1
|
Ma H, Chen S, Lv L, Ye Z, Yang J, Wang B, Zou J, Li J, Ganigué R. Large-sized aerobic granular biofilm: stable biotechnology to improve nitrogen removal and reduce sludge yield. BIORESOURCE TECHNOLOGY 2025; 429:132543. [PMID: 40239902 DOI: 10.1016/j.biortech.2025.132543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Three parallel sequencing batch reactors (control, small-sized polyurethane sponge (PUS) (3.0 mm), and large-sized PUS (10.0 mm)) were used to investigate aerobic granular biofilm (AGB) characteristics. Results show that 10.0 mm PUS facilitated rapid formation of large-sized AGB (AGBL), which exhibited higher biomass concentration (8.5 g/L) and faster settling velocity (69.2-159.3 m/h) than aerobic granular sludge (AGS) (3.2 g/L and 38.6-80.0 m/h). The AGBL system also maintained long-term structural stability with a lower instability coefficient (0.004-0.018 min-1) than AGS (0.053-0.090 min-1). Additionally, during long-term operation, the AGBL system achieved excellent removal efficiencies for NH4+-N (99.6 ± 0.4 %) and total nitrogen (92.3 ± 2.6 %), and exhibited a lower sludge yield (0.05 gVSS/gCOD) than AGS (0.14 gVSS/gCOD). The larger size and compact structure of AGBL increased anoxic/anaerobic zones, enriching denitrifying and hydrolytic/fermentative bacteria. These findings highlight AGBL with large PUS as a more promising biotechnology for practical applications than conventional AGS.
Collapse
Affiliation(s)
- Haibo Ma
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sihao Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linhuan Lv
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhou Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Binbin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312000, China.
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Meng Y, Du X, Tong X, Wang D. Distinct assembly processes and interspecies interactions between anammox bacteria and co-occurring species across anammox granules. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125483. [PMID: 40288132 DOI: 10.1016/j.jenvman.2025.125483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/27/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Anammox bacteria tend to form granules in engineered systems, but little is known about the ecological mechanisms governing anammox bacteria and their co-occurring species in anammox aggregates. Herein, the microbial community, assembly processes and interspecies interactions were investigated using 200 randomly collected anammox granules from two contrasting environments: a full-scale swine wastewater treatment plant (SwAmx) and a lab-scale up-flow column reactor (LuAmx) treating synthetic wastewater. Granules diameter showed no strong correlation with microbial community in either system, despite functional bacteria Candidatus Brocadia and Denitratisoma maintaining high relative abundance with low heterogeneity across anammox granules. Both neutral and null model analysis revealed that stochastic processes dominated community assembly, with dispersal limitation accounting for 71.51-89.75 % of community assembly, indicating limited microbial exchange between granules. Notably, deterministic selection (especially for homogeneous selection) emerged as the main driver (10.20-26.47 % contribution) for nitrifying and denitrifying bacteria, likely influenced by complex wastewater composition in SwAmx system. The co-occurrence networks further revealed prevalent negative correlations (60.00-90.91 % of connections) between anammox bacteria and heterotrophic populations in both systems, implying potential resource competition. These multiscale insights underscored the ecological drivers in whole anammox community and individual groups, and provided critical implications for optimizing nitrogen removal performance through microbial community management.
Collapse
Affiliation(s)
- Yabing Meng
- Carbon Neutral Innovation Research Center and Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| | - Xin Du
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xingyu Tong
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhu Y, Wang X, Liang L, Yan K, Huang Y, Wang Y. Community assembly and succession of the functional membrane biofilm in the anammox dynamic membrane bioreactor: Deterministic assembly of anammox bacteria. ENVIRONMENTAL RESEARCH 2025; 269:120893. [PMID: 39832544 DOI: 10.1016/j.envres.2025.120893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The anammox dynamic membrane bioreactor (DMBR) exhibits potential for efficient nitrogen removal via anammox processes. The functional membrane biofilm in the anammox DMBR significantly enhances nitrogen removal, ensuring robust operation. Nevertheless, ecological mechanisms underpinning the nitrogen removal function of the membrane biofilm remain unclear. We investigated the community succession and assembly of the membrane biofilm communities in two anammox DMBRs utilizing distinct inoculated anammox sludges. Anammox bacteria displayed niche differentiation in both DMBRs. Anammox bacteria Candidatus Kuenenia was selectively enriched to 8.5% abundance in the membrane biofilm communities, contributing to 5.2-7.2% of the nitrogen removal load. Membrane biofilm communities were primarily assembled through deterministic processes. Specifically, the selective enrichment of Candidatus Kuenenia on the membrane biofilms was primarily governed by homogenous selection process, explaining 9.67-9.82% of the variance. The deterministic assemblies of anammox bacteria were mainly influenced by the high substrate affinity of Candidatus Kuenenia and the limited availability of substrates (NH4+ and NO2-) in the membrane biofilms. Furthermore, the relatively weak permeate drag force during the DMBR filtration facilitated the preferential colonization of microbes from the anammox sludge to the membrane biofilm, resulting in the deterministic formation of the membrane biofilm communities with nitrogen removal function. Our findings offer insights into the ecological mechanisms driving the deterministic assembly of the functional membrane biofilm communities in the anammox DMBRs, informing the precise regulation of membrane biofilms for improved nitrogen removal in anammox applications of wastewater treatment.
