixed soil showed high growth in shoot, root, and plant yield.
Collapse
Affiliation(s)
- Praveen Kumar Srivastava
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Jais 229304, India.
| | - Gopal Nath Tiwari
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Jais 229304, India; Sodha Energy Research Park, BERS Public School, Jawahar Nagar, Chikahar, Ballia 221701, India
| | - Akhoury Sudhir Kumar Sinha
- Department of Chemical Engineering and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Jais 229304, India
| |
Collapse
|
5
|
Chao H, Balcazar JL, Wu Y, Cai A, Ye M, Sun M, Hu F. Phages in vermicomposts enrich functional gene content and facilitate pesticide degradation in soil. ENVIRONMENT INTERNATIONAL 2023; 179:108175. [PMID: 37683504 DOI: 10.1016/j.envint.2023.108175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Organic fertilizer microbiomes play substantial roles in soil ecological functions, including improving soil structure, crop yield, and pollutant dissipation. However, limited information is available about the ecological functions of phages and phage-encoded auxiliary metabolic genes (AMGs) in orga9nic fertilizers. Here we used a combination of metagenomics and phage transplantation trials to investigate the phage profiles and their potential roles in pesticide degradation in four organic fertilizers from different sources. Phage annotation results indicate that the two vermicomposts made from swine (PV) and cattle (CV) dung had more similar phage community structures than the swine (P) and cattle (C) manures. After vermicomposting, the organic fertilizers (PV and CV) exhibited enriched phage-host pairings and phage AMG diversity in relative to the two organic fertilizers (P and C) without composting. In addition, the number of broad-host-range phages in the vermicomposts (182) was higher than that in swine (153) and cattle (103) manures. Notably, phage AMGs associated with metabolism and pesticide biodegradation were detected across the four organic fertilizers. The phage transplantation demonstrated that vermicompost phages were most effective at facilitating the degradation of pesticide precursor p-nitrochlorobenzene (p-NCB) in soil, as compared to swine and cattle manures (P < 0.05). Taken together, our findings highlight the significance of phages in vermicompost for biogeochemical cycling and biodegradation of pesticide-associated chemicals in contaminated soils.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona 17003, Spain; University of Girona, Girona 17004, Spain
| | - Yunling Wu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| | - Anjuan Cai
- Jiangsu Environmental Engineering Technology Co., Ltd., 210019, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| |
Collapse
|
6
|
Chowdhury SD, Hasim Suhaib K, Bhunia P, Surampalli RY. A Critical Review on the Vermicomposting of Organic Wastes as a Strategy in Circular Bioeconomy: Mechanism, Performance, and Future Perspectives. ENVIRONMENTAL TECHNOLOGY 2023:1-38. [PMID: 37192135 DOI: 10.1080/09593330.2023.2215458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AbstractTo meet the current need for sustainable development, vermicomposting (VC), a natural, eco-friendly, and cost-effective technology, can be a wise selection for the bioconversion of organic wastes into value-added by-products. However, no one has tried to establish the VC technology as an economically sustainable technology by exploring its linkage to circular bioeconomy. Even, no researcher has made any effort to explore the usability of the earthworms (EWs) as a protein supplement while assessing the economic perspectives of VC technology. Very few studies are available on the greenhouse gas (GHG) emission potential of VC technology. Still, the contribution of VC technology towards the non-carbon waste management policy is not yet explored. In the current review, a genuine effort has been made to inspect the contribution of VC technology towards the circular bioeconomy, along with evaluating its capability to bioremediate the organic wastes generated from domestic, industrial, and agricultural premises. The potential of the EWs as a protein source has also been explored to strengthen the contribution of VC technology towards the circular bioeconomy. Moreover, the linkage of the VC technology to the non-carbon waste management policy has been comprehensively demonstrated by highlighting its carbon sequestration and GHG emission potentials during the treatment of organic wastes. It has been observed that the cost of food production was reduced by 60--70% by replacing chemical fertilizers with vermicompost. The implication of the vermicompost significantly lessened the harvesting period of the crops, thereby helping the farmers attain higher profits by cultivating more crops in a single calendar year on the same plot. Furthermore, the vermicompost could hold the soil moisture for a long time, lessening the water demand up to 30-40%, which, in turn, reduced the frequency of irrigation. Also, the replacement of the chemical fertilizers with vermicompost resulted in a 23% increment in the grapes' yield, engendering an extra profit of up to 110000 rupees/ha. In Nepal, vermicompost has been produced at a cost of 15.68 rupees/kg, whereas it has been sold to the local market at a rate of 25 rupees/kg as organic manure, ensuring a net profit of 9.32 rupees/kg of vermicompost. EWs embraced 63% crude protein, 5-21% carbohydrates, 6-11% fat, 1476 kJ/100 g of metabolizable energy, and a wide range of minerals and