1
|
Baur ST, Schulz S, McCluskey JB, Velázquez Gómez JA, Angenent LT, Molitor B. Deletion of aldehyde:ferredoxin oxidoreductase-encoding genes in Clostridium ljungdahlii results in changes in product spectrum with various carbon sources. BIORESOURCE TECHNOLOGY 2025; 431:132596. [PMID: 40306342 DOI: 10.1016/j.biortech.2025.132596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Biofuels, such as ethanol, can be produced by the microbial fermentation of waste gases that contain carbon dioxide (CO2) and carbon monoxide (CO). The acetogenic model microbe Clostridium ljungdahlii converts those substrates into acetyl-CoA with the Wood-Ljungdahl pathway. During autotrophic conditions, acetyl-CoA can be reduced further to ethanol via acetic acid by the enzymes aldehyde:ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase. Here, the genes encoding both tungsten-dependent AORs (aor1, CLJU_c20110 and aor2, CLJU_c20210) were deleted from the genome of C. ljungdahlii. The effects on the product spectrum of the individual and double deletion strains were investigated. Most pronounced, ethanol formation was enhanced for C. ljungdahlii Δaor1 with different carbon sources, that is, fructose, hydrogen (H2) and CO2, and CO. The lowest and highest ethanol:acetic acid ratio was detected during growth with H2/CO2 and CO, respectively. Oscillating patterns were observed during growth with CO, underpinning the importance of a balanced redox metabolism.
Collapse
Affiliation(s)
- Saskia T Baur
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Sarah Schulz
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Joshua B McCluskey
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - José Antonio Velázquez Gómez
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72074 Tübingen, Germany; AG Angenent, Max Planck Institute for Biology Tübingen, Max Planck Ring 5, 72076 Tübingen, Germany; Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10D, 8000 Aarhus C, Denmark; The Novo Nordisk Foundation CO(2) Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72074 Tübingen, Germany; Microbial Metabolic Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Poehlein A, Zeldes B, Flaiz M, Böer T, Lüschen A, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan Y, Chao W, Daniel R, Li F, Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR. Advanced aspects of acetogens. BIORESOURCE TECHNOLOGY 2025; 427:131913. [PMID: 39626805 DOI: 10.1016/j.biortech.2024.131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025]
Abstract
Acetogens are a diverse group of anaerobic bacteria that are capable of carbon dioxide reduction and have for long fascinated scientists due to their unique metabolic prowess. Historically, acetogens have been recognized for their remarkable ability to grow and to produce acetate from different one-carbon sources, including carbon dioxide, carbon monoxide, formate, methanol, and methylated organic compounds. The key metabolic pathway in acetogens responsible for converting these one-carbon sources is the Wood-Ljungdahl pathway. This review offers a comprehensive overview of the latest discoveries that are related to acetogens. It delves into a variety of topics, including newly isolated acetogens, their taxonomy and physiology and highlights novel metabolic properties. Additionally, it explores metabolic engineering strategies that are designed to expand the product range of acetogens or to understand specific traits of their metabolism. Lastly, the review presents innovative gas fermentation techniques within the context of industrial applications.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Tim Böer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Kira S Baur
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72074, Germany
| | - Christian Kröly
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands; Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Meng Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China.
| | - Yixuan Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Wei Chao
- Beijing Shougang LanzaTech Technology Co. Ltd, Tianshunzhuang North Road, Shijingshan District, Beijing, China
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
3
|
Fernández-Delgado M, Plaza PE, García-Cubero MT, Lucas S, Coca M, López-Linares JC. Bioconversion of C1-gases by mixotrophic co-cultures fermentation with C. carboxidivorans and C. beijerinkii. BIORESOUR BIOPROCESS 2025; 12:45. [PMID: 40415020 PMCID: PMC12104125 DOI: 10.1186/s40643-025-00881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/27/2025] [Indexed: 05/27/2025] Open
Abstract
The development of newfangled bioprocess strategies for the capture of C1-gases (CO and CO2) and their bioconversion into valuable products is currently one of the main focuses of research in order to achieve a more resilient world. This work analyses the viability of the co-culture C. carboxidivorans and C. beijerinkii to produce bioproducts (bioalcohols and organic acids) in mixotrophic conditions. In this way, the bioconversion of C1 gases (CO and CO2), in the presence of Fe0, using mixotrophic co-culture fermentation by C. carboxidivorans and C. beijerinkii, was evaluated, analyzing the influence of the ratio between both microorganisms, the pH, and the presence of Fe0. As a result, up to 7 g/L of butanol were achieved at pH 7, 12.5 g/L Fe0, and using a 1:1 ratio of C. carboxidivorans: C. beijerinkii, also improving the production of ethanol, acetic acid, and butyric acid as compared to individual culture fermentations. Finally, the operation in a bioreactor, comparing discontinuous and continuous gas feeding operation modes, was also studied, with better C1-gases utilization and overall fermentation efficiency (7 vs 4.6 g/L butanol) in continuous gas operation mode.