Collapse
Affiliation(s)
- Yijing Zhu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Xin Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Liuchun Liang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Kun Yan
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Yihan Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
4
|
Chen H, Chen Y, Du B, Wang Z, Pan S, Zhang M, Mo Z. Mechanism harvesting of main crops straw returning effects on ratooning fragrant rice yield and 2-acetyl-1-pyrroline and their drivers to soil microbial communities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109364. [PMID: 39662389 DOI: 10.1016/j.plaphy.2024.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Straw return to the field is an important measure for increasing soil fertility to increase production. Recent studies have shown that straw return to fields can increase rice yield, but the effect of straw return to fields on ratooning rice is limited. To address this problem, this paper investigated the effect of straw return on a ratooning rice system by harvesting at different heights during the first season. A two-year field experiment was conducted by using a fragrant rice variety (Meixiangzhan 2) as the material. Three experimental treatments including i) the CK treatment: manual harvesting and straw harvested at a height of 20 cm was not returned to the field; ii) the MT1 treatment: mechanical harvesting and straw was returned to the field at a harvest height of 10 cm; iii) the MT2 treatment: mechanical harvesting and straw at a harvest height of 20 cm was returned to the field. The investigated parameters in the rice cropping system in this study were the agronomic traits, yield formation, soil properties, and root soil microorganisms. We found that compared with those in the CK treatment, the yield and 2AP content in the MT treatment significantly increased, the yields of MT1 and MT2 increased by 18.17-32.64% and 12.19-20.42%, respectively. The contents of available potassium, available phosphorus, ammonium nitrogen and active organic carbon in the soil were significantly increased by straw return to the field. The soil capacity increased, and rice production increased. In addition, the straw returned to the field produced a large amount of cellulose and anaerobic environment, which provided an explanation for the increase in some anaerobic bacteria, such as pseudxanthomonas, Rhodobacteriaceae and desulphurides in the MT treatment group. Specifically, straw return provides a large amount of organic material for rice cultivation systems and improves soil fertility under the action of microorganisms to increase production. Overall, the interaction between straw return and harvest height had different effects on yield and 2AP content, and the MT2 treatment was the most beneficial for harvesting ratooning fragrant rice.
Collapse
Affiliation(s)
- Haoming Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Du
- Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Zaiman Wang
- Key Laboratory of Key Technology for South Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Minghua Zhang
- Key Laboratory of Key Technology for South Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Zhu Y, Li D, Ma B, Zeng H, Zhang J. Deciphering key microbes and their interactions within anaerobic ammonia oxidation systems. BIORESOURCE TECHNOLOGY 2025; 416:131799. [PMID: 39532267 DOI: 10.1016/j.biortech.2024.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The stability of anaerobic ammonium oxidation (anammox) performance is inseparably linked to the dynamic equilibrium of microbial interactions. However, understanding of the key microbes within anammox systems remains limited. Through the analysis of 186 16S rRNA datasets combined with various ecological analysis methods, this study identified key microbes in the anammox process. Interactions between Candidatus_Kuenenia and other key microbes are the most significant with greater tolerance to differing water quality, while Candidatus_Jettenia have higher habitat specificity. Under adverse conditions, anammox bacteria can reduce the impact of unfavorable environments by enhancing interactions with certain microbes. This study comprehensively reviews the main functions of key microbes in the anammox system and their interactions, and summarizes several common interaction mechanisms, providing new insights for understanding the startup and stable operation of the anammox process.
Collapse
Affiliation(s)
- Yuliang Zhu
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ben Ma
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Huang J, Li J, Han X, Lu Z, Zhang S, Zhang Z. Aerobic granular sludge enhances start-up and granulation in single-stage partial nitritation anammox granular sludge systems: Performance, mechanism, and shifts in bacterial communities. BIORESOURCE TECHNOLOGY 2025; 416:131760. [PMID: 39515436 DOI: 10.1016/j.biortech.2024.131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The rapid start-up and granulation of a single-stage partial nitritation anammox granular sludge (PN/AnGS) system under limited seed sludge conditions is crucial for its practical application. This study proposed an aerobic granular sludge (AGS) - based strategy, enhanced the enrichment of anammox bacteria (AnAOB), and shortened the start-up time of PN/AnGS system by 20.5%. In addition, the inoculation of AGS can ensure the stable operation of the system during the selective sludge discharge to washout the flocs. Microbial community structure, particle size distribution, morphology results showed that niche shift was the key to promote the enrichment of AnAOB, and AGS played a decisive role in the particle characteristics of PN/AnGS. Since AGS can be directly obtained from full-scale AGS wastewater treatment plants, integrating PN/AnGS with AGS processes can transition wastewater treatment from a "linear economy" to a "circular economy", enhancing nitrogen removal efficiency and delivering significant economic and environmental benefits.