vitamins. EWs also contained 4.11, 2.04, 4.43, 2.83, 1.47, and 6.26 g/kg (on protein basis) of leucine, isoleucine, tryptophan, arginine, histidine, and phenylalanine, respectively, enhancing the acceptability of the EW meal (EWM) as the protein supplement. The inclusion of 3 and 5% EWM in the diet of broiler pullets resulted in a 12.6 and 22.5% increase in their feed conversion ratio (FCR), respectively after one month. Similarly, when a 100% fish meal was substituted by 50% EWM and 50% fish meal, the FCR and growth rate of Parachanna obscura were increased substantially. The VC of maize crop residues mixed with pig manure, cow dung, and biochar, in the presence of Eisenia fetida EWs, yielded only 0.003-0.081, 0-0.17, and 130.40-189.10 g CO2-eq.kg-1 emissions of CO2, CH4, and N2O, respectively. Similarly, the VC of tomato stems and cow dung ensured 2.28 and 5.76 g CO2-eq.kg-1 CO2 emissions of CH4 and N2O, respectively. Additionally, the application of vermicompost at a rate of 5 t/ha improved the soil organic carbon proportion and aggravated carbon sequestration. The land application of vermicompost improved micro-aggregation and cut down the tillage, reducing GHG emissions and triggering carbon sequestration. The significant findings of the current review suggest that VC technology potentially contributes to the concept of circular bioeconomy, substantially negotiates potential GHG emissions, and complies with the non-carbon waste management policy, reinforcing its acceptability as an economically sound and environmentally benevolent organic waste bioremediation alternative.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - K Hasim Suhaib
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - Puspendu Bhunia
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - Rao Y Surampalli
- CEO and President, Global Institute for Energy, Environment, and Sustainability, P.O. Box 14354 Lenexa, Kansas 66285, USA,
| |
Collapse
|
7
|
Zhao Q, Zhang M, Wu Z, Li Y, Jiang J, Qiu J. Dynamics of bacterial community in the foregut and hindgut of earthworms with the nutrition supplied by kitchen waste during vermicomposting. BIORESOURCE TECHNOLOGY 2023; 374:128777. [PMID: 36822551 DOI: 10.1016/j.biortech.2023.128777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Earthworm gut microbiota is vital in degrading bio-waste during vermicomposting. However, microbial dynamics in earthworm gut during this process are unclear. Thus, the aim is to firstly report the bacterial dynamics in both foregut and hindgut of earthworms over a 28 days' timeframe of vermicomposting by Eisenia foetida with the nutrition supplied by kitchen waste. Results showed that except the changing of the bacterial diversity, composition and structure, dynamics of the foregut and hindgut bacteria also differed during vermicomposting which related to the changes of nutrient provision. Day 3 was a turning point. The abundant bacteria of the top 20 % genera nearly did not overlap between the foregut and hindgut. In the end of vermicomposting, a remarkable stable bacterial structure appeared in the hindgut compared to somewhat muddled one in the foregut. Understanding the dynamics of earthworm gut microbiota enables the improvements to regulate the efficiency of organic waste vermicomposting.
Collapse
Affiliation(s)
- Qi Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Manrui Zhang
- Center of Wuxi Agricultural Product Quality Monitoring, Wuxi 214000, China
| | - Zexuan Wu
- Ecological Environment and Water Authority of Jiangbei New District, Nanjing 211899, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Tahir I, Alkheraije KA. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front Vet Sci 2023; 10:1149720. [PMID: 37065256 PMCID: PMC10090567 DOI: 10.3389/fvets.2023.1149720] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Toxicity with heavy metals has proven to be a significant hazard with several health problems linked to it. Heavy metals bioaccumulate in living organisms, pollute the food chain, and possibly threaten the health of animals. Many industries, fertilizers, traffic, automobile, paint, groundwater, and animal feed are sources of contamination of heavy metals. Few metals, such as aluminum (Al), may be eliminated by the elimination processes, but other metals like lead (Pb), arsenic (As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic toxicity in animals. Even if these metals have no biological purpose, their toxic effects are still present in some form that is damaging to the animal body and its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a number of physiological and biochemical processes when exposed to sub-lethal doses. The nephrotoxic effects of Pb, As, and Cd are well known, and high amounts of naturally occurring environmental metals as well as occupational populations with high exposures have an adverse relationship between kidney damage and toxic metal exposure. Metal toxicity is determined by the absorbed dosage, the route of exposure, and the duration of exposure, whether acute or chronic. This can lead to numerous disorders and can also result in excessive damage due to oxidative stress generated by free radical production. Heavy metals concentration can be decreased through various procedures including bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal process. This review discusses few heavy metals, their toxicity mechanisms, and their health impacts on cattle with special emphasis on the kidneys.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|