1
|
Tang L, Zhuang C, Qi P, Yang X, Yan M, Li F, Deng Q, Sun L, Lu H. Unraveling stress responses of microalgal-bacterial granular sludge when treating ciprofloxacin-laden wastewater. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137811. [PMID: 40073569 DOI: 10.1016/j.jhazmat.2025.137811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Unraveling the potential of microalgal-bacterial granular sludge (MBGS) technology for sustainable treatment of ciprofloxacin (CIP)-laden wastewater and mitigation of antibiotic resistance genes (ARGs) remains limited. This study evaluated the performance of bacterial granular sludge (BGS) and MBGS systems in terms of nutrient and CIP removal, granular stability, and ARG attenuation under long-term exposure to CIP for the first time. While both systems achieved effective pollutant removal at low CIP concentrations (0.1 and 0.5 mg/L), MBGS demonstrated superior resilience and efficiency under high CIP loads (10 mg/L). Notably, MBGS improved phosphorus removal by 32.71 %, achieved a 70.42 μg/(g-SS)/d greater CIP removal and maintained structural integrity, unlike BGS, which disintegrated under oxidative stress. The microalgae species (Pseudoneochloris and Chlamydopodium) could effectively resist various concentrations of CIP. Additionally, the relative abundance of ARGs in MBGS was 30.91 % lower than that in BGS, suggesting that microalgae in MBGS system could reduce ARG production. Overall, these findings improve our understanding of the role of microalgae in enhancing CIP remediation and controlling ARG propagation in MBGS systems.
Collapse
Affiliation(s)
- Lan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Chuanyan Zhuang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Peng Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Xiaojing Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meng Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Fan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Qiujin Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
2
|
Feng B, Chen J, Wang C, Wang P, You G, Lin J, Gao H. Removal of ofloxacin and inhibition of antibiotic resistance gene spread during the aerobic biofilm treatment of rural domestic sewage through the micro-nano aeration technology. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137020. [PMID: 39733752 DOI: 10.1016/j.jhazmat.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions. Results showed that the MNA increased OFL removal by 17.27 %-40.54 % and decreased total ARG abundance by 36.37 %-54.98 %, compared with CVA. MNA-induced biofilm rough morphology, high zeta potential, and reduced extracellular polymeric substance (EPS) secretion enhanced OFL adsorption. High dissolved oxygen and temperature, induced by MNA-enriched aerobic bacteria and their carrying OFL-degrading genes, enhanced OFL biodegradation. MNA inhibited the enrichment of ARG host bacteria, which acquired ARGs possibly via horizontal gene transfer (HGT). Functional profiles involved in the HGT process, including reactive oxygen species production, membrane permeability, mobile genetic elements (MGEs), adenosine triphosphate synthesis, and EPS secretion, were down-regulated by MNA, inhibiting ARG spread. Partial least-squares path modeling revealed that MGEs might be the main factor inhibiting ARG spread. This study provides insights into the mechanisms by which MNA enhances antibiotic removal and inhibits ARG spread in aerobic biofilm systems.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Junkai Lin
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
3
|
Huang Z, Hong Y, Cui Y, Guo H, Long Y, Ye J. Efficient adsorption of ofloxacin in a novel nanocomposite formed by nano-hexagonal boron nitride fused with zeolite imidazolite skeleton-8: Experimental and molecular dynamics simulation studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117536. [PMID: 39675073 DOI: 10.1016/j.ecoenv.2024.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
With the widespread application of antibiotics in the medical field, associated wastewater pollution has become a critical environmental issue, creating potential risks to ecosystems and public health. This study synthesized three novel nanocomposite materials, ZIF-8@h-BN-X, using an in-situ growth method by adjusting h-BN content. Compared to pure two-dimensional hexagonal boron nitride (h-BN), their adsorption capacities for ofloxacin (OFL) in solution were evaluated. Results showed that zeolitic imidazolate framework-8 (ZIF-8) attached and grew on the h-BN surface, altering surface functional groups and significantly enhancing the nanocomposite's adsorption effect on OFL. Adsorption capacity depended on the initial h-BN content, with lower X content resulting in more active sites and stronger adsorption capacity. Equilibrium adsorption capacities were 145.46, 124.91, and 58.16 mg·g-1 for X values of 29.82 %, 45.93 %, and 62.95 %, respectively. Molecular dynamics simulations revealed interaction energies of -109.13 kcal·mol-1 between ZIF-8@h-BN-X and OFL, compared to -84.78 kcal·mol-1 between pure h-BN and OFL, demonstrating the superior adsorption performance of ZIF-8@h-BN-X. OFL adsorption on ZIF-8@h-BN-X followed the Langmuir isotherm model and pseudo-second-order adsorption kinetics. Thermodynamic parameters indicated that the adsorption process of ZIF-8@h-BN-X was exothermic and spontaneous when compared to h-BN alone. This study highlights the significant potential of ZIF-8@h-BN-X in treating antibiotic-contaminated wastewater, while providing theoretical and practical insights for developing novel, efficient two-dimensional nanocomposite adsorbents.