Collapse
Affiliation(s)
- Jing Huang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; Beijing Drainage Group Co. Ltd. (BDG), Beijing 100124, China
| | - Jun Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd. (BDG), Beijing 100124, China
| | - Zedong Lu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd. (BDG), Beijing 100124, China.
| | - Zehao Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Liu J, Hu M, Hu M, Wang J, Zhang T, Wang Y, Wang X. Responses of suspended sludge and biofilm in a SNAD system under C/N elevation: Microbial activity, nitrogen conversion flux and molecular ecological network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176236. [PMID: 39299341 DOI: 10.1016/j.scitotenv.2024.176236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The simultaneous partial nitrification, anammox and denitrification (SNAD) process had received widespread attention as an advanced wastewater treatment process. In this study, the SNAD mainstream nitrogen removal process with the incorporation of polyurethane sponge packing under different C/N conditions was investigated. Results showed that the highest nitrogen removal efficiency of the system was achieved at the C/N of 2.0, while the high C/N (3.5) significantly deteriorate the nitrogen removal efficiency. Meanwhile, high C/N (3.5) significantly inhibited the activity and abundance of anammox bacteria (mainly Candidatus_Kuenenia), resulting in the decreased contribution of anammox (from 63.14 % to 48.09 %). The significant divergence of microbial interactions in the suspended sludge and biofilm was observed with increasing C/N. Compared with suspended sludge, biofilm facilitated higher abundance and activity of anammox bacteria, and the molecular ecological network of biofilm displayed better stability and more efficient mass transfer efficiency between microorganisms. The C/N of 3.5 simplified the subnetworks of Chloroflexi and Proteobacteria but increased the positive interactions between Planctomycetota and other microbes. Anammox bacteria were found as keystone species only in biofilm system. This study provided a theoretical basis and technical guidance for the application of SNAD process in municipal wastewater treatment.
Collapse
Affiliation(s)
- Junyu Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meina Hu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mei Hu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaao Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuling Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Xiao H, Wang K, Wang Y, Zhang T, Wang X. Inhibition of denitrification and enhancement of microbial interactions in the AGS system by high concentrations of quinoline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122837. [PMID: 39383760 DOI: 10.1016/j.jenvman.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Quinoline represents a highly toxic and structurally stable nitrogen-containing heterocyclic compound in coking wastewater, posing a potential threat to human beings and the ecological environment. In this study, we investigated the impact of gradually elevating quinoline concentration on pollutant removal efficiency, sludge characteristics, microbial community and their interactions in the aerobic granular sludge (AGS) system. The results demonstrated that AGS was capable of effectively degrading quinoline, with a final removal rate of 90 mg/L quinoline reaching 98.54 ± 0.28%. Notably, the denitrification process was significantly impeded in the presence of 90 mg/L quinoline, with the Phase D effluent displaying a notably high NO3--N concentration of 37.09 ± 21.81 mg/L, primarily attributed to the reduced abundance of norank_f_A4b bacteria. As the quinoline concentration increased, the sludge particle size diminished from 3.46 to 2.60 mm, while the settling performance deteriorated significantly, escalating from 31.29 ± 1.63 mL/g to 62.32 ± 2.87 mL/g. Meanwhile, the protein (PN) content in EPS gradually increased (from 19.87 ± 0.88 mg/g MLVSS to 51.22 ± 3.21 mg/g MLVSS), while the polysaccharide (PS) content fluctuated. Quinoline profoundly modified microbial community composition and structure, with deterministic processes dominating community assembly. Network analysis indicated intensified and complex microbial interactions at 90 mg/L quinoline, characterized by significantly higher positive correlations. In addition, rare taxa (RT) dominated the network nodes, with 74 of 93 key species belonging to RT, highlighting their pivotal roles in sustaining system functions and strengthening microbial connections. This study provides new insights into the effects of quinoline on microbial community structure and interactions in AGS system.