Collapse
Affiliation(s)
- Marina Fernández-Delgado
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
| | - Pedro Enrique Plaza
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
| | - M Teresa García-Cubero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
| | - Susana Lucas
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
| | - Mónica Coca
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain
| | - Juan Carlos López-Linares
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain.
- Department of Chemical Engineering and Environmental Technology, Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina S/N, 47011, Valladolid, Spain.
| |
Collapse
|
4
|
Ingelman H, Heffernan JK, Valgepea K. Adaptive laboratory evolution for improving acetogen gas fermentation. Curr Opin Biotechnol 2025; 93:103305. [PMID: 40267600 DOI: 10.1016/j.copbio.2025.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Gas fermentation using acetogens can help humankind transition from petroleum-based industries to more sustainable alternatives. Acetogens are a unique set of organisms that efficiently convert carbon oxide waste gases into chemicals, such as ethanol and acetate. While acetogens are already used in commercially operated bioprocess facilities, the field is still affected by challenging genetic manipulation workflows and a developing knowledge of acetogen metabolism. Adaptive laboratory evolution (ALE) can uniquely contribute here, through evolution of organisms guided by synthetically created niches, which delivers strains with industrially relevant phenotypes and helps to resolve genotype-phenotype relationships. Here, we review the expanding use of ALE for acetogens, showcasing results regarding fundamental understanding of acetogens and improvement of phenotypes - faster growth/substrate utilisation, elimination of media components, improving stress tolerance, and improving growth and robustness in bioreactor cultures. These works provide the field with opportunities to further engineer and manipulate acetogen traits for industrial bioprocesses and improve the understanding of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Henri Ingelman
- Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia; ARC Centre of Excellence in Synthetic Biology (CoESB), The University of Queensland, 4072 St. Lucia, Australia
| | - Kaspar Valgepea
- Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
5
|
Robazza A, Raya i Garcia A, Baleeiro FCF, Kleinsteuber S, Neumann A. Acetate Shock Loads Enhance CO Uptake Rates of Anaerobic Microbiomes. Microb Biotechnol 2024; 17:e70063. [PMID: 39651844 PMCID: PMC11626651 DOI: 10.1111/1751-7915.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Pyrolysis of lignocellulosic biomass commonly produces syngas, a mixture of gases such as CO, CO2 and H2, as well as an aqueous solution generally rich in organic acids such as acetate. In this study, we evaluated the impact of increasing acetate shock loads during syngas co-fermentation with anaerobic microbiomes at different pH levels (6.7 and 5.5) and temperatures (37°C and 55°C) by assessing substrates consumption, metabolites production and microbial community composition. The anaerobic microbiomes revealed to be remarkably resilient and were capable of converting syngas even at high acetate concentrations of up to 64 g/L and pH 5.5. Modifying process parameters and acetate loads resulted in a shift of the product spectrum and microbiota composition. Specifically, a pH of 6.7 promoted methanogens such as Methanosarcina, whereas lowering the pH to 5.5 with lower acetate loads promoted the enrichment of syntrophic acetate oxidisers such as Syntrophaceticus, alongside hydrogenotrophic methanogens. Increasing acetate loads intensified the toxicity of undissociated acetic acid, thereby inhibiting methanogenic activity. Under non-methanogenic conditions, high acetate concentrations suppressed acetogenesis in favour of hydrogenogenesis and the production of various carboxylates, including valerate, with product profiles and production rates being contingent upon temperature. A possible candidate for valerate production was identified in Oscillibacter. Across all tested conditions, acetate supplementation provided additional carbon and energy to the mixed cultures and consistently increased carboxydotrophic conversion rates up to about 20-fold observed at pH 5.5, 55°C and 48 g/L acetate compared to control experiments. Species of Methanobacterium, Methanosarcina and Methanothermobacter may have been involved in CO biomethanation. Under non-methanogenic conditions, the bacterial species responsible for CO conversion remain unclear. These results offer promise for integrating process streams, such as syngas and wastewater, as substrates for mixed culture fermentation allowing for enhanced resource circularity, mitigation of environmental impacts and decreased dependence on fossil fuels.