Collapse
Affiliation(s)
- Zefang Huang
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Yuankai Hong
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Yiqun Cui
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Huiying Guo
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yan Long
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment and Climate, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Zhang D, Li J, Zhang G, Xu Y. Decoding the trajectory of antibiotic resistance genes in saline and alkaline soils: Insights from different fertilization regimes. ENVIRONMENT INTERNATIONAL 2025; 195:109247. [PMID: 39765202 DOI: 10.1016/j.envint.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The soil salinity and alkalinity play an important role in the occurrence and proliferation of antibiotic resistance genes (ARGs). Yet, little is known the underlying mechanism by which soil salinity and alkalinity affect antibiotic resistance evolution. Here we investigated the ARGs variation in soil salinity and alkalinity environments created by different fertilization, and explored the biological mechanisms that salinity and alkalinity alter the evolutionary paradigm of antibiotic resistance. The results showed the soil treated by organic fertilizer exhibited a low salinity, neutral level (TSD 239.20 μS/cm, pH 7.17). The ARG abundance in the OF treatment was the highest, keeping an average of 67.83 TPM. Beside the effect of direct input of organic fertilizer at the beginning, it was important to note that, ARGs abundance during planting showed significant correlations with pH and electric conductivity. We observed that changes in microbial survival strategies under different salinity and alkalinity conditions further affected ARG hosts abundance. Indoor experiments demonstrated that there was a survival trade-off between the growth of resistant bacteria and the evolution of antibiotic resistance in salinity and alkalinity environments. Meta-genomic and Meta-transcriptomic analysis consistently demonstrated bacterial antibiotic resistance was primarily associated with pyruvate, energy and lipid metabolic pathways. The functional gene related to salinity and alkalinity, like cysH, cysK, plsB and plsC showed negative correlations with MDR. Prokaryotic transcription assays validated these relations. This study well explains the prevalence of soil ARGs after different fertilization regimes and will give a deeper understanding for the effect of soil salinity and alkalinity on antibiotic resistance evolution.
