1
|
Qv M, Dai D, Wu Q, Wang W, Li L, Zhu L. Metagenomic insight into the horizontal transfer mechanism of fluoroquinolone antibiotic resistance genes mediated by mobile genetic element in microalgae-bacteria consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124946. [PMID: 40081035 DOI: 10.1016/j.jenvman.2025.124946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
Antibiotics could accumulate in the environment with the discharge of wastewater from families, hospitals and livestock farms, which intensifies the spread of resistance genes around the world. Although microalgae-bacteria consortia (MBC) can efficiently remove antibiotics, the horizontal transfer mechanism of antibiotics resistance genes in MBC is still rarely reported. In this study, the removal efficiency of ofloxacin, norfloxacin and enrofloxacin by MBC under different antibiotic concentrations was investigated, while resistance genes in the MBC were identified and the mechanism of horizontal transfer was disclosed. The results showed that norfloxacin removal efficiency (up to 56.35 %) surpassed that of ofloxacin and enrofloxacin. The abundance of the fluoroquinolone resistance gene QnrS8 was the highest at 1331. The horizontal transfer of resistance gene QnrS8 and QnrS11 were mainly mediated by transposons. Fluoroquinolones increased the abundance of Brevundimonas (<0.10 % up to 9.63 %) and Bosea (0.96 % up to 17.67 %) involved in antibiotic removal. Arthrobacter and Acidovorax might be potential hosts which carried fluoroquinolone resistance genes. Structural equation model indicated that the key factor influencing the fluoroquinolone resistance genes abundance in MBC was transposons. These findings drew an insightful understanding of MBC application for fluoroquinolone antibiotics removal and the horizontal transfer mechanism of fluoroquinolone resistance genes.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Lanjing Li
- School of Biological Sciences, University of Auckland, Manaaki Whenua - Landcare Research, New Zealand
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Wu L, Zhang X, Jin D, Wu P. Insights into combined stress mechanisms of microplastics and antibiotics on anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124947. [PMID: 40081039 DOI: 10.1016/j.jenvman.2025.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
The microplastic and antibiotic pollution poses a major threat to human health and natural ecology. Wastewater treatment systems act as a link between human societies and natural ecosystems. Microplastics (MPs) and antibiotics (ATs) in wastewater endanger the stabilization of the anaerobic ammonium oxidation (anammox) system. However, most existing studies have primarily concentrated on the effects and stress mechanisms of either MPs-induced or ATs-induced stress on anammox. A comprehensive and holistic overview of the effects and underlying mechanisms of the combined stress exerted on anammox by both MPs and ATs is currently lacking. This review concludes the effects of MPs and ATs on anammox bacteria (AnAOB) and describes the mechanisms of the effects of these two emerging contaminants on AnAOB. Subsequently, the effects that the combined stress of MPs and ATs can have on the anammox system are reviewed. The adsorption of ATs by MPs, an indispensable mechanism affecting the combined stress, is explained. Additionally, the effect of MPs' aging on their ability to adsorb ATs is presented. Finally, this paper proposes to alleviate the combined stress of MPs and ATs by enriching biofilms and points out the risk of propagation of ARGs under the combined stress. This review sheds light on valuable insights into the combined stress of MPs and ATs on anammox and points out future research directions for this combined stress.
Collapse
Affiliation(s)
- Long Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
3
|
Qiao X, Zhang L, Yuan T, Wu Y, Geng Y, Li Y, Li B, Zhang L, Zhuang WQ, Yu K. Mixotrophic anammox bacteria outcompete dissimilatory nitrate reduction and denitrifying bacteria in propionate-containing wastewater. BIORESOURCE TECHNOLOGY 2025; 419:132077. [PMID: 39814151 DOI: 10.1016/j.biortech.2025.132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure. Genome-resolved metagenomic analysis revealed that AMXB could convert nitrate generated by anammox bacteria to ammonium via the DNRA pathway, leveraging propionate as an electron donor. This recycled ammonium was then used to sustain the anammox process, thereby enhancing nitrogen removal efficiency. Notably, AMXB grew more efficiently than DNRA and denitrifying bacteria due to its more energy-efficient propionate metabolic pathway. This finding suggests that AMXB, as a mixotrophic anammox bacterium, has a competitive advantage in nitrogen metabolism in low C/N wastewater, contributing to efficient nitrogen removal.