Collapse
Affiliation(s)
- Alberto Robazza
- Institute of Process Engineering in Life Sciences 2: Electro BiotechnologyKarlsruhe Institute of Technology – KITKarlsruheGermany
| | - Ada Raya i Garcia
- Institute of Process Engineering in Life Sciences 2: Electro BiotechnologyKarlsruhe Institute of Technology – KITKarlsruheGermany
| | - Flávio C. F. Baleeiro
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Sabine Kleinsteuber
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Anke Neumann
- Institute of Process Engineering in Life Sciences 2: Electro BiotechnologyKarlsruhe Institute of Technology – KITKarlsruheGermany
| |
Collapse
|
6
|
Ingelman H, Heffernan JK, Harris A, Brown SD, Shaikh KM, Saqib AY, Pinheiro MJ, de Lima LA, Martinez KR, Gonzalez-Garcia RA, Hawkins G, Daleiden J, Tran L, Zeleznik H, Jensen RO, Reynoso V, Schindel H, Jänes J, Simpson SD, Köpke M, Marcellin E, Valgepea K. Autotrophic adaptive laboratory evolution of the acetogen Clostridium autoethanogenum delivers the gas-fermenting strain LAbrini with superior growth, products, and robustness. N Biotechnol 2024; 83:1-15. [PMID: 38871051 DOI: 10.1016/j.nbt.2024.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microbes able to convert gaseous one-carbon (C1) waste feedstocks are increasingly important to transition to the sustainable production of renewable chemicals and fuels. Acetogens are interesting biocatalysts since gas fermentation using Clostridium autoethanogenum has been commercialised. However, most acetogen strains need complex nutrients, display slow growth, and are not robust for bioreactor fermentations. In this work, we used three different and independent adaptive laboratory evolution (ALE) strategies to evolve the wild-type C. autoethanogenum to grow faster, without yeast extract and to be robust in operating continuous bioreactor cultures. Multiple evolved strains with improved phenotypes were isolated on minimal media with one strain, named "LAbrini", exhibiting superior performance regarding the maximum specific growth rate, product profile, and robustness in continuous cultures. Whole-genome sequencing of the evolved strains identified 25 mutations. Of particular interest are two genes that acquired seven different mutations across the three ALE strategies, potentially as a result of convergent evolution. Reverse genetic engineering of mutations in potentially sporulation-related genes CLAU_3129 (spo0A) and CLAU_1957 recovered all three superior features of our ALE strains through triggering significant proteomic rearrangements. This work provides a robust C. autoethanogenum strain "LAbrini" to accelerate phenotyping and genetic engineering and to better understand acetogen metabolism.
Collapse
Affiliation(s)
- Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | - Asfand Yar Saqib
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Marina J Pinheiro
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Karen Rodriguez Martinez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | - Ricardo A Gonzalez-Garcia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | | | | | | | | | - Jürgen Jänes
- Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | | | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
7
|
Bae J, Park C, Jung H, Jin S, Cho BK. Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production. RSC Chem Biol 2024; 5:812-832. [PMID: 39211478 PMCID: PMC11353040 DOI: 10.1039/d4cb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024] Open
Abstract
The pressing climate change issues have intensified the need for a rapid transition towards a bio-based circular carbon economy. Harnessing acetogenic bacteria as biocatalysts to convert C1 compounds such as CO2, CO, formate, or methanol into value-added multicarbon chemicals is a promising solution for both carbon capture and utilization, enabling sustainable and green chemical production. Recent advances in the metabolic engineering of acetogens have expanded the range of commodity chemicals and biofuels produced from C1 compounds. However, producing energy-demanding high-value chemicals on an industrial scale from C1 substrates remains challenging because of the inherent energetic limitations of acetogenic bacteria. Therefore, overcoming this hurdle is necessary to scale up the acetogenic C1 conversion process and realize a circular carbon economy. This review overviews the acetogenic bacteria and their potential as sustainable and green chemical production platforms. Recent efforts to address these challenges have focused on enhancing the ATP and redox availability of acetogens to improve their energetics and conversion performances. Furthermore, promising technologies that leverage low-cost, sustainable energy sources such as electricity and light are discussed to improve the sustainability of the overall process. Finally, we review emerging technologies that accelerate the development of high-performance acetogenic bacteria suitable for industrial-scale production and address the economic sustainability of acetogenic C1 conversion. Overall, harnessing acetogenic bacteria for C1 valorization offers a promising route toward sustainable and green chemical production, aligning with the circular economy concept.