Collapse
Affiliation(s)
- Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Jie Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Qingyun Comprehensive Test Base, Dezhou 253000, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
5
|
Wang F, Huang W, Chen J, Luo Y, Cao J, Fang F, Liu X, Wu Y, Luo J. Non-antibiotic disinfectant synchronously interferes methane production and antibiotic resistance genes propagation during sludge anaerobic digestion: Activation of microbial adaptation and reconfiguration of bacteria-archaea synergies. WATER RESEARCH 2024; 268:122773. [PMID: 39541851 DOI: 10.1016/j.watres.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Waste activated sludge (WAS) presents both resource recovery potential and pollution risks, making its efficient treatment challenging. Anaerobic digestion is broadly recognized as a green and sustainable approach to WAS treatment, whose efficiency is easily impacted by the exogeneous pollutants in WAS. However, the impact of polyhexamethylene guanidine (PHMG), as a widely-used non-antibiotic disinfectant, on WAS digestion under semi-continuous flow conditions remains unclear. In this study, CH4 production decreased from 16.1 mL/g volatile suspended solids (VSS) in the control to 13.2 mL/g VSS and 0.3 mL/g VSS under low and high PHMG exposure, respectively, while PHMG increased the number of antibiotic resistance gene (ARG) copies per bacterium by 4.6-12.7 %. Molecular docking analysis revealed that PHMG could spontaneously bind to and disintegrate WAS (binding energy:2.35 and -9.62 kcal/mol), increasing the likelihood of microbial exposure to PHMG. This led to an increase in bacterial abundance and a reduction in archaeal populations, resulting in bacterial dominance in ecological niches. The network topology index in PHMG-treated reactors was consistently lower than in the control, with a higher proportion of negatively correlated links, indicating a more antagonistic relationship between bacteria and archaea. Consequently, PHMG significantly interfered with key genes involved in CH4 biosynthesis (e.g., mch and mtd). Interestingly, methanogenic activity and archaeal chemotaxis (e.g., rfk and cheA) partially recovered under low PHMG exposure due to archaeal adaptation through quorum sensing and two-component systems. However, this adaptation process also contributed to the propagation of ARGs through horizontal gene transfer, facilitated by the enhancement of mobile genetic elements and ARGs hosts. These findings confirm the ecological risks of PHMG and highlight the need for effective WAS disposal strategies.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiale Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xuran Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
6
|
Akaniro IR, Zhang R, Chai X, Tsang CHM, Wang P, He S, Yang Z, Zhao J. Engineered digestate-derived biochar mediated peroxymonosulfate activation for oxytetracycline removal in sustainable wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124640. [PMID: 39084587 DOI: 10.1016/j.envpol.2024.124640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Nowadays, biochar is extensively used in wastewater remediation with the aim of achieving water security and circularity with minimal impacts on ecosystems and the environment. In this study, digestate biochar was prepared and modified using different methods and then employed as a peroxymonosulfate (PMS) activator to oxidize oxytetracycline, a model antibiotic pollutant in wastewater. The optimal biochar catalyst was characterized, spin trapping tests were carried out to confirm the dominant catalytic mechanism, and in silico toxicity prediction was conducted based on structure-activity relationships. Assessment of the catalytic performance of the pristine and engineered biochar showed that nitrogen doping increased oxytetracycline degradation efficiency by 1.92-fold (i.e., 100% oxytetracycline degradation with the engineered biochar compared to 52% with pristine biochar), while pyrrolic nitrogen was identified as a major PMS activation site. It was discovered that several parameters, such as catalyst dose, pH, PMS concentration, and competing ions, affected oxytetracycline degradation efficiencies. Additionally, the toxicity of the degradation intermediate was studied. Scavenger trapping tests showed that 1O2 and SO4•- were the most prevalent species during oxytetracycline degradation in the system, with four possible degradation pathways proposed, including secondary alcohol oxidation, hydroxylation, dehydration, and deamidation. Overall, it is anticipated that this study would contribute to our understanding of metal-free biochar activation of PMS as an attractive treatment scheme for antibiotic-polluted water.
Collapse
Affiliation(s)
| | - Ruilong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xuyang Chai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | | | - Peixin Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China; Faculty of Science, Technology and Engineering, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Zhu Yang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Yuan Y, Gao J, Wang Z, Xu H, Zeng L, Fu X, Zhao Y. Exposure to zinc and dialkyldimethyl ammonium compound alters bacterial community structure and resistance gene levels in partial sulfur autotrophic denitrification coupled with the Anammox process. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135070. [PMID: 38944986 DOI: 10.1016/j.jhazmat.2024.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Dialkyldimethyl ammonium compound (DADMAC) is widely used in daily life as a typical disinfectant and often co-exists with the heavy metal zinc in sewage environments. This study investigated the effects of co-exposure to zinc (1 mg/L) and DADMAC (0.2-5 mg/L) on the performance, bacterial community, and resistance genes (RGs) in a partial sulfur autotrophic denitrification coupled with anaerobic ammonium oxidation (PSAD-Anammox) system in a sequencing batch moving bed biofilm reactor for 150 days. Co-exposure to zinc and low concentration (0.2 mg/L) DADMAC did not affect the nitrogen removal ability of the PASD-Anammox system, but increased the abundance and transmission risk of free RGs in water. Co-exposure to zinc and medium-to-high (2-5 mg/L) DADMAC led to fluctuations in and inhibition of nitrogen removal, which might be related to the enrichment of heterotrophic denitrifying bacteria dominated by Denitratisoma. Co-exposure to zinc and high concentration DADMAC (5 mg/L) stimulated the secretion of extracellular polymeric substances and increased the proliferation risk of intracellular RGs in sludge. This study provided insights into the application of PSAD-Anammox system and the ecological risks of wastewater containing zinc and DADMAC.
