1
|
Ryu Y, Bouharras FE, Cha M, Mudondo J, Kim Y, Ramakrishnan SR, Shin S, Yu Y, Lee W, Park J, Song Y, Yum SJ, Cha HG, Ahn D, Kim SJ, Kim HT. Recent advancements in the evolution, production, and degradation of biodegradable mulch films: A review. ENVIRONMENTAL RESEARCH 2025; 277:121629. [PMID: 40250592 DOI: 10.1016/j.envres.2025.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Biomass-based plastic production systems play a crucial role in fostering a sustainable society. Biodegradable mulch films (BDMs) have emerged as a practical solution to environmental pollution in agriculture. Various types of BDMs, including polybutylene adipate-co-terephthalate, polybutylene succinate, and polybutylene succinate-co-adipate, have been developed, though many are still derived from fossil-fuel-based plastics. Furthermore, the adoption of biodegradable materials in agricultural practices remains limited. This review critically assesses the evolution and significance of mulch films, highlighting the transition from traditional polyethylene (PE) to BDMs in response to environmental challenges. We provide an overview of the biorefinery approach to producing biomass-derived BDMs, discussing biomass pretreatment, saccharification, production of plastic monomers using microbial cell factories, purification, and polymerization. The review also explores techniques to enhance the biodegradation capabilities of mulch films during polymerization. Additionally, we emphasize the necessity for advancements in controlling the degradation rates of BDMs. By addressing the environmental concerns associated with the disposal of these materials, this review underscores the importance of developing effective strategies for a more sustainable and environmentally friendly agricultural landscape.
Collapse
Affiliation(s)
- Yeonkyeong Ryu
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Fatima Ezzahra Bouharras
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Minseok Cha
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joyce Mudondo
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Younghoon Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Sudha Rani Ramakrishnan
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biotechnology, Anna University, Chennai, 600025, India
| | - Sangbin Shin
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea; Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Youngchang Yu
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Jiyoung Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yunjeong Song
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| | - Dowon Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Soo-Jung Kim
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Pandey AK, Negi S. Enhanced ethanol production using hydrophobic resin detoxified Pine forest litter hydrolysate and integrated fermentation process development supplementing molasses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57386-57396. [PMID: 37801246 DOI: 10.1007/s11356-023-30185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Globally escalating ethanol demand necessitates the use of hybrid technologies integrating first- and second-generation biofuel feedstocks for achieving the futuristic targets of gasoline replacement with bioethanol. In present study, an optimized two-step sequential pre-treatment (first dilute alkali, then dilute acid) of Pine forest litter (PFL) was developed. Furthermore, the saccharification of pre-treated PFL was optimized through Response Surface Methodology using Box-Behnken Design, wherein 0.558 g/g of reducing sugar was released under the optimized conditions (12.5% w/v of biomass loading, 10 FPU/g of PFL enzyme loading, 0.15% v/v Tween-80 and 48 h incubation time). Moreover, during hydrolysate fermentation using Saccharomyces cerevisiae NCIM 3288 strain, 22.51 ± 1.02 g/L ethanol was produced. Remarkably, hydrophobic resin (XAD-4) treatment of PFL hydrolysate, significantly removed inhibitors (Furfural, 5-hydroxymethylfurfural and phenolics) and increased ethanol production to 27.38 ± 1.18 g/L. Furthermore, during fermentation of molasses supplemented PFL hydrolysate (total initial sugar: 100 ± 3.27 g/L), a maximum of 46.02 ± 2.08 g/L ethanol was produced with 0.482 g/g yield and 1.92 g/l/h productivity. These findings indicated that the integration of molasses to lignocellulosic hydrolysate, would be a promising hybrid technology for industrial ethanol production within existing bio-refinery infrastructure.
Collapse
Affiliation(s)
- Ajay Kumar Pandey
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Kanpur, 208024, Uttar Pradesh, India.
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| | - Sangeeta Negi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhao W, Zhang Z, Wang X, Li L, Hu J, Tao Y, Du J, Lu J, Xu H, Wang H. Combined pretreatment of malic acid and kraft pulping for the production of fermentable sugars and highly active lignin. Int J Biol Macromol 2024; 277:134619. [PMID: 39127272 DOI: 10.1016/j.ijbiomac.2024.134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The separation and utilization of cellulose, hemicellulose, and lignin in lignocellulosic biorefineries present significant challenges. This study proposes a pretreatment method for biomass refining by combining acid and kraft pulping. Firstly, the biomass was pretreated by malic acid, resulting in the isolation of xylo-oligosaccharides (XOS) with a yield of 86.26 % with optimized conditions of 180 °C, 1 wt% concentration, 40 min. Secondly, a mixture of 12.98 wt% NaOH and 1.043 wt% Na2S is employed to achieve lignin removal efficiency up to 63.42 %. Physical refinement techniques are then applied to enhance the enzyme digestion efficiency of cellulose, resulting in an increase from 55.03 % to 91.4 % for efficient cellulose conversion. The reacted samples exhibit a lignin composition rich in β-O-4 ether bonds, facilitating their high-value utilization. The results indicated that the combined pretreatment approach demonstrates high efficiency in separating cellulose, hemicellulose, and lignin while obtaining XOS, highly active lignin, and enzyme-digested substrates.