Collapse
Affiliation(s)
- Haihe Xiao
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kening Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
White CA, Antell EH, Schwartz SL, Lawrence JE, Keren R, Zhou L, Yu K, Zhuang WQ, Alvarez-Cohen L. Life history strategies determine response to SRT driven crash in anammox bioreactors. WATER RESEARCH 2024; 268:122727. [PMID: 39549623 DOI: 10.1016/j.watres.2024.122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a biological process often applied in wastewater treatment plants for nitrogen removal from highly concentrated side-stream effluents from anaerobic digesters. However, they are vulnerable to process instability prompted by operational shocks and microbial community imbalances, resulting in lengthy recovery times. These issues are further compounded by a lack of understanding of how sustained press disturbances influence the microbial ecology of the system. Here we investigate the response and recovery of an anammox membrane bioreactor to a solids retention time (SRT)-induced reactor crash using 16S rRNA gene and shotgun metagenomic sequencing. We observed a strong selection of bacterial groups based on reproduction strategies, with the Orders Rhodospirillales and Sphingobacteriales increasing from 1.0 % and 11.9 % prior to the crash to 31.9 % and 18.1 % during the crash respectively. The Orders Brocadiales and Anaerolineales decreased from 17.3 % and 28.3 % to 7.3 % and 1.4 % over the same time period, respectively. Metagenomic and metatranscriptomic analyses revealed differential crash responses in metabolically distinct groups of bacteria, with increased expression of genes for extracellular carbohydrate active enzymes, peptidases and membrane transporters. Following the crash, the reactor recovered to its prior state of nitrogen removal performance and pathway analysis demonstrated increased expression of genes related to exopolysaccharide biosynthesis and quorum sensing during the reactor recovery period. This study highlights the effects of reactor perturbations on microbial community dynamics in anammox bioreactors and provides insight into potential recovery mechanisms from severe disturbance.
Collapse
Affiliation(s)
- Christian A White
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Edmund H Antell
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Sarah L Schwartz
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | | | - Ray Keren
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Wei-Qin Zhuang
- Department of Civil & Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lisa Alvarez-Cohen
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States; Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
10
|
Liu Q, Zhou T, Liu Y, Wu W, Wang Y, Liu G, Wei N, Yin G, Guo J. Typical Heterotrophic and Autotrophic Nitrogen Removal Process Coupled with Membrane Bioreactor: Comparison of Fouling Behavior and Characterization. MEMBRANES 2024; 14:214. [PMID: 39452826 PMCID: PMC11509564 DOI: 10.3390/membranes14100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
There is limited research on the relationship between membrane fouling and microbial metabolites in the nitrogen removal process coupled with membrane bioreactors (MBRs). In this study, we compared anoxic-oxic (AO) and partial nitritation-anammox (PNA), which were selected as representative heterotrophic and autotrophic biological nitrogen removal-coupled MBR processes for their fouling behavior. At the same nitrogen loading rate of 100 mg/L and mixed liquor suspended solids (MLSS) concentration of 4000 mg/L, PNA-MBR exhibited more severe membrane fouling compared to AO-MBR, as evidenced by monitoring changes in transmembrane pressure (TMP). In the autotrophic nitrogen removal process, without added organic carbon, the supernatant of PNA-MBR had higher concentrations of protein, polysaccharides, and low-molecular-weight humic substances, leading to a rapid flux decline. Extracellular polymeric substances (EPS) extracted from suspended sludge and cake sludge in PNA-MBR also contributed to more severe membrane fouling than in AO-MBR. The EPS subfractions of PNA-MBR exhibited looser secondary structures in protein and stronger surface hydrophobicity, particularly in the cake sludge, which contained higher contents of humic substances with lower molecular weights. The higher abundances of Candidatus Brocadia and Chloroflexi in PNA-MBR could lead to the production of more hydrophobic organics and humic substances. Hydrophobic metabolism products as well as anammox bacteria were deposited on the hydrophobic membrane surface and formed serious fouling. Therefore, hydrophilic membrane modification is more urgently needed to mitigate membrane fouling when running PNA-MBR than AO-MBR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No. 100, Beijing 100124, China; (Q.L.); (T.Z.); (Y.L.); (W.W.); (Y.W.); (G.L.); (N.W.); (G.Y.)
| |
Collapse
|
11
|
Zuo Q, Dang K, Yin J, Yuan D, Lu J, Xiang X. Characteristics of Pinus hwangshanensis Rhizospheric Fungal Community along Huangshan Mountain's Elevation Gradients, China. J Fungi (Basel) 2024; 10:673. [PMID: 39452625 PMCID: PMC11508824 DOI: 10.3390/jof10100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Elevation gradients strongly influence the diversity pattern of soil microorganisms. To date, many studies have elucidated the response of soil microbes to changes in elevation gradients. However, the effects of these gradients on the assembly mechanisms and network complexity of rhizospheric microbial communities remain underexplored. To bridge this knowledge gap, this study assessed the response of rhizospheric fungal communities of Pinus hwangshanensis along different elevation gradients in the Huangshan Mountain scenic area with regard to diversity, community composition, and assembly mechanisms using high-throughput amplicon sequencing. The results revealed significant differences in rhizospheric fungal community composition across three elevation gradients. The soil organic matter and pH were the most relevant factors influencing the changes in rhizospheric fungal community composition. The rhizospheric fungal diversity was significantly lower at both low and high elevations compared to the medium elevation. The rhizospheric fungal community assembly showed a more deterministic process at low and high elevations than at the medium elevation, indicating that stronger environmental filtering contributed to reduced fungal diversity at the extremes of the elevation gradient. In addition, rhizospheric pathogens, particularly Dermateaceae, acted as keystone taxa, diminishing the stability of co-occurrence networks at the medium elevation. This study contributes to a more comprehensive understanding of rhizospheric fungal community patterns and their ecological functions along elevation gradients in mountainous regions.