Collapse
Affiliation(s)
- Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China; Institute of NBC Defense, P.O. Box 1048, Beijing 102205, China
| | - Hongxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liqin Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Wang Q, Xu Q, Liu W, Jiao M, Chen Z, Wang A. Transforming contaminant ligands at water-solid interfaces via trivalent metal coordination. ENVIRONMENT INTERNATIONAL 2024; 191:109008. [PMID: 39284258 DOI: 10.1016/j.envint.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
In environmental matrices, the migration and distribution of contaminants at water-solid interfaces play a crucial role in their capture or dissemination. Scientists working in environmental remediation and wastewater treatment are increasingly aware of metal-contaminant coordination; however, interfacial behaviors remain underexplored. Here, we show that trivalent metal ions (e.g. Al3+ and Fe3+) mediate the migration of pollutant ligands (e.g. tetracycline (TC) and ofloxacin) to the organic solid interface. In the absence of Al3+, humic acid (HA) colloids (50 mg/L) capture 26.1 % of the TC in water (initial concentration: 10 mg/L) via weak intermolecular interactions (binding energy: -5.71 kcal/mol). Adding Al3+ (2.5 mg/L) significantly enhances the binding of TC to an impressive 94.2 % via Al3+ mediated coordination (binding energy: -84.89 kcal/mol). The significant increase in binding energy results in superior interfacial immobilization. However, excess free Al3+ competes for TC binding via direct binary coordination, as confirmed based on the unique fluorescence of Al3+-TC complexes. Density functional theory calculations reveal the intricate process of HA-Al3+ binding via carboxyl and phenolic hydroxyl sites. The HA-Al3+ flocs then leverage the remaining coordination capacity of Al3+ to chelate with TC. As well as providing insights into the pivotal role of metal ion on the self-purification of natural water bodies, our findings on the interfacial behavior of metal-contaminant coordination will propel coagulation technology to the capture of microscale pollutants.
Collapse
Affiliation(s)
- Qiandi Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Meng Jiao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
Porras-Socias P, Tomasino MP, Fernandes JP, De Menezes AB, Fernández B, Collins G, Alves MJ, Castro R, Gomes CR, Almeida CMR, Mucha AP. Removal of metals and emergent contaminants from liquid digestates in constructed wetlands for agricultural reuse. Front Microbiol 2024; 15:1388895. [PMID: 38903785 PMCID: PMC11187104 DOI: 10.3389/fmicb.2024.1388895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Given the increasing pressure on water bodies, it is imperative to explore sustainable methodologies for wastewater treatment and reuse. The simultaneous presence of multiples contaminants in complex wastewater, such as the liquid effluents from biogas plants, can compromise biological treatment effectiveness for reclaiming water. Vertical subsurface flow constructed wetlands were established as low-cost decentralized wastewater treatment technologies to treat the liquid fraction of digestate from municipal organic waste with metals, antibiotics, and antibiotic resistance genes, to allow its reuse in irrigation. Twelve lab-scale planted constructed wetlands were assembled with gravel, light expanded clay aggregate and sand, testing four different treating conditions (liquid digestate spiked with oxytetracycline, sulfadiazine, or ofloxacin, at 100 μg/ L, or without dosing) during 3 months. Physicochemical parameters (pH, chemical oxygen demand (COD), nutrients, metals, and antibiotics), the microbial communities dynamics (through 16S high-throughput sequencing) and antibiotic resistance genes removal (qPCR) were monitored in influents and effluents. Systems removed 85.8%-96.9% of organic matter (as COD), over 98.1% of ammonium and phosphate ions, and 69.3%-99.4% of nitrate and nitrite ions, with no significant differences between the presence or absence of antibiotics. Removal of Fe, Mn, Zn, Cu, Pb and Cr exceeded 82% in all treatment cycles. The treatment also removed oxytetracycline, sulfadiazine and ofloxacin over 99%, and decreased intl1, tetA, tetW, sul1 and qnrS gene copies. Nonetheless, after 3 months of ofloxacin dosing, qnrS gene started being detected. Removal processes relied on high HRT (14 days) and various mechanisms including sorption, biodegradation, and precipitation. Microbial community diversity in liquid digestate changed significantly after treatment in constructed wetlands with a decrease in the initial Firmicutes dominance, but with no clear effect of antibiotics on the microbial community structure. Removals above 85% and 94% were observed for Streptococcus and Clostridium, respectively. Results suggest that vertical subsurface flow constructed wetlands were a suitable technology for treating the liquid digestate to reuse it in irrigation agricultural systems, contributing to the circular bioeconomy concept. However, a more profound understanding of effective wastewater treatment strategies is needed to avoid antibiotic resistance genes dissemination.