Collapse
Affiliation(s)
- Weiguang Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zepeng Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xin Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Leping Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Huanfei Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
4
|
Senila L, Gál E, Kovacs E, Cadar O, Dan M, Senila M, Roman C. Poly(3-hydroxybutyrate) Production from Lignocellulosic Wastes Using Bacillus megaterium ATCC 14581. Polymers (Basel) 2023; 15:4488. [PMID: 38231921 PMCID: PMC10708134 DOI: 10.3390/polym15234488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study aimed to analyze the production of poly(3-hydroxybutyrate) (PHB) from lignocellulosic biomass through a series of steps, including microwave irradiation, ammonia delignification, enzymatic hydrolysis, and fermentation, using the Bacillus megaterium ATCC 14581 strain. The lignocellulosic biomass was first pretreated using microwave irradiation at different temperatures (180, 200, and 220 °C) for 10, 20, and 30 min. The optimal pretreatment conditions were determined using the central composite design (CCD) and the response surface methodology (RSM). In the second step, the pretreated biomass was subjected to ammonia delignification, followed by enzymatic hydrolysis. The yield obtained for the pretreated and enzymatically hydrolyzed biomass was lower (70.2%) compared to the pretreated, delignified, and enzymatically hydrolyzed biomass (91.4%). These hydrolysates were used as carbon substrates for the synthesis of PHB using Bacillus megaterium ATCC 14581 in batch cultures. Various analytical methods were employed, namely nuclear magnetic resonance (1H-NMR and13C-NMR), electrospray ionization mass spectrometry (EI-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), to identify and characterize the extracted PHB. The XRD analysis confirmed the partially crystalline nature of PHB.
Collapse
Affiliation(s)
- Lacrimioara Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Emese Gál
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Eniko Kovacs
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67–103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Marin Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Cecilia Roman
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| |
Collapse
|
5
|
Subramaniam S, Karunanandham K, Asm R, Uthandi S. Delignification of the cotton stalk and ginning mill waste via EnZolv pretreatment and optimization of process parameters using response surface methodology (RSM). BIORESOURCE TECHNOLOGY 2023; 387:129655. [PMID: 37573984 DOI: 10.1016/j.biortech.2023.129655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The present study aimed to add value to cotton waste biomass using a more eco-friendly process, EnZolv which delignifies cotton stalk and cotton ginning mill waste. A maximum delignification of 68.68% and 65.51% was obtained using pre-optimized EnZolv parameters in cotton stalk (CS) and ginning mill waste (GMW), respectively. Optimized EnZolv process removed 78.68% of lignin in CS using Response Surface Methodology (RSM) in Box-Behnken design at 0% moisture content, 50 U laccase g-1 of biomass, 5 h incubation time, 50 ⁰C incubation temperature, and 150 rpm shaking speed. Similarly, RSM-based delignification of 70.53% in GMW was achieved under the optimized EnZolv conditions of 98.75 % moisture content, 41.59 U laccase g-1 of biomass, 9.3 h incubation time, 46.15 ⁰C incubation temperature, and 150 rpm shaking speed.
Collapse
Affiliation(s)
- Santhoshkumar Subramaniam
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu, India; Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai 625104, Tamil Nadu, India
| | - Kumutha Karunanandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai 625104, Tamil Nadu, India
| | - Raja Asm
- ICAR- Central Institute for Research on Cotton Technology, Adenwala Road, Matunga, 400019 Mumbai, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu, India.