Collapse
Affiliation(s)
- Qinglin Zuo
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Keke Dang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Jing Yin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Dandan Yuan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Jing Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei 230601, China
| |
Collapse
|
12
|
Zhi J, Ma G, Shi X, Dong G, Yu D, Zhang J, Zhang Y, Li J, Zhao X, Xia H, Chen X, Tian Z, Miao Y. Synergy between Nitrogen Removal and Fermentation Bacteria Ensured Efficient Nitrogen Removal of a Mainstream Anammox System at Low Temperatures. TOXICS 2024; 12:629. [PMID: 39330557 PMCID: PMC11436091 DOI: 10.3390/toxics12090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Simultaneous partial nitrification, anammox, denitrification, and fermentation (SNADF) is a novel process achieving simultaneous advanced sludge reduction and nitrogen removal. The influence of low temperatures on the SNADF reactor was explored to facilitate the application of mainstream anammox. When temperature decreased from 32 to 16 °C, efficient nitrogen removal was achieved, with a nitrogen removal efficiency of 81.9-94.9%. Microbial community structure analysis indicated that the abundance of Candidatus Brocadia (dominant anaerobic ammonia oxidizing bacteria (AnAOB) in the system) increased from 0.03% to 0.18%. The abundances of Nitrospira and Nitrosomonas increased from 1.6% and 0.16% to 2.5% and 1.63%, respectively, resulting in an increase in the ammonia-oxidizing bacteria (AOB) to nitrite-oxidizing bacteria (NOB) abundance ratio from 0.1 to 0.64. This ensured sufficient nitrite for AnAOB, promoting nitrogen removal. In addition, Candidatus Competibacter, which plays a role in partial denitrification, was the dominant denitrification bacteria (DNB) and provided more nitrite for AnAOB, facilitating AnAOB enrichment. Based on the findings from microbial correlation network analysis, Nitrosomonas (AOB), Thauera, and Haliangium (DNB), and A4b and Saprospiraceae (fermentation bacteria), were center nodes in the networks and therefore essential for the stability of the SNADF system. Moreover, fermentation bacteria, DNB, and AOB had close connections in substrate cooperation and resistance to adverse environments; therefore, they also played important roles in maintaining stable nitrogen removal at low temperatures. This study provided new suggestions for mainstream anammox application.
Collapse
Affiliation(s)
- Jiaru Zhi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Guoqing Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Haizheng Xia
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Xinyu Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Zhuoya Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Yuanyuan Miao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| |
Collapse
|
13
|
Guo L, Xi B, Lu L. Strategies to enhance production of metabolites in microbial co-culture systems. BIORESOURCE TECHNOLOGY 2024; 406:131049. [PMID: 38942211 DOI: 10.1016/j.biortech.2024.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Increasing evidence shows that microbial synthesis plays an important role in producing high value-added products. However, microbial monoculture generally hampers metabolites production and limits scalability due to the increased metabolic burden on the host strain. In contrast, co-culture is a more flexible approach to improve the environmental adaptability and reduce the overall metabolic burden. The well-defined co-culturing microbial consortia can tap their metabolic potential to obtain yet-to-be discovered and pre-existing metabolites. This review focuses on the use of a co-culture strategy and its underlying mechanisms to enhance the production of products. Notably, the significance of comprehending the microbial interactions, diverse communication modes, genetic information, and modular co-culture involved in co-culture systems were highlighted. Furthermore, it addresses the current challenges and outlines potential future directions for microbial co-culture. This review provides better understanding the diversity and complexity of the interesting interaction and communication to advance the development of co-culture techniques.
Collapse
Affiliation(s)
- Lichun Guo
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bingwen Xi
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China
| | - Liushen Lu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
14
|
Liu Z, Liu Q, Hao C, Zhao Y. Insights into the response mechanisms of activated sludge system under long-term dexamethasone stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173007. [PMID: 38740206 DOI: 10.1016/j.scitotenv.2024.173007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Dexamethasone (DEX) is a hormone drug that is often detected in wastewater treatment plants, but its impact on activated sludge systems is unknown. This study explored the long-term effects of DEX on nutrient removal, microbial activities, microbial assembly, and microbial interactions in the activated sludge system. During the 90-day DEX exposure experiment, both chemical oxygen demand and total nitrogen removal efficiencies were initially inhibited and then recovered. Microbial activities, i.e., specific oxygen uptake rate and denitrification, did not differ significantly from that of the control reactor (p > 0.05), possibly due to the secretion of extracellular polymers that act as a protective barrier against excess reactive oxygen species induced by DEX. This barrier protects cell membrane integrity and ensures stable treatment performance. Analysis of microbial assembly identified the drift of stochastic processes (from 92.7 % to 51.8 %) and homogeneous selection of deterministic processes (from 1.6 % to 38.7 %) as the main driving forces of microbial community structure succession under long-term DEX stress. Although long-term exposure to 1000 μg/L DEX did not significantly increase the abundance levels of functional bacteria (Nitrosomonas and 996-1) and key genes (AmoCAB and Hao), the ammonia oxidation capacity of the activated sludge system was enhanced. Analysis of microbial interactions indicated that streamlining of functional subnetworks and increased cooperation were the primary reasons. This is the first study to explore the long-term effects of DEX on activated sludge and provide insights into microbial interaction and assembly. Moreover, the findings of this study broaden our knowledge and lay an experimental foundation for reducing risks associated with hormone drugs.
