1
|
Phyu K, Zhi S, Graham DW, Cao Y, Xu X, Liu J, Wang H, Zhang K. Impact of indigenous vs. cultivated microalgae strains on biomass accumulation, microbial community composition, and nutrient removal in algae-based dairy wastewater treatment. BIORESOURCE TECHNOLOGY 2025; 426:132349. [PMID: 40044056 DOI: 10.1016/j.biortech.2025.132349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
This study investigated the role of indigenous and cultivated microalgae in nutrient removal and biomass production in dairy wastewater, especially in microbial function change. Five indigenous and three cultured microalgal strains were grown in sterile and non-sterile dairy wastewater, and nutrient removal and biomass profiles were analysed. Results showed higher phosphorus removal (90.1 % vs. 81.8 %, p < 0.001) and biomass production (2.3 vs. 2.0 g/L, p < 0.001) in sterile wastewater, while nitrogen removal was higher in non-sterile wastewater (83.1 % vs. 77.5 %, p < 0.05). Indigenous strains grew more consistently in high-concentration wastewater, though not significantly different from cultured strains. Phycosphere bacteria communities were more closely associated with total nitrogen, total phosphorus, and pigment content, while free-living bacteria primarily dependent on chlorophyll a and extracellular polymeric substances (EPS). The nitrogen transforming function was enhanced in phycosphere. These findings provide insights for optimizing microalgal-based wastewater treatment, advancing sustainable dairy wastewater management.
Collapse
Affiliation(s)
- KhinKhin Phyu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Suli Zhi
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Ecosystem, National Observation and Research Station, Dali, Yunnan 671004, China.
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle NE1 7RU, United Kingdom; Department Biosciences, Durham University, Durham DH1 3LE, United Kingdom; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuang Cao
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaoyu Xu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiahua Liu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Han Wang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Ecosystem, National Observation and Research Station, Dali, Yunnan 671004, China
| |
Collapse
|
2
|
Simionov IA, Barbu M, Vasiliev I, Condrachi L, Titica M, Ifrim G, Cristea D, Nuță FM, Petrea ȘM. Prospective technical and technological insights into microalgae production using aquaculture wastewater effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124537. [PMID: 40020375 DOI: 10.1016/j.jenvman.2025.124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 03/03/2025]
Abstract
Microalgae biomass is a promising resource addressing climate change and play a role in energy transition for generating biofuels. Due to their ability to produce higher yield per year, biofuels obtained from microalgae are considered 3rd generation-advanced biofuels. The industrial production of microalgae mitigates the effects of CO2 emissions and can be used for wastewater bioremediation since most effluents are rich in nutrients. Using wastewater as growth media for microalgae promotes the principles of circular economy and nutrient recovery. The aquaculture wastewater effluent contains high levels of nitrogenous compounds, as well as phosphates and dissolved organic carbon. The current review aims to identify, centralize, and provide extensive information on the decisive technological and technical factors involved in the growth process of different microalgae species in aquaculture wastewater. The study focuses on technological growth performance indicators, as well as specific control strategies applied to achieve pH control, since it has been highlighted to be one of the most important growth-related cofactors. A bibliometric framework was developed to identify future trends in integrated microalgae production. The scientific literature analysis highlighted the great potential of aquaculture wastewater effluents to be used as growth media for microalgae biomass production, due to superior performance in lipid and carbohydrate productivity. Most control strategies developed for microalgae production systems found in the literature aim at controlling the pH in the bioreactor by injecting CO2, while few other papers consider manipulating the dissolved oxygen. The need for higher-level control arises to not only track pH or DO references but also to maximize the treatment efficiency of the bioreactor.
Collapse
Affiliation(s)
- Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Marian Barbu
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Iulian Vasiliev
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Larisa Condrachi
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Mariana Titica
- GEPEA, CNRS-UMR 6144, Nantes University Saint-Nazaire, France
| | - George Ifrim
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Dragos Cristea
- Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Florian Marcel Nuță
- Human and Social Sciences Doctoral School, "Ştefan Cel Mare" University of Suceava, Suceava, Romania.
| | - Ștefan-Mihai Petrea
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania.