| |
Collapse
|
6
|
Chen Y, Yang D, Tang W, Ma C, He YC. Improved enzymatic saccharification of bulrush via an efficient combination pretreatment. BIORESOURCE TECHNOLOGY 2023; 385:129369. [PMID: 37343793 DOI: 10.1016/j.biortech.2023.129369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Glycerol (Gly) was selected as hydrogen-bond-donor for preparing ChCl-based DES (ChCl:Gly), and the mixture of ChCl:Gly (20 wt%) and NaOH (4 wt%) was utilized for combination pretreatment of bulrush at 100 °C for 60 min (severity factor LogRo = 1.78). The effects of DES pretreatment on the chemical composition, microstructure, crystal structure, and cellulase hydrolysis were explored. NaOH-ChCl:Gly could remove lignin (80.1%) and xylan (66.8%), and the enzymatic digestibility of cellulose reached 87.9%. The accessibility of bulrush was apparently increased to 645.2 mg/g after NaOH-ChCl:Gly pretreatment. The hydrophobicity and lignin surface area were reduced to 1.56 L/g and 417 m2/g, respectively. The crystallinity of cellulose was increased from 20.8% to 55.6%, and great changes in surface morphology were observed, which explained the improvement of enzymatic hydrolysis efficiency. Overall, DES combined with alkali treatment could effectively promote the removal of lignin and xylan in bulrush, thus the relative saccharification activity was greatly affected.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Dong Yang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
7
|
Tang Z, Wu C, Tang W, Huang M, Ma C, He YC. Enhancing enzymatic saccharification of sunflower straw through optimal tartaric acid hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2023:129279. [PMID: 37321308 DOI: 10.1016/j.biortech.2023.129279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Sunflower straw, a usually neglected and abundant agricultural waste, has great potential for contributing to environmental protection realizing its high-value of valorization if utilizing properly. Because hemicellulose contains amorphous polysaccharide chains, relatively mild organic acid pretreatment can effectively reduce its resistance. Through hydrothermal pretreatment, sunflower straw was pretreated in tartaric acid (1 wt%) at 180 oC for 60 min to enhance its reducing sugar recovery. After tartaric acid-assisted hydrothermal pretreatment, 39.9% of lignin and 90.2% of hemicellulose were eliminated. The reducing sugar recovery increased threefold, while the solution could be effectively reused for four cycles. The properties of more porous surface, improved accessibility, and decreased surface lignin area of sunflower straw were observed through various characterizations, which explained the improved saccharide recovery and provided a basis for the mechanism of tartaric acid-assisted hydrothermal pretreatment. Overall, this tartaric acid hydrothermal pretreatment strategy greatly provided new impetus for the biomass refinery.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Menghan Huang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| |
Collapse
|
8
|
Das A, Mohanty K. Optimization of lignin extraction from bamboo by ultrasound-assisted organosolv pretreatment. BIORESOURCE TECHNOLOGY 2023; 376:128884. [PMID: 36925081 DOI: 10.1016/j.biortech.2023.128884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
For a sustainable biorefinery, reduction in the recalcitrance of lignocellulosic biomass is very crucial for the efficient utilization of each fraction. The present work investigated an integrated pretreatment method to recover high-quality lignin along with the cellulose-rich pulp. An optimization study employing response surface methodology investigated the synergistic effects of ultrasound and organosolv pretreatment from Bambusa tulda (bamboo). The optimal condition (180 °C, 55 min, and 30 min sonication) resulted in 65.81 ± 2.40% of lignin yield with 95.37 ± 1.17% purity. A reduction in 7.85% yield and 1.54% purity of lignin with organosolv pretreatment highlighted the efficacy of sonication in lignin extraction. Ultrasound resulted in homolytic cleavage of the lignin-carbohydrate bond that enhanced delignification and increase the cellulose crystallinity. NMR, FTIR, GPC, and TGA of lignin suggested the superiority of sonication in maintaining lignin quality. A significant amount of β-O-4 linkages in extracted lignin is favorable for its subsequent valorization.
Collapse
Affiliation(s)
- Anindita Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Wang X, Tao Y, Yang Q, Cheng Y, Lu J, Du J, Wang H. Ammonia and sodium sulfite synergistically pretreat reed to enhance enzymatic saccharification. BIORESOURCE TECHNOLOGY 2023; 380:129070. [PMID: 37088427 DOI: 10.1016/j.biortech.2023.129070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Pretreatment is important to overcome the structural recalcitrance of reed (a viable energy grass) to produce fermentable sugar. Herein, the study reported the pretreatment of reed using different alkali chemicals (sodium hydroxide/anthraquinone, sodium hydroxide/sodium sulfite, sodium hydroxide/sodium sulfide, ammonia/hydrogen peroxide, triethanolamine, and ammonia/sodium sulfite). The comparative study showed that the pretreatment using ammonia and sodium sulfite (NS) performed the best among them. The NS pretreatment of reed was further optimized using the Response Surface Methodology (RSM). The results showed that about 90.36% lignin was removed when reed was pretreated with 10 wt% of ammonia and 10% of sodium sulfite at 172 °C for 20 min. The excellent lignin removal performance was attributable to the synergistic effects between ammonia and sodium sulfite. The NS pretreated reed achieved 85.6% of enzymatic hydrolysis efficiency and 64.83% of total sugar yield.
Collapse
Affiliation(s)
- Xin Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qiang Yang
- School of Packaging, Michigan State University, MI 48824, United States
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|