Collapse
Affiliation(s)
- Zhichao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiaona Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenlin Hao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanmin Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Wu T, Ding J, Zhao YJ, Ding L, Zang Y, Sun HJ, Zhong L, Pang JW, Li Y, Ren NQ, Yang SS. Microplastics shaped performance, microbial ecology and community assembly in simultaneous nitrification, denitrification and phosphorus removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172651. [PMID: 38653406 DOI: 10.1016/j.scitotenv.2024.172651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of microplastics (MPs) has led to an increase in their discharge to wastewater treatment plants. However, the knowledge of impact of MPs on macro-performance and micro-ecology in simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) systems is limited, hampering the understanding of potential risks posed by MPs. This study firstly comprehensively investigated the performance, species interactions, and community assembly under polystyrene (PS) and polyvinyl chloride (PVC) exposure in SNDPR systems. The results showed under PS (1, 10 mg/L) and PVC (1, 10 mg/L) exposure, total nitrogen removal was reduced by 3.38-10.15 %. PS and PVC restrained the specific rates of nitrite and nitrate reduction (SNIRR, SNRR), as well as the activities of nitrite and nitrate reductase enzymes (NIR, NR). The specific ammonia oxidation rate (SAOR) and activity of ammonia oxidase enzyme (AMO) were reduced only at 10 mg/L PVC. PS and PVC enhanced the size of co-occurrence networks, niche breadth, and number of key species while decreasing microbial cooperation by 5.85-13.48 %. Heterogeneous selection dominated microbial community assembly, and PS and PVC strengthened the contribution of stochastic processes. PICRUSt prediction further revealed some important pathways were blocked by PS and PVC. Together, the reduced TN removal under PS and PVC exposure can be attributed to the inhibition of SAOR, SNRR, and SNIRR, the restrained activities of NIR, NR, and AMO, the changes in species interactions and community assembly mechanisms, and the suppression of some essential metabolic pathways. This paper offers a new perspective on comprehending the effects of MPs on SNDPR systems.
Collapse
Affiliation(s)
- Tong Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying-Jun Zhao
- Zhe Jiang University of Technology Engineering Design Group CO., Ltd, China
| | - Lan Ding
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yani Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
Xu C, Shi B, Jia Z, Liu D, Hu W, Feng C, Li R. Tracing the impacts of ecological water replenishment on the sources and transformation of groundwater nitrate through isotope and microbial analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172248. [PMID: 38582108 DOI: 10.1016/j.scitotenv.2024.172248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Ecological water replenishment (EWR) changes the recharge conditions, flow fields, and physicochemical properties of regional groundwater. However, the resulting impacts on mechanisms regulating the sources and transformation of groundwater nitrate remain unclear. This study investigated how EWR influences the sources and transformation processes of groundwater nitrate using an integrated approach of Water chemistry analysis and stable isotopes (δ15N-NO3- and δ18O-NO3-) along with microbial techniques. The results showed that groundwater NO3-N decreased from 12.98 ± 7.39 mg/L to 7.04 ± 8.52 mg/L after EWR. Water chemistry and isotopic characterization suggested that groundwater nitrate mainly originated from sewage and manure. The Bayesian isotope mixing model (MixSIAR) indicated that EWR increased the average contribution of sewage and manure sources to groundwater nitrate from 46 % to 61 %, whereas that of sources of chemical fertilizer decreased from 43 % to 21 %. Microbial community analysis revealed that EWR resulted in a substantial decrease in the relative abundance of Pseudomonas spp denitrificans, from 13.7 % to 0.6 %. Both water chemistry and microbial analysis indicated that EWR weakened denitrification and enhanced nitrification in groundwater. EWR increases the contribution of nitrate to groundwater by promoting the release of sewage and feces in the unsaturated zone. However, the dilution effect caused by EWR was stronger than the contribution of sewage and fecal sources to groundwater nitrate. As a result, EWR helped to reduce groundwater nitrate concentrations. This study showed the effectiveness of integrated isotope and microbial techniques for delineating the sources and transformations of groundwater nitrate influenced by EWR.