| |
Collapse
|
3
|
Hajri AK, Alsharif I, Albalawi MA, Alshareef SA, Albalawi RK, Jamoussi B. Utilizing Mixed Cultures of Microalgae to Up-Cycle and Remove Nutrients from Dairy Wastewater. BIOLOGY 2024; 13:591. [PMID: 39194529 DOI: 10.3390/biology13080591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
This study explores the novel use of mixed cultures of microalgae-Spirulina platensis, Micractinium, and Chlorella-for nutrient removal from dairy wastewater (DW). Microalgae were isolated from a local wastewater treatment plant and cultivated under various light conditions. The results showed significant biomass production, with mixed cultures achieving the highest biomass (2.51 g/L), followed by Spirulina (1.98 g/L) and Chlorella (1.92 g/L). Supplementing DW (75%) with BG medium (25%) significantly enhanced biomass and pH levels, improving pathogenic bacteria removal. Spirulina and mixed cultures exhibited high nitrogen removal efficiencies of 92.56% and 93.34%, respectively, while Chlorella achieved 86.85% nitrogen and 83.45% phosphorus removal. Although growth rates were lower under phosphorus-limited conditions, the microalgae adapted well to real DW, which is essential for effective algal harvesting. Phosphorus removal efficiencies ranged from 69.56% to 86.67%, with mixed cultures achieving the highest removal. Microbial and coliform removal efficiencies reached 97.81%, with elevated pH levels contributing to significant reductions in fecal E. coli and coliform levels. These findings suggest that integrating microalgae cultivation into DW treatment systems can significantly enhance nutrient and pathogen removal, providing a sustainable solution for wastewater management.
Collapse
Affiliation(s)
- Amira K Hajri
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Marzough A Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Shareefa A Alshareef
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Raghad K Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Bassem Jamoussi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
5
|
Nayana K, Babu VS, Vidya D, Sudhakar MP, Arunkumar K. Growth and productivity of Haematococcus pluvialis and Coelastrella saipanensis by photosystem modulation for understanding the heterotrophic nutritional strategy for bioremediation application. ENVIRONMENTAL RESEARCH 2024; 245:118077. [PMID: 38159661 DOI: 10.1016/j.envres.2023.118077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In this study, Haematococcus pluvialis and Coelastrella saipanensis were evaluated for heterotrophic nutrition potential in dairy waste medium by blocking the PSII using DCMU. The study was done by four sets of experiments. In the first set, in the different concentrations DCMU-treatments, 20μL showed pronounced effect in H. pluvialis and C. saipanensis as 89 % and 83% decrease in cells (>30 and > 250 cells/mL) compared to control (536 ± 12.35 × 104 and 1167 ± 15.35 × 104 cells/mL, respectively). Damage to the PS II by DCMU interrupted the growth, which in turn produced a significant drop in the number of cells. In the second round of experiment, growth of algae in various dairy waste concentrations suggest that dairy wastewater (DWW) provides enough nutrients to produce 35.71 % and 64.74 % more cells in H. pluvialis and C. saipanensis, respectively compared to the control. In the third set, high DCMU concentration was added to microalgae cultures in DWW to assess the heterotrophic nutrition potential. Growth in cell number 34.4 ± 19 and 617.46 ± 60.44 cells/mL was recorded in H. pluvialis and C. saipanensis when grown control medium whereas addition of DCMU reduced the cell number to 1.53 ± 0.75 and 55.13 ± 0.75 cells/mL on 15th day, respectively. This shows cells in cultures treated with DCMU reveal that algae can sustain their metabolic activity by utilizing the nutrients of dairy waste inhibiting photosystem. Fourth round of experiments found that microalgae could resume their growth and productivity by adapting to heterotrophic nutritional behaviour when DCMU given in mild dose at different time interval. This study conclude as C. saipanensis grows more readily by absorbing dairy waste nutrients than H. pluvialis. Therefore, C. saipanensis is an excellent choice for wastewater treatment through sustainable environmentally benign process after scale-up investigation. These results provide useful information to advance to molecular study for measuring microalgae's capability for bioremediation application.
Collapse
Affiliation(s)
- K Nayana
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| | - Vaishnav S Babu
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| | - D Vidya
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| | - M P Sudhakar
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India; Marine Biopolymers & Advanced Bioactive Materials Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, 600 077, Tamil Nadu, India.
