1
|
Xian T, Liu Y, Cao X, Feng T. Alterations to the vaginal microbiota and their correlation with serum pro-inflammatory cytokines in post-weaning sows with endometritis. Theriogenology 2025; 239:117386. [PMID: 40088711 DOI: 10.1016/j.theriogenology.2025.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Endometritis is a prevalent disease in sows that strongly reduces reproductive performance. Its causes are complex and multifaceted, making disease management challenging without targeted measures. To provide a scientific basis for developing targeted disease management strategies, we examined vaginal microbiota diversity and its correlation with serum pro-inflammatory cytokine levels in sows with endometritis and the main pathogenic bacterial species contributing to endometritis. Fourteen post-weaning sows selected at a pig farm in Beijing, China, were randomly divided into healthy (C) and endometritis (E) groups. Levels of cytokines including interleukin-1α (IL-1α), IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) were quantified by enzyme-linked immunosorbent assays. Vaginal microbiota species were identified using 16S rDNA sequencing. Concentrations of IL-1α and IL-6 in serum and vaginal microbial diversity were significantly increased in group E versus group C. The relative abundance of Firmicutes exhibited a marked increase in group E, whereas that of Fusobacteriota was significantly decreased. The composition and relative abundance of dominant bacterial genera differed between the two groups, and the dominant genera in group E were Clostridium_sensu_stricto_1, UCG-005, UCG-002, Terrisporobacter, and Christensenellaceae_R-7_group. IL-6 was significantly positively correlated with Clostridium_sensu_stricto_1 and Terrisporobacter in group E. These results suggest that vaginal microbiota abundance and diversity and serum pro-inflammatory cytokine levels are increased in sows with endometritis, and the latter are closely associated with vaginal microbiota abundance and composition. This study provides a foundation for investigating the pathogenesis of endometritis in sows and a theoretical basis for disease prevention and treatment.
Collapse
Affiliation(s)
- Tingting Xian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China; Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, 100097, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China; Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, 100097, China
| | - Xin Cao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China.
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China; Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, 100097, China.
| |
Collapse
|
2
|
Frazier AN, Willis W, Robbe H, Ortiz A, Koziel JA. Characterization and Assembly Dynamics of the Microbiome Associated with Swine Anaerobic Lagoon Manure Treated with Biochar. Microorganisms 2025; 13:758. [PMID: 40284595 PMCID: PMC12029491 DOI: 10.3390/microorganisms13040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Biochar has significant potential for livestock microbiomes and crop agriculture regarding greenhouse gas emissions reduction. Therefore, a pilot study was designed to investigate the effect of biochar application on the surface of swine manure from an open lagoon and the associated microbial communities. Samples were collected from four different treatment groups: control (n = 4), coarse biochar (n = 4), fine biochar (n = 4), and ultra-fine biochar (n = 4). Additionally, aged manure in bulk was collected (n = 4) to assess alterations from the control group. The method of 16S rRNA amplicon sequencing along with microbial analyses was performed. Diversity was significantly different between aged manure in bulk samples and all treatment groups (Kruskal-Wallis; p < 0.05). Additionally, distinct community compositions were seen using both weighted and unweighted UniFrac distance matrices (PERMANOVA; p < 0.01). Differential abundance analysis revealed four distinct features within all treatment groups that were enriched (q < 0.001): Idiomarina spp., Geovibrio thiophilus, Parapusillimonas granuli, and an uncultured Gammaproteobacteria species. Similarly, Comamonas spp. and Brumimicrobium aurantiacum (q-value < 0.001) were significantly depleted by all the treatments. Stochastic and functional analyses revealed that biochar treatments were not deterministically altering assembly patterns, and functional redundancy was evident regardless of compositional shifts.
Collapse
Affiliation(s)
- A. Nathan Frazier
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - William Willis
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Heather Robbe
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Anna Ortiz
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Jacek A. Koziel
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Chen N, Zhang X, Du Q, Wang H, Wang Z, Ren J, Li H, Guo W, Ngo HH. An in-situ biochar-enhanced anaerobic membrane bioreactor for swine wastewater treatment under various organic loading rates. J Environ Sci (China) 2024; 146:304-317. [PMID: 38969460 DOI: 10.1016/j.jes.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 07/07/2024]
Abstract
A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.