Collapse
Affiliation(s)
- Congchao Xu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bowen Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zihao Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Di Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiwu Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rui Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
17
|
Su X, Li J, Peng Y, Yuan Y, Wu L, Peng Y. An overlooked effect of hydroxylamine on anammox granular sludge: Promoting granulation and boosting activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171176. [PMID: 38395175 DOI: 10.1016/j.scitotenv.2024.171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The exogenous hydroxylamine dosing has been proven to enhance nitrite supply for anammox bacteria. In this study, exogenous hydroxylamine was fed into a sequencing batch reactor to investigate its long-term effect on anammox granular sludge. The results showed that hydroxylamine enhanced the reactor's performance with an increase in total nitrogen removal rate from 0.23 to 0.52 kg N/m3/d and an increase in bacterial activity from 11.65 to 78.24 mg N/g VSS/h. Meanwhile, hydroxylamine promoted granulation by eluting flocs. And higher anammox activity and granulation were supported by extracellular polymeric substances (EPS) characteristics. Moreover, Candidatus Brocadia's abundance increased from 1.10 % to 3.03 %, and its symbiosis with heterotrophic bacteria was intensified. Additionally, molecular docking detailed the mechanism of the hydroxylamine effect. Overall, this study would provide new insights into the hydroxylamine dosing strategy application.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environmental Investment Co., Ltd., Beijing 101101, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
18
|
Chen S, Zhu X, Zhu G, Liang B, Luo J, Zhu D, Chen L, Zhang Y, Rittmann BE. N-methyl pyrrolidone manufacturing wastewater as the electron donor for denitrification: From bench to pilot scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169517. [PMID: 38142007 DOI: 10.1016/j.scitotenv.2023.169517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Actual wastewater generated from N-methylpyrrolidone (NMP) manufacture was used as electron donor for tertiary denitrification. The organic components of NMP wastewater were mainly NMP and monomethylamine (CH3NH2), and their biodegradation released ammonium that was nitrified to nitrate that also had to be denitrified. Bench-scale experiments documented that alternating denitrification and nitrification realized effective total‑nitrogen removal. Ammonium released from NMP was nitrified in the aerobic reactor and then denitrified when actual NMP wastewater was used as the electron donor for endogenous and exogenous nitrate. Whereas TN and NMP removals occurred in the denitrification step, dissolved organic carbon (DOC) and CH3NH2 removals occurred in the denitrification and nitrification stages. The genera Thauera and Paracoccus were important for NMP biodegradation and denitrification in the denitrification reactor; in the nitrification stage, Amaricoccus and Sphingobium played key roles for biodegrading intermediates of NMP, while Nitrospira was responsible for NH4+ oxidation to NO3-. Pilot-scale demonstration was achieved in a two-stage vertical baffled bioreactor (VBBR) in which total‑nitrogen removal was realized sequential anoxic-oxic treatment without biomass recycle. Although the bench-scale reactors and the VBBR had different configurations, both effectively removed total nitrogen through the same mechanisms. Thus, an N-containing organic compound in an industrial wastewater could be used to drive total-N removal in a tertiary-treatment scenario.
Collapse
Affiliation(s)
- Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Xiaohui Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Bin Liang
- MYJ Chemical Co., Ltd., Puyang, Henan 457000, PR China
| | - Jin Luo
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Danyang Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Linlin Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| |
Collapse
|
19
|
Wang K, Huang Y, Zhang M, Xiao H, Zhang G, Zhang T, Wang X. Pressure of different level PFOS on aerobic granule sludge: Insights on performance, AGS structure, community succession, and microbial interaction responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167682. [PMID: 37820810 DOI: 10.1016/j.scitotenv.2023.167682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) has received much attention due to its potential environmental risks. However, the response of aerobic granular sludge (AGS) to PFOS exposure, particularly the microbial interactions, remains unclear. In this study, we investigated the particle structure of AGS, pollutant removal performance, community succession, and microbial interaction in the AGS system under different PFOS concentrations (0.1 and 1 mg/L). The mass balance showed that PFOS was mainly removed by adsorption with a removal rate of >85 %. PFOS caused some particles to break up and decreased the average particle size from 3.37 mm to 2.64 mm. It also significantly decreased the total nitrogen and total phosphorus removal rates, which was consistent with the deterioration of microbial activity, such as denitrification rate (25 % inhibition), phosphorus uptake rate (73.19 % inhibition), and phosphorus release rate (73.33 % inhibition). PFOS promoted the secretion of extracellular polymer (EPS) in AGS, especially proteins, leading to poor particle hydrophobicity. The network analysis illustrated that PFOS slowed down the information transfer between microorganisms, and increased the competition between them, which may be responsible for the deterioration of the system performance. Connections related to rare species accounted for >75 % of the network, suggesting that rare species have an indispensable role in community information exchange. In addition, rare species acted as seed banks for microorganisms, and under PFOS stress, they transformed into keystone species, which could contribute to system stabilization. This study provides new insights into the effects of PFOS on microbial interactions in AGS systems and the roles of rare species in the AGS microbial community.
