1
|
Yang Y, Li Z, Zhou N, Lin Y, Sheng Q, Thiri M, Wang Y. Analysis of the causes of N/P imbalance in mangrove water caused by high elevation shrimp ponds. Sci Rep 2025; 15:17424. [PMID: 40394074 DOI: 10.1038/s41598-025-02440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
Due to its unique estuarine location at the junction of land and sea, mangrove wetlands are surrounded by numerous high-elevation shrimp ponds. The high-elevation shrimp ponds around the mangrove forest undergo 2.3 clearances by quicklime (CaO) disinfectant per year in China, but the impact of the quicklime disinfectant used and emitted on the mangrove wetland ecosystem is seriously underestimated. Due to the relatively limited data provided by high-elevation shrimp pond aquaculture in estuarine areas for the mangrove ecosystem, this study established an algorithm for calculating the reaction rate of quicklime disinfectants used in high-elevation shrimp pond aquaculture, which is the fundamental reason for the imbalance of N/P ratio in mangrove wetlands. Results showed that the amount of Ca(OH)2 produced by quicklime during the initial cleaning of the shrimp pond was 1303.4 t/a. The annual consumption of Ca(OH)2 by organic acids, strong chlorine disinfectants, and TP in the marine system was 154.6-171.5 t, 1.7 t, and < 284.5 t, respectively. The lack of phosphorus and the imbalance of N/P ratio caused by quicklime disinfectants may be a factor in the changes of mangrove wetlands and surrounding nearshore waters, the growth and decline of marine species, and even global changes.
Collapse
Affiliation(s)
- Yunan Yang
- School of Space and Earth Sciences, Beihang University, Beijing, 100191, China.
| | - Zhe Li
- School of Space and Earth Sciences, Beihang University, Beijing, 100191, China
| | - Nan Zhou
- School of Space and Earth Sciences, Beihang University, Beijing, 100191, China
| | - Yangang Lin
- School of Space and Earth Sciences, Beihang University, Beijing, 100191, China
| | - Qian Sheng
- School of Space and Earth Sciences, Beihang University, Beijing, 100191, China
| | - Myat Thiri
- School of Space and Earth Sciences, Beihang University, Beijing, 100191, China
- Biotechnology Research Department, Ministry of Education, Kyauk Se Township, Mandalay Division, 15011, Myanmar
| | - Yao Wang
- School of Space and Earth Sciences, Beihang University, Beijing, 100191, China
| |
Collapse
|
2
|
Li Z, Li X, Wang H, Peng Y. Achieving synchronous and highly efficient removal of nitrogen and phosphorus by rapid enrichment and cultivation denitrifying phosphorus accumulating organisms in anaerobic-oxic-anoxic operation mode. BIORESOURCE TECHNOLOGY 2024; 396:130426. [PMID: 38341042 DOI: 10.1016/j.biortech.2024.130426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Realizing the quick enrichment and development of denitrifying phosphorus accumulating organisms (DPAOs) in actual household wastewater and industrial nitrate wastewater has significant research significance. In this study, a novel operation mode of anaerobic-oxic-anoxic (AOA) was adopted to successfully realize the enrichment and cultivation of DPAOs in urban domestic wastewater. Adjusting influent COD to PO43--P ratio, shortening the aerobic time and decreasing the aeration volume were conducive to select DPAOs in microbial populations. The system was operated for 180 days and the DPAOs were well enriched during the stable operation with the percentage of Dechloromonas increased to 5.1 %. Accordingly, the effluent PO43--P was < 0.3 mg P/L, the removal efficiency of phosphorus was 96.9 % and the removal efficiency of nitrate was 92.5 %. Above all, DPR can be successfully applied to AOA systems with good phosphorus removal performance.
Collapse
Affiliation(s)
- Zixin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hanbin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Zhang G, Li W, Li D, Wang S, Lv L. Integration of ammonium assimilation with denitrifying phosphorus removal for efficient nutrient management in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120116. [PMID: 38280251 DOI: 10.1016/j.jenvman.2024.120116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.