Collapse
Affiliation(s)
- Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyunwoo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| |
Collapse
|
8
|
Allaart MT, Korkontzelos C, Sousa DZ, Kleerebezem R. A novel experimental method to determine substrate uptake kinetics of gaseous substrates applied to the carbon monoxide-fermenting Clostridium autoethanogenum. Biotechnol Bioeng 2024; 121:1325-1335. [PMID: 38265153 DOI: 10.1002/bit.28652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Syngas fermentation has gained momentum over the last decades. The cost-efficient design of industrial-scale bioprocesses is highly dependent on quantitative microbial growth data. Kinetic and stoichiometric models for syngas-converting microbes exist, but accurate experimental validation of the derived parameters is lacking. Here, we describe a novel experimental approach for measuring substrate uptake kinetics of gas-fermenting microbes using the model microorganism Clostridium autoethanogenum. One-hour disturbances of a steady-state chemostat bioreactor with increased CO partial pressures (up to 1.2 bar) allowed for measurement of biomass-specific CO uptake- and CO2 production rates (q CO ${q}_{{CO}}$ ,q CO 2 ${q}_{{{CO}}_{2}}$ ) using off-gas analysis. At a pCO of 1.2 bar, aq CO ${q}_{{CO}}$ of -119 ± 1 mmol g-1 X h-1 was measured. This value is 1.8-3.5-fold higher than previously reported experimental and kinetic modeling results for syngas fermenters. Analysis of the catabolic flux distribution reveals a metabolic shift towards ethanol production at the expense of acetate at pCO ≥ $\ge $ 0.6 atm, likely to be mediated by acetate availability and cellular redox state. We characterized this metabolic shift as acetogenic overflow metabolism. These results provide key mechanistic understanding of the factors steering the product spectrum of CO fermentation in C. autoethanogenum and emphasize the importance of dedicated experimental validation of kinetic parameters.
Collapse
Affiliation(s)
| | | | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
9
|
Kim SM, Kang SH, Jeon BW, Kim YH. Tunnel engineering of gas-converting enzymes for inhibitor retardation and substrate acceleration. BIORESOURCE TECHNOLOGY 2024; 394:130248. [PMID: 38158090 DOI: 10.1016/j.biortech.2023.130248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Elisiário MP, Van Hecke W, De Wever H, Noorman H, Straathof AJJ. Acetic acid, growth rate, and mass transfer govern shifts in CO metabolism of Clostridium autoethanogenum. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12670-6. [PMID: 37410136 PMCID: PMC10390632 DOI: 10.1007/s00253-023-12670-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Syngas fermentation is a leading microbial process for the conversion of carbon monoxide, carbon dioxide, and hydrogen to valuable biochemicals. Clostridium autoethanogenum stands as a model organism for this process, showcasing its ability to convert syngas into ethanol industrially with simultaneous fixation of carbon and reduction of greenhouse gas emissions. A deep understanding on the metabolism of this microorganism and the influence of operational conditions on fermentation performance is key to advance the technology and enhancement of production yields. In this work, we studied the individual impact of acetic acid concentration, growth rate, and mass transfer rate on metabolic shifts, product titres, and rates in CO fermentation by C. autoethanogenum. Through continuous fermentations performed at a low mass transfer rate, we measured the production of formate in addition to acetate and ethanol. We hypothesise that low mass transfer results in low CO concentrations, leading to reduced activity of the Wood-Ljungdahl pathway and a bottleneck in formate conversion, thereby resulting in the accumulation of formate. The supplementation of the medium with exogenous acetate revealed that undissociated acetic acid concentration increases and governs ethanol yield and production rates, assumedly to counteract the inhibition by undissociated acetic acid. Since acetic acid concentration is determined by growth rate (via dilution rate), mass transfer rate, and working pH, these variables jointly determine ethanol production rates. These findings have significant implications for process optimisation as targeting an optimal undissociated acetic acid concentration can shift metabolism towards ethanol production. KEY POINTS: • Very low CO mass transfer rate leads to leaking of intermediate metabolite formate. • Undissociated acetic acid concentration governs ethanol yield on CO and productivity. • Impact of growth rate, mass transfer rate, and pH were considered jointly.
Collapse
Affiliation(s)
- Marina P Elisiário
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Wouter Van Hecke
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Heleen De Wever
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Henk Noorman
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands
- Royal DSM, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|