Collapse
Affiliation(s)
- Pau Porras-Socias
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Microbiology, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, Ireland
- Sustainability in Biosystems Programme, IRTA, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Maria Paola Tomasino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Joana P. Fernandes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Alexandre B. De Menezes
- Microbiology, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Belén Fernández
- Sustainability in Biosystems Programme, IRTA, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Gavin Collins
- Microbiology, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Maria João Alves
- TratoLixo—Tratamento de Resíduos Sólidos, E.I.M. S.A., São Domingos de Rana, Portugal
| | - Ricardo Castro
- TratoLixo—Tratamento de Resíduos Sólidos, E.I.M. S.A., São Domingos de Rana, Portugal
| | - Carlos R. Gomes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - C. Marisa R. Almeida
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
He D, Li J, Yu W, Zhang Y, Wang B, Wang T, Yang H, Zhang Y, Chen W, Li Y, Feng F, Hou LA. Deciphering the removal of antibiotics and the antibiotic resistome from typical hospital wastewater treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171806. [PMID: 38508266 DOI: 10.1016/j.scitotenv.2024.171806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Hospital wastewater treatment systems (HWTSs) are a significant source and reservoir of antibiotic resistance genes (ARGs) and a crucial hub for transmitting ARGs from clinical to natural environments. However, there is a lack of research on the antibiotic resistome of clinical wastewater in HWTSs. In this study, we used metagenomics to analyze the prevalence and abundance of ARGs in five typical HWTSs. A total of 17 antibiotics from six categories were detected in the five HWTSs; β-lactam antibiotics were found at the highest concentrations, with up to 4074.08 ng·L-1. We further found a total of 21 ARG types and 1106 subtypes of ARGs with the highest percentage of multi-drug resistance genes (evgS, msbA, arlS, and baeS). The most abundant last-resort ARGs were mcr, which were detected in 100 % of the samples. HWTSs effluent is a major pathway for the transmission of last-resort ARGs into urban wastewater networks. The removal of antibiotics, antibiotic-resistant bacteria, and ARGs from HWTSs was mainly achieved by tertiary treatment, i.e., chlorine disinfection, but antibiotics and ARGs were still present in the HWTSs effluent or even increased after treatment. Moreover, antibiotics and heavy metals (especially mercury) in hospital effluents can exert selective pressure for antibiotic resistance, even at low concentrations. Qualitative analyses based on metagenome-assembled genome analysis revealed that the putative hosts of the identified ARGs are widely distributed among Pseudomonas, Acidovorax, Flavobacterium, Polaromonas, and Arcobacter. Moreover, we further assessed the clinical availability of ARGs and found that multidrug ARGs had the highest clinical relevance values. This study provides new impulses for monitoring and removing antibiotics and ARGs in the hospital sewage treatment process.