Collapse
Affiliation(s)
- Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
4
|
Zhang C, Zhang L, Liu J, Li X, Zhang Q, Peng Y. Achieving ultra-high nitrogen and phosphorus removal from real municipal wastewater in a novel continuous-flow anaerobic/aerobic/anoxic process via partial nitrification, endogenous denitrification and nitrite-type denitrifying phosphorus removal. WATER RESEARCH 2024; 250:121046. [PMID: 38159538 DOI: 10.1016/j.watres.2023.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Achieving economic and efficient removal of nutrients in mainstream wastewater treatment plants (WWTPs) continues to be a challenging research topic. In this study, a continuous-flow anaerobic/aerobic/anoxic system with sludge double recirculation (AOA-SDR), which integrated partial nitrification (PN), endogenous denitrification (ED) and nitrite-type denitrifying phosphorus removal (nDNPR), was constructed to treat real carbon-limited municipal wastewater. The average effluent concentrations of total inorganic nitrogen (TIN) and PO43--P during the stable operation period were 1.8 and 0.3 mg/L, respectively. PN was achieved with an average nitrite accumulation ratio of 90.4 % by combined strategies. Adequate storage of polyhydroxyalkanoates and glycogen in the anaerobic zone promoted the subsequent nitrogen removal capacity. In the anoxic zone, nitrite served as the main electron acceptor for the denitrifying phosphorus removal process. Mass balance analysis revealed that nDNPR contributed to 23.6 % of TIN removal and 44.7 % of PO43--P removal. The enrichment of Nitrosomonas (0.45 %) and Ellin 6067 (1.31 %), along with the washout of Nitrospira (0.15 %) provided the bacterial basis for the successful implementation of PN. Other dominant endogenous heterotrophic bacteria, such as Dechlormonas (10.81 %) and Candidatus Accumulibacter (2.96 %), ensured simultaneous nitrogen and phosphorus removal performance. The successful validation of integrating PN, ED and nDNPR for advanced nutrient removal in the AOA-SDR process provides a transformative technology for WWTPs.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Zhang G, Li W, Wang S, Li D, Zhang D, Lv L. Performance and mechanism of glycerol-driven denitrifying phosphorus removal from low organic matter sewage. BIORESOURCE TECHNOLOGY 2023; 391:129942. [PMID: 39492533 DOI: 10.1016/j.biortech.2023.129942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The performance and mechanism of the glycerol-driven denitrifying phosphorus removal (DPR) process were investigated in low organic matter wastewater treatment using the modified anaerobic-anoxic-oxic (MAAO) system. The results revealed that denitrifying bacteria preferentially utilized glycerol, reducing nitrate interference on anaerobic phosphate release. Fermentation bacteria converted excess glycerol into available carbon sources, which were utilized by denitrifying phosphorus-accumulating organisms (DPAOs). Optimize glycerol dosage (calculated in chemical oxygen demand) could be estimated based on 6 times the effluent NO3--N of the anoxic zone. As glycerol dosage increased, the relative abundance of fermentation bacteria surged from 8.2% to 17.7%, subsequently boosting the DPR rate from 34.6% to 77.2%. Notably, denitrifying glycogen-accumulating organisms (DGAOs) decreased from 0.5% to 0.2% but remained instrumental in nitrogen removal. The collaborative actions of fermentation bacteria, DPAOs, and DGAOs were vital in upholding the stability of nutrient removal in the glycerol-driven DPR process.
Collapse
Affiliation(s)
- Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
6
|
Xu R, Cui H, Fan F, Zhang M, Yuan S, Wang D, Gan Z, Yu Z, Wang C, Meng F. Combination of Sequencing Batch Operation and A/O Process to Achieve Partial Mainstream Anammox: Pilot-Scale Demonstration and Microbial Ecological Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13887-13900. [PMID: 37667485 DOI: 10.1021/acs.est.3c03022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this study, sequencing batch operation was successfully combined with a pilot-scale anaerobic biofilm-modified anaerobic/aerobic membrane bioreactor to achieve anaerobic ammonium oxidation (anammox) without inoculation of anammox aggregates for municipal wastewater treatment. Both total nitrogen and phosphorus removal efficiencies of the reactor reached up to 80% in the 250-day operation, with effluent concentrations of 4.95 mg-N/L and 0.48 mg-P/L. In situ enrichment of anammox bacteria with a maximum relative abundance of 7.86% was observed in the anaerobic biofilm, contributing to 18.81% of nitrogen removal, with denitrification being the primary removal pathway (38.41%). Denitrifying phosphorus removal (DPR) (40.54%) and aerobic phosphorus uptake (48.40%) played comparable roles in phosphorus removal. Metagenomic sequencing results showed that the biofilm contained significantly lower abundances of NO-reducing functional genes than the bulk sludge (p < 0.01), favoring anammox catabolism in the former. Interactions between the anammox bacteria and flanking community were dominated by cooperation behaviors (e.g., nitrite supply, amino acids/vitamins exchange) in the anaerobic biofilm community network. Moreover, the hydrolytic/fermentative bacteria and endogenous heterotrophic bacteria (Dechloromonas, Candidatus competibacter) were substantially enriched under sequencing batch operation, which could alleviate the inhibition of anammox bacteria by complex organics. Overall, this study provides a feasible and promising strategy for substantially enriching anammox bacteria and achieving partial mainstream anammox as well as DPR.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|