Collapse
Affiliation(s)
- Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liyu Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tugui Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yang Wu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanni Geng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yumeng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lijuan Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
4
|
Sun Q, Zhang Z, Ping Q, Wang L, Li Y. Insight into using multi-omics analysis to elucidate nitrogen removal mechanisms in a novel improved constructed rapid infiltration system: Functional gene and metabolite signatures. WATER RESEARCH 2024; 267:122502. [PMID: 39332349 DOI: 10.1016/j.watres.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
In this study, a laboratory-scale improved constructed rapid infiltration (imCRI) system with non-saturated and saturated layers was constructed, and corn cobs as solid carbon source were added to the saturated layer to enhance the removal of nitrogen. Combined analyses of metagenomics and metabolomics were conducted to elucidate the nitrogen removal mechanism in the imCRI system. The results showed that the hydraulic load significantly influenced the treatment performance of the imCRI system, and a hydraulic load of 1.25 m3/(m2⋅d) was recommended. Under optimal conditions, the imCRI system using simulated wastewater achieved average removal efficiencies of 97.8 % for chemical oxygen demand, 85.7 % for total nitrogen (TN), and 97.6 % for ammonia nitrogen. Metagenomic and metabolomic analyses revealed that besides nitrification and denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anammox, etc., are also involved in nitrogen metabolism in the imCRI system. Although nitrification was the predominant pathway in the non-saturated layer, aerobic denitrification also occurred, accounting for 22.59 % of the TN removal. In the saturated layer, nitrogen removal was attributed to synergistic effects of denitrification, DNRA and anammox. Moreover, correlation analysis among nitrogen removal, functional genes and metabolites suggested that metabolites related to the tricarboxylic acid cycle generated from the glycolysis of corn cobs provided sufficient energy for denitrification. Our results can offer a promising technology for decentralized wastewater treatment with stringent nitrogen removal requirements, and provide a foundation for understanding the underlying nitrogen transformation and removal mechanism.
Collapse
Affiliation(s)
- Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| |
Collapse
|
5
|
Liu Y, Wu Y, Zhao Y, Niu J, Wang Q, Bamanu B, Hussain A, Liu Y, Tong Y, Li YY. Multidimensional Insights into Organics Stress on Anammox systems: From a "Molecule-Cell-Ecology" Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20768-20784. [PMID: 39468881 DOI: 10.1021/acs.est.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
6
|
Ji X, Zhang X, Ju T, Zhou L, Jin D, Wu P. Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122754. [PMID: 39366232 DOI: 10.1016/j.jenvman.2024.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes.
Collapse
Affiliation(s)
- Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
7
|
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, Yan Y, Wang F, Zhang T, Zhuang WQ, Yu K. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100359. [PMID: 39221074 PMCID: PMC11361885 DOI: 10.1016/j.ese.2023.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 09/04/2024]
Abstract
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Yuanyuan Zhu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qing Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, 518081, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, 999077, Hong Kong, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| |
Collapse
|
8
|
Hu X, Wang H, Ji B, Wang B, Guo W, Chen R, Jiang C, Chen Y, Zhou D, Zhang Q. Metagenomic insights into the mechanism for the rapid enrichment and high stability of Candidatus Brocadia facilitated by Fe(Ⅲ). WATER RESEARCH 2024; 252:121224. [PMID: 38309072 DOI: 10.1016/j.watres.2024.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The rapid enrichment of anammox bacteria and its fragile resistance to adverse environment are the critical problems facing of anammox processes. As an abundant component in anammox bacteria, iron has been proved to promote the activity and growth of anammox bacteria in the mature anammox systems, but the functional and metabolic profiles in Fe(III) enhanced emerging anammox systems have not been evaluated. Results indicated that the relative abundance of functional genes involved in oxidative phosphorylation, nitrogen metabolism, cofactors synthesis, and extracellular polymers synthesis pathways was significantly promoted in the system added with 5 mg/L Fe(III) (R5). These enhanced pathways were crucial to energy generation, nitrogen removal, cell activity and proliferation, and microbial self-defense, thereby accelerating the enrichment of anammox bacteria Ca. Brocadia and facilitating their resistance to adverse environments. Microbial community analysis showed that the proportion of Ca. Brocadia in R5 also increased to 64.42 %. Hence, R5 could adapt rapidly to the increased nitrogen loading rate and increase the nitrogen removal rate by 108 % compared to the system without Fe(III) addition. However, the addition of 10 and 20 mg/L Fe(III) showed inhibitory effects on the growth and activity of anammox bacteria, which exhibited the lower relative abundance of Ca. Brocadia and unstable or even collapsed nitrogen removal performance. This study not only clarified the concentration range of Fe(III) that promoted and inhibited the enrichment of anammox bacteria, but also deepened our understanding of the functional and metabolic mechanisms underlying enhanced enrichment of anammox bacteria by Fe(III), providing a potential strategy to hasten the start-up of anammox from conventional activated sludge.