Collapse
Affiliation(s)
- Dahai He
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Weihai Yu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yingyuan Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuntao Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weijie Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Faming Feng
- Chutian Liangjiang Environment Co., LTD, Guiyang 550000, China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Mu X, Zhang S, Lu J, Huang Y, Ji J. Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:133740. [PMID: 38569335 DOI: 10.1016/j.jhazmat.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.
Collapse
Affiliation(s)
- Xiaoying Mu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jianhui Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianghao Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Zhan J, Xu S, Zhu Y, Han Y, Li L, Liu J, Guo X. Potential pathogenic microorganisms in rural wastewater treatment process: Succession characteristics, concentration variation, source exploration, and risk assessment. WATER RESEARCH 2024; 254:121359. [PMID: 38428237 DOI: 10.1016/j.watres.2024.121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic microorganisms can cause infection, sepsis, and other diseases in humans. Although municipal wastewater plants are important sources and sinks for potential pathogenic microorganisms, data on rural wastewater treatment processes are limited. The proximity of rural wastewater facilities to human settlements and the trend toward wastewater resourcing could pose risks to humans. Here, a typical village in southern China was selected to analyze potential pathogenic microorganisms in wastewater, sewage sludge, and aerosols during the collection, treatment, and discharge of domestic wastewater. The succession characteristics and concentration variations of potential pathogenic microorganisms throughout the wastewater treatment process were identified using high-throughput sequencing and culture methods. Bacteria-associated health risks in facility aerosols were estimated based on average daily dose rates from inhalation and dermal exposure. Lower amounts of pathogenic bacteria and pathogenic fungi were detected in the effluent of the 1-ton treatment scale and the 10-ton treatment scale facilities, compared to those in the influent. Pathogen effluent concentrations were significantly lower than influent concentrations after treatment in rural wastewater facilities. 16 and 29 potential pathogenic bacteria and fungi were detected in aerosols from wastewater treatment facilities, respectively. Furthermore, the potential pathogen concentrations were higher than those in the background air. Aerobic units are the main source of pathogen emissions from aerosols. There were 42 potential pathogenic bacteria and 34 potential pathogenic fungi in the sewage sludge. Biochemical units were the main source of potential pathogens in sewage sludge, and more potential airborne pathogens originated from wastewater. In rural wastewater resourcing processes with greater pollutant exposure, the effluent of rural wastewater treatment facilities (WWTFs), downstream rivers, and facility aerosols, could be important potential sources of microbial risk. Inhalation is the main pathway of human exposure to airborne bacteria. Therefore, more attention should be focused on microbiological risk in rural wastewater treatment processes.
Collapse
Affiliation(s)
- Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingming Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
14
|
Feng B, Chen J, Wang C, You G, Lin J, Gao H, Han S, Ma J. Ofloxacin weakened treatment performance of rural domestic sewage in an aerobic biofilm system by affecting biofilm resistance, bacterial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 246:118036. [PMID: 38163543 DOI: 10.1016/j.envres.2023.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Ofloxacin (OFL) is a typical fluoroquinolone antibiotic widely detected in rural domestic sewage, however, its effects on the performance of aerobic biofilm systems during sewage treatment process remain poorly understood. We carried out an aerobic biofilm experiment to explore how the OFL with different concentrations affects the pollutant removal efficiency of rural domestic sewage. Results demonstrated that the OFL negatively affected pollutant removal in aerobic biofilm systems. High OFL levels resulted in a decrease in removal efficiency: 9.33% for chemical oxygen demand (COD), 18.57% for ammonium (NH4+-N), and 8.49% for total phosphorus (TP) after 35 days. The findings related to the chemical and biological properties of the biofilm revealed that the OFL exposure triggered oxidative stress and SOS responses, decreased the live cell number and extracellular polymeric substance content of biofilm, and altered bacterial community composition. More specifically, the relative abundance of key genera linked to COD (e.g., Rhodobacter), NH4+-N (e.g., Nitrosomonas), and TP (e.g., Dechlorimonas) removal was decreased. Such the OFL-induced decrease of these genera might result in the down-regulation of carbon degradation (amyA), ammonia oxidation (hao), and phosphorus adsorption (ppx) functional genes. The conventional pollutants (COD, NH4+-N, and TP) removal was directly affected by biofilm resistance, functional genes, and bacterial community under OFL exposure, and the bacterial community played a more dominant role based on partial least-squares path model analysis. These findings will provide valuable insights into understanding how antibiotics impact the performance of aerobic biofilm systems during rural domestic sewage treatment.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Junkai Lin