Collapse
Affiliation(s)
- Nianwen Chen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Qing Du
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Huizhong Wang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junzhi Ren
- Tianjin Caring Technology Development Co., Ltd., Tianjin 300381, China
| | - Hongxia Li
- Tianjin Caring Technology Development Co., Ltd., Tianjin 300381, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
4
|
Li MY, Zhang RD, Liu SS, Pei CL, He LY, Zhao JL, Liu YS, Shi YJ, Ying GG. Aerobic granular sludge for swine wastewater treatment: Implications for antibiotic and antibiotic resistance gene elimination. BIORESOURCE TECHNOLOGY 2024; 410:131297. [PMID: 39153702 DOI: 10.1016/j.biortech.2024.131297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R1 and R2, were constructed and optimized for treating SW from two pig farms, identified as SW1 and SW2. R2 showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R1 and 14.1 % in R2, respectively. Mantel's test revealed that pH, NH4+-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.
Collapse
Affiliation(s)
- Meng-Yuan Li
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Run-Dong Zhang
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Shuang-Shuang Liu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Cheng-Lei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yi-Jing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
5
|
Liang Y, Chen Y, Chen C, Zhou X, Jia W, Wu Y, Wu Q, Guo L, Wang H, Guo WQ. Sequential bio-treatment of ammonia-rich wastewater from Chinese medicine residue utilization: Regulation of dissolved oxygen. BIORESOURCE TECHNOLOGY 2024; 406:131041. [PMID: 38925404 DOI: 10.1016/j.biortech.2024.131041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
To effectively treat actual ammonia-rich Chinese medicine residue (CMR) resource utilization wastewater, we optimized an anaerobic-microaerobic two-stage expanded granular sludge bed (EGSB) and moving bed sequencing batch reactor (MBSBR) combined process. By controlling dissolved oxygen (DO) levels, impressive removal efficiencies were achieved. Microaeration, contrasting with anaerobic conditions, bolstered dehydrogenase activity, enhanced electron transfer, and enriched the functional microorganism community. The increased relative abundance of Synergistetes and Proteobacteria facilitated hydrolytic acidification and fostered nitrogen and phosphorus removal. Furthermore, we examined the impact of DO concentration in MBSBR on pollutant removal and microbial metabolic activity, pinpointing 2.5 mg/L as the optimal DO concentration for superior removal performance and energy conservation.
Collapse
Affiliation(s)
- Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yihong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuchu Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianjiao Zhou
- Heilongjiang Province Daqing Ecological and Environment Monitoring Center, Daqing 163000, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Lian T, Yin F, Zhang W, Cao Q, Wang S, Zhou T, Zhang F, Li R, Dong H. Enhanced lactic acid production through enzymatic hydrolysis: Assessing impact of varied enzyme loadings on co-fermentation of swine manure and apple waste. BIORESOURCE TECHNOLOGY 2024; 406:131012. [PMID: 38908762 DOI: 10.1016/j.biortech.2024.131012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Anaerobic co-fermentation of swine manure (SM) and apple waste (AW) restricts by the slow hydrolysis of substrates with complex structures, which subsequently leads to low lactic acid (LA) production. Therefore, a novel strategy based on enzymatic pretreatment for improving LA production from anaerobic co-fermentation of SM and AW was proposed in this study. The results indicated that the maximal LA concentration increased from 35.89 ± 1.84 to 42.70 ± 2.18 g/L with the increase of enzyme loading from 0 to 300 U/g VSsubstrate. Mechanism exploration indicated that enzymatic pretreatment significantly promoted the release and hydrolysis of insoluble organic matter from fermentation substrate, thus providing an abundance of reaction intermediates that were directly available for LA production. Additionally, bacteria analysis revealed that the high concentration of LA was associated with the prevalence of Lactobacillus. This study offered an environmental-friendly strategy for promoting SM and AW hydrolysis and provided a viable approach for recovering valuable products.
Collapse
Affiliation(s)
- Tianjing Lian
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- China Huadian Engineering Co. Ltd., Beijing 100160, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Lian T, Zhang W, Cao Q, Yin F, Wang S, Zhou T, Wei X, Zhang F, Zhang Z, Dong H. Enzyme enhanced lactic acid fermentation of swine manure and apple waste: Insights from organic matter transformation and functional bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120573. [PMID: 38479289 DOI: 10.1016/j.jenvman.2024.120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Anaerobic co-fermentation is a favorable way to convert agricultural waste, such as swine manure (SM) and apple waste (AW), into lactic acid (LA) through microbial action. However, the limited hydrolysis of organic matter remains a main challenge in the anaerobic co-fermentation process. Therefore, this work aims to deeply understand the impact of cellulase (C) and protease (P) ratios on LA production during the anaerobic co-fermentation of SM with AW. Results showed that the combined use of cellulase and protease significantly improved the hydrolysis during the enzymatic pretreatment, thus enhancing the LA production in anaerobic acidification. The highest LA reached 41.02 ± 2.09 g/L within 12 days at the ratio of C/P = 1:3, which was approximately 1.26-fold of that in the control. After a C/P = 1:3 pretreatment, a significant SCOD release of 45.34 ± 2.87 g/L was achieved, which was 1.13 times the amount in the control. Moreover, improved LA production was also attributed to the release of large amounts of soluble carbohydrates and proteins with enzymatic pretreated SM and AW. The bacterial community analysis revealed that the hydrolytic bacteria Romboutsia and Clostridium_sensu_stricto_1 were enriched after enzyme pretreatment, and Lactobacillus was the dominant bacteria for LA production. This study provides an eco-friendly technology to enhance hydrolysis by enzymatic pretreatment and improve LA production during anaerobic fermentation.