Collapse
Affiliation(s)
- Kening Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Huang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Haihe Xiao
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gengyi Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
20
|
Yan Y, Chen Y, Wu X, Dang H, Zeng T, Ma J, Tang C. Enhanced nitrogen removal from rural domestic sewage via partial nitrification-anammox in integrated vertical subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 233:116338. [PMID: 37311474 DOI: 10.1016/j.envres.2023.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to improve the removal of nitrogen treating rural domestic sewage by developing a novel strategy for achieving partial nitrification-anammox (PNA) in an integrated vertical subsurface flow constructed wetland (VSFCW). The influent ammonia was oxidized to nitrite in the partial nitrification VSFCW (VSFCWPN), and 5 mg/L of hydroxylamine was added under the appropriate dissolved oxygen concentration level (1.2 ± 0.2 mg/L) to stabilize the average nitrite accumulation rate at 88.24% and maintain the effluent NO2--N/NH4+-N ratio at 1.26 ± 0.15. The effluent from VSFCWPN was introduced to the following chamber (VSFCWAN), where ammonia and nitrite were removed by the autotrophic anammox process. This implementation achieved high removal efficiencies for chemical oxygen demand, total nitrogen, and PO43--P, reaching 86.26%, 90.22%, and 78.94%, respectively, with influent concentrations of 120.75 mg/L, 60.02 mg/L, and 5.05 mg/L. Substrate samples were collected from 10 cm height (PN1, AN1) and 25 cm height (PN2, AN2). Microbial community analysis showed that Nitrosomonas dominated the community composition in VSFCWPN, with an increase from 1.61% in the inoculated sludgePN to 16.31% (PN1) and 12.09% (PN2). Meanwhile, Ca. Brocadia accounted for 44.81% (AN1) and 36.50% (AN2) in VSFCWAN. These results confirm the feasibility of the proposed strategy for establishing PNA and efficiently treating rural domestic sewage in an integrated VSFCW.
Collapse
Affiliation(s)
- Yuan Yan
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| | - Xinbo Wu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Tianxu Zeng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Jiao Ma
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Chenxin Tang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
21
|
White C, Antell E, Schwartz SL, Lawrence JE, Keren R, Zhou L, Yu K, Zhuang W, Alvarez-Cohen L. Synergistic interactions between anammox and dissimilatory nitrate reducing bacteria sustains reactor performance across variable nitrogen loading ratios. Front Microbiol 2023; 14:1243410. [PMID: 37637134 PMCID: PMC10450351 DOI: 10.3389/fmicb.2023.1243410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria are utilized for high efficiency nitrogen removal from nitrogen-laden sidestreams in wastewater treatment plants. The anammox bacteria form a variety of competitive and mutualistic interactions with heterotrophic bacteria that often employ denitrification or dissimilatory nitrate reduction to ammonium (DNRA) for energy generation. These interactions can be heavily influenced by the influent ratio of ammonium to nitrite, NH4+:NO2-, where deviations from the widely acknowledged stoichiometric ratio (1:1.32) have been demonstrated to have deleterious effects on anammox efficiency. Thus, it is important to understand how variable NH4+:NO2- ratios impact the microbial ecology of anammox reactors. We observed the response of the microbial community in a lab scale anammox membrane bioreactor (MBR) to changes in the influent NH4+:NO2- ratio using both 16S rRNA gene and shotgun metagenomic sequencing. Ammonium removal efficiency decreased from 99.77 ± 0.04% when the ratio was 1:1.32 (prior to day 89) to 90.85 ± 0.29% when the ratio was decreased to 1:1.1 (day 89-202) and 90.14 ± 0.09% when the ratio was changed to 1:1.13 (day 169-200). Over this same timespan, the overall nitrogen removal efficiency (NRE) remained relatively unchanged (85.26 ± 0.01% from day 0-89, compared to 85.49 ± 0.01% from day 89-169, and 83.04 ± 0.01% from day 169-200). When the ratio was slightly increased to 1:1.17-1:1.2 (day 202-253), the ammonium removal efficiency increased to 97.28 ± 0.45% and the NRE increased to 88.21 ± 0.01%. Analysis of 16 S rRNA gene sequences demonstrated increased relative abundance of taxa belonging to Bacteroidetes, Chloroflexi, and Ignavibacteriae over the course of the experiment. The relative abundance of Planctomycetes, the phylum to which anammox bacteria belong, decreased from 77.19% at the beginning of the experiment to 12.24% by the end of the experiment. Analysis of metagenome assembled genomes (MAGs) indicated increased abundance of bacteria with nrfAH genes used for DNRA after the introduction of lower influent NH4+:NO2- ratios. The high relative abundance of DNRA bacteria coinciding with sustained bioreactor performance indicates a mutualistic relationship between the anammox and DNRA bacteria. Understanding these interactions could support more robust bioreactor operation at variable nitrogen loading ratios.
Collapse
Affiliation(s)
- Christian White
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Edmund Antell
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Sarah L. Schwartz
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | | | - Ray Keren
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Weiqin Zhuang
- Department of Civil & Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lisa Alvarez-Cohen
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|