Collapse
Affiliation(s)
- Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wenbin Guo
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Can Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yanfang Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Dao Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
9
|
Qiao X, Ding L, Fang F, Fu C, Wei R, Chen Y, Zheng S, Wang X, Yan Y, Yang K, Xu N, Tao H, Yu K, Zhang L. An integrated meta-omics approach reveals the different response mechanisms of two anammox bacteria towards fluoroquinolone antibiotics. ENVIRONMENT INTERNATIONAL 2024; 185:108505. [PMID: 38394916 DOI: 10.1016/j.envint.2024.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
The emerging fluoroquinolone antibiotics (FQs) are highly influential in nitrogen removal from livestock wastewater. However, beyond the capability of nitrogen removal, little is known about the molecular mechanisms (e.g., shift of core metabolism and energy allocation) of different anaerobic ammonium-oxidizing bacteria (AnAOB) under continuous FQ stress. This study investigated the effects of ciprofloxacin, ofloxacin and their mixture at concentrations detected in livestock wastewater on two key anammox species in membrane bioreactors. It was found 20 μg/L FQs promoted nitrogen removal efficiency and community stability, and42-51 % of FQs were removed simultaneously. Integrated meta-omics analysis revealed varied gene expression patterns between the two dominant AnAOB, Candidatus Brocadia sapporoensis (B AnAOB) and Candidatus Kuenenia stuttgartiensis (K AnAOB). The nitrogen metabolic processes were bolstered in B AnAOB, while those involved in anammox pathway of K AnAOB were inhibited. This difference was tentatively attributed to the up-regulation of reactive oxygen species scavenger genes (ccp and dxf) and FQ resistance gene (qnrB72) in B AnAOB. Importantly, most enhanced core biosynthesis/metabolism of AnAOB and close cross-feeding with accompanying bacteria were also likely to contribute to their higher levels of biomass yield and metabolism activity under FQ stress. This finding suggests that B AnAOB has the advantage of higher nitrogen metabolism capacity over K AnAOB in livestock wastewater containing FQs, which is helpful for efficient and stable nitrogen removal by the functional anammox species.
Collapse
Affiliation(s)
- Xuejiao Qiao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chenkun Fu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruqian Wei
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yizhen Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Sihan Zheng
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xisong Wang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510000, China
| | - Kai Yang
- China MCC5 Group Corporation Limited, Chengdu 610023, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Yu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
10
|
Shi J, Che J, Sun X, Zeng X, Du Q, Guo Y, Wu Z, Pan D. Transcriptomic Responses to Nitrite Degradation by Limosilactobacillus fermentum RC4 and Effect of ndh Gene Overexpression on Nitrite Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13156-13164. [PMID: 37624070 DOI: 10.1021/acs.jafc.3c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The excessive nitrite residue may increase cell damage and cancer risk. Limosilactobacillu fermentum RC4 exhibited excellent nitrite degradation ability. Herein, the molecular mechanism of nitrite degradation by L. fermentum RC4 was studied by integrating scanning electron microscopy analysis, transcriptomics, and gene overexpression. The results demonstrated that the gene profile of RC4 cultured in MRS broth with 0, 100, and 300 mg/L NaNO2 varied considerably; RC4 responded to nitrite degradation by regulating pyruvate metabolism, energy synthesis, nitrite metabolism, redox equilibrium, protein protection, and signaling. High nitrite concentrations affected the morphology of RC4 with a longer phenotype, rough and wrinkle cell and reduced cell surface hydrophobicity. Moreover, an up-regulated expression of gene ndh encoding NADH dehydrogenase, which provides electrons for nitrite reduction by catalyzing NADH, was identified when RC4 was exposed to nitrite. Overexpression of ndh in RC4 increased the nitrite degradation rate by 2-9.5% in MRS broth with 100 mg/L NaNO2. Thus, the findings of this study could be helpful for the application of L. fermentum to reduce nitrite residues and improve food safety in fermented food products.
Collapse
Affiliation(s)
- Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jiahao Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|