Collapse
Affiliation(s)
- Tianjing Lian
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- China Huadian Engineering Co. Ltd., Beijing 100160, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Wei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
9
|
Nouhou Moussa AW, Sawadogo B, Konate Y, Sidibe SDS, Heran M. Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability. MEMBRANES 2023; 13:709. [PMID: 37623770 PMCID: PMC10456721 DOI: 10.3390/membranes13080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/26/2023]
Abstract
The worldwide pressure on water resources is aggravated by rapid industrialization, with the food industry, particularly sugar factories, being the foremost contributor. Sugarcane, a primary source of sugar production, requires vast amounts of water, over half of which is discharged as wastewater, often mixed with several byproducts. The discharge of untreated wastewater can have detrimental effects on the environment, making the treatment and reuse of effluents crucial. However, conventional treatment systems may not be adequate for sugarcane industry effluent treatment due to the high organic load and variable chemical and mineral pollution. It is essential to explore pollution-remediating technologies that can achieve a nexus (water, energy, and food) approach and contribute to sustainable development. Based on the extensive literature, membrane technologies such as the membrane bioreactor have shown promising results in treating sugarcane industry wastewater, producing treated water of higher quality, and the possibility of biogas recovery. The byproducts generated from this treatment can also be recovered and used in agriculture for food security. To date, membrane technologies have demonstrated successful results in treating industrial wastewater. This critical review aims to evaluate the performance of traditional and conventional processes in order to propose sustainable perspectives. It also serves to emphasize the need for further research on operating conditions related to membrane bioreactors for valuing sugarcane effluent, to establish it as a sustainable treatment system.
Collapse
Affiliation(s)
- Abdoul Wahab Nouhou Moussa
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Boukary Sawadogo
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Yacouba Konate
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Sayon dit Sadio Sidibe
- Laboratoire Energies Renouvelables et Efficacité Energétique (LaBEREE), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso
| | - Marc Heran
- Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France;
| |
Collapse
|
10
|
Wu H, Li A, Zhang H, Gao S, Li S, Cai J, Yan R, Xing Z. The potential and sustainable strategy for swine wastewater treatment: Resource recovery. CHEMOSPHERE 2023; 336:139235. [PMID: 37343397 DOI: 10.1016/j.chemosphere.2023.139235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Swine wastewater is highly polluted with complex and harmful substances that require effective treatment to minimize environmental damage. There are three commonly used biological technologies for treating swine wastewater: conventional biological technology (CBT), microbial electrochemical technology (MET), and microalgae technology (MT). However, there is a lack of comparison among these technologies and a lack of understanding of their unique advantages and efficient operation strategies. This review aims to compare and contrast the characteristics, influencing factors, improvement methods, and microbial mechanisms of each technology. CBT is cost-effective but has low resource recovery efficiency, while MET and MT have the highest potential for resource recovery. However, all three technologies are affected by various factors and toxic substances such as heavy metals and antibiotics. Improved methods include exogenous/endogenous enhancement, series reactor operation, algal-bacterial symbiosis system construction, etc. Though MET is limited by construction costs, CBT and MT have practical applications. While swine wastewater treatment processes have developed automatic control systems, the application need further promotion. Furthermore, key functional microorganisms involved in CBT's pollutant removal or transformation have been detected, as have related genes. The unique electroactive microbial cooperation mode and symbiotic mode of MET and MT were also revealed, respectively. Importantly, the future research should focus on broadening the scope and scale of engineering applications, preventing and controlling emerging pollutants, improving automated management level, focusing on microbial synergistic metabolism, enhancing resource recovery performance, and building a circular economy based on low-cost and resource utilization.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Suqi Li
- College of Life and Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jindou Cai
- School of Culture and Tourism, Chongqing City Management College, Chongqing, 402160, PR China
| | - Ruixiao Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
11
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|