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shanrui Han
- PowerChina Huadong Engineering Corporation Limited, No.201, Gaojiao Road, Yuhang District, Hangzhou, Zhejiang 311122, PR China
| | - Junchao Ma
- PowerChina Huadong Engineering Corporation Limited, No.201, Gaojiao Road, Yuhang District, Hangzhou, Zhejiang 311122, PR China
| |
Collapse
|
15
|
Du X, Liang Z, Li J, Qiu Y, Song W, Wang Z, Zhao Z, Zhang W. Electrocoagulation enhanced gravity driven membrane bioreactor for advanced treatment of rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120191. [PMID: 38325286 DOI: 10.1016/j.jenvman.2024.120191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
The daily discharge of rural sewage in China occupies 30 % of the national wastewater discharge, and developing an energy-efficient, easy to operate, and decentralized rural sewage treatment technology becomes an important task. In this work, a novel rural sewage treatment technology, Electrocoagulation enhanced Gravity-Driven Membrane Bioreactor (EC-GDMBR) was exploited for the rural sewage treatment under long-term operation (160 days). Two EC-GDMBRs with various module structures of ceramic membrane (horizontal module and side module) not only displayed the desirable effluent quality, but also sustained the stable flux (8-13 LMH). The electrocoagulation, electrooxidation, biodegradation, and separation in EC-GDMBRs were able to synergistically remove the particle matter, organic (CODCr effluent <11.6 ± 1.2 mg/L) and nutrients (NH3-N effluent <0.1 mg/L, TN effluent <8.5 mg/L, TP effluent <0.05 mg/L). Besides, the high permeability of ceramic membrane and large porosity of biofilm on its surface improved the sustainability of stable flux during the long-term operation. Moreover, by analyzing bacterial abundance, Extracellular Polymeric Substances, Adenosine Tri-Phosphate and Confocal Laser Scanning Microscopy, a large number of microorganisms grew and accumulated on the carrier, as well as formed the biofilm (23.46-659.9 μm), while Nitrobacteria (1.6-4.1 %) and Nitrate (0.01-0.06 %) exited in the carrier biofilms, promoting the nitrogen removal. Compared with EC-GDMBR with side module of ceramic membrane, EC-GDMBR with horizontal module of ceramic membrane has advantages in flux behavior, organic/nutrient removal, microbial abundance/activity, abundance of nitrogen removal functional bacteria and water permeability of biofilm, because the ceramic membrane of horizontal module can promote the uniform growth of biofilm and improve the uniformity of flow penetration distribution. In general, the findings of this work verify the reliability of EC-GDMBR for the sustainable operation of wastewater treatment and improve its application value of rural sewage treatment.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenhao Liang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiawan Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yongkang Qiu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenxiang Zhang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboraroty (Guangzhou), China.
| |
Collapse
|
16
|
Fan H, Huang Z, Feng C, Wu Z, Tian Y, Ma F, Li H, Huang J, Qin X, Zhou Z, Zhang X. Functional keystone taxa promote N and P removal of the constructed wetland to mitigate agricultural nonpoint source pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169155. [PMID: 38065493 DOI: 10.1016/j.scitotenv.2023.169155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Characterized by irregular spatial and temporal variations of pollutant loading and complex occurrence mechanisms, agricultural nonpoint source pollution (ANPSP) has always been a great challenge in field restoration worldwide. Returning farmlands to wetlands (RFWs) as an ecological restoration mode among various constructed wetlands was selected to manage ANPSP in this study. Triarrhena lutarioriparia, Nelumbo nucifera and Zizania latifolia monocultures were designed and the water pollutants was monitored. N. nucifera and Z. latifolia could reach the highest TN (53.28 %) and TP (53.22 %) removal efficiency, respectively. By 16s high-throughput sequencing of rhizosphere bacteria, 45 functional species were the main contributors for efficient N and P removal, and 38 functional keystone taxa (FKT) were found with significant ecological niche roles and metabolic functions. To our knowledge, this is the first study to explore the microbial driving N and P removal mechanism in response to ANPSP treated by field scale RFWs.
Collapse
Affiliation(s)
- Huixin Fan
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Zijian Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Yuxin Tian
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Fengfeng Ma
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhou Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China.
| |
Collapse
|
17
|
Gao J, Wu J, Chen S, Chen Y. Nitrogen removal from pharmaceutical wastewater using simultaneous nitrification-denitrification coupled with sulfur denitrification in full-scale system. BIORESOURCE TECHNOLOGY 2024; 393:130066. [PMID: 37984670 DOI: 10.1016/j.biortech.2023.130066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Fermentation pharmaceutical wastewater (FPW) containing excessive ammonium and low chemical oxygen demand (COD)/nitrogen ratio (C/N ratio) brings serious environmental risks. The stepwise nitrogen removal was achieved in a full-scale anaerobic/aerobic/anoxic treatment system with well-constructed consortia, that enables simultaneous partial nitrification-denitrification coupled with sulfur autotrophic denitrification (SPND-SAD) (∼99 % (NH4+-N) and ∼98 % (TN) removals) at the rate of 0.8-1.2 kg-N/m3/d. Inoculating simultaneous nitrification-denitrification (SND) consortia in O1 tank decreased the consumed ΔCOD and ΔCOD/ΔTN of A1 + O1 tank, resulting in the occurrence of short-cut SND at low C/N ratio. In SAD process (A2 tank), bio-generated polysulfides reacted with HS- to rearrange into shorter polysulfides, enhancing sulfur bioavailability and promoting synergistic SAD removal. PICRUSt2 functional prediction indicated that bioaugmentation increased genes related to Nitrogen/Sulfur/Carbohydrate/Xenobiotics metabolism. Key functional gene analysis highlighted the enrichment of nirS and soxB critical for SPND-SAD system. This work provides new insights into the application of bioaugmentation for FPW treatment.
Collapse
Affiliation(s)
- Jian Gao
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingyu Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shuyan Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Liu M, Yu X, Yang M, Shu W, Cao F, Liu Q, Wang J, Jiang Y. The co-presence of polystyrene nanoplastics and ofloxacin demonstrates combined effects on the structure, assembly, and metabolic activities of marine microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132315. [PMID: 37604038 DOI: 10.1016/j.jhazmat.2023.132315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Nanoplastic is increasing in environments and can address toxic effects on various organisms. Particle size, concentration, and surface functionalization most influence nanoplastic toxicity. Besides, nanoplastic can adsorb other contaminants (e.g., antibiotics) to aggravate its adverse effects. The combined effects of nanoplastics and antibiotics on planktonic/benthic microbial communities, however, are still largely unknown. In this study, the combined effects of polystyrene nanoplastic and ofloxacin on the structure, assembly, and metabolic activities of marine microbial communities were investigated based on amplicon sequencing data. The results mainly demonstrate that: (1) nanoplastic and ofloxacin have greater impacts on prokaryotic communities than eukaryotic ones; (2) niche breadths of planktonic prokaryotes and benthic eukaryotes were shrank with both high nanoplastic and ofloxacin concentrations; (3) increased ofloxacin mainly reduces nodes/edges of co-occurrence networks, while nanoplastic centralizes network modularity; (4) increased nanoplastic under high ofloxacin concentration induces more differential prokaryotic pathways in planktonic communities, while benthic communities are less influenced. The present work indicates that co-presence of nanoplastics and ofloxacin has synergistic combined effects on community structure shifts, niche breadth shrinking, network simplifying, and differential prokaryotic pathways inducing in marine microbial communities, suggesting nanoplastics and its combined impacts with other pollutions should be paid with more concerns.
Collapse
Affiliation(s)
- Mingjian Liu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaowen Yu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengyao Yang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wangxinze Shu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Furong Cao
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- MoE Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266101, China.
| | - Jun Wang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yong Jiang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|