| | - Kulanthaiyesu Arunkumar
- Microalgae Group, Phycoscience Lab, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
6
|
Mubashar M, Zulekha R, Cheng S, Xu C, Li J, Zhang X. Carbon-negative and high-rate nutrient recovery from municipal wastewater using mixotrophic Scenedesmus acuminatus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120360. [PMID: 38377758 DOI: 10.1016/j.jenvman.2024.120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The efficiency of mixotrophic microalgae in enhancing the recovery of waste nutrients has been well established; however, the recovery rate is crucial in meeting the needs of field applications. This study evaluated the impact of media characteristics on nutrient recovery under mixotrophic conditions. The mixotrophic N recovery rate with S. acuminatus in modified BG-11 reached 2.59 mg L-1h-1. A mixotrophic growth optimization strategy was applied to achieve a high-rate nutrient recovery from municipal wastewater treatment plant effluents. The contribution of waste chemical oxygen demand (COD) to nutrient recovery was assessed using secondary effluent (SE) under heterotrophy. The results highlighted a significant increase in total nitrogen (TN) and total phosphorus (TP) recovery rates when glucose was supplied, indicating the additional carbon requirements for efficient nutrient recovery. The TN and TP recovery rates under mixotrophic conditions with the addition of trace metals and high cell density were enhanced by 91.94% and 92.53%, respectively, resulting in recovery rates of 3.43 mg L-1h-1 and 0.30 mg L-1h-1. The same conditions were used for nutrient recovery from primary effluent (PE), and the results were more satisfactory as the TN and TP recovery rates reached 4.79 and 0.55 mg L-1h-1, respectively. Additionally, the study estimated the carbon footprints (C-footprints) and areal footprints of mixotrophy-based nitrogen recovery. The findings revealed carbon footprints and areal footprints of -15.93 ± 4.57 tCO2e t-1 N recovery and 0.53 ± 0.19 m3 m-2d-1 wastewater, respectively. This high-rate nutrient recovery, achieved under a carbon-negative (C-negative) budget through mixotrophy, presents a novel strategy for efficiently recovering resources from municipal wastewater, thus facilitating resource recycling and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rabail Zulekha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaozhe Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cong Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuezhi Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
Elangovan B, Detchanamurthy S, Senthil Kumar P, Rajarathinam R, Deepa VS. Biotreatment of Industrial Wastewater using Microalgae: A Tool for a Sustainable Bioeconomy. Mol Biotechnol 2023:10.1007/s12033-023-00971-0. [PMID: 37999921 DOI: 10.1007/s12033-023-00971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Fresh water is one of the essential sources of life, and its requirement has increased in the past years due to population growth and industrialization. Industries use huge quantities of fresh water for their processes, and generate high quantities of wastewater rich in organic matter, nitrates, and phosphates. These effluents have contaminated the freshwater sources and there is a need to recycle this wastewater in an ecologically harmless manner. Microalgae use the nutrients in the wastewater as a medium for growth and the biomass produced are rich in nutrition that can cater growing food and energy needs. The primary and secondary metabolites of microalgae are utilized as biofuel and as active ingredients in cosmetics, animal feed, therapeutics, and pharmaceutical products. In this review, we explore food processing industries like dairy, meat, aquaculture, breweries, and their wastewater for the microalgal growth. Current treatment methods are expensive and energy demanding, which indirectly leads to higher greenhouse gas emissions. Microalgae acts as a potential biotreatment tool and mitigates carbon dioxide due to their high photosynthetic efficiency. This review aims to address the need to recycle wastewater generated from such industries and potentiality to use microalgae for biotreatment. This will help to build a circular bioeconomy by using wastewater as a valuable resource to produce valuable products.
Collapse
Affiliation(s)
- Balaji Elangovan
- R&D, Seagrass Tech Pvt. Ltd, Karaikal, 609604, Puducherry, India
| | | | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, 605014, Puducherry, India.
| | - Ravikumar Rajarathinam
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sakunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu, 600062, India
| | - Vijaykumar Sudarshana Deepa
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
8
|
Li R, Song M, Yin D, Ye X, Yu J, Chen X. Indole-3-acetic acid mediated removal of sludge toxicity by microalgae: Focus on the role of extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2023; 387:129700. [PMID: 37604255 DOI: 10.1016/j.biortech.2023.129700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The use of indole-3-acid (IAA) as an additive aided in achieving the objectives of reducing sludge extract toxicity, increasing Tetradesmus obliquus biomass yield, and enhancing extracellular polysaccharide production. Proteomics analysis can unveil the microalgae's response mechanism to sludge toxicity stress. With 10-6 M IAA addition, microalgae biomass reached 3.426 ± 0.067 g/L. Sludge extract demonstrated 78.3 ± 3.2% total organic carbon removal and 72.2 ± 2.1% toxicity removal. Extracellular polysaccharides and proteins witnessed 2.08 and 1.76-fold increments, respectively. Proteomic analysis indicated that Tetradesmus obliquus directed carbon sources towards glycogen accumulation and amino acid synthesis, regulating pathways associated with carbon metabolism (glycolysis, TCA cycle, and amino acid metabolism) to adapt to the stressful environment. These findings lay the groundwork for future waste sludge treatment and offer novel insights into microalgae cultivation and extracellular polysaccharide enrichment in sludge.
Collapse
Affiliation(s)
- Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyun Ye
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Wang T, Wang J, Pu J, Bai C, Peng C, Shi H, Wu R, Xu Z, Zhang Y, Luo D, Yang L, Zhang Q. Comparison of Thermophilic-Mesophilic and Mesophilic-Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms 2023; 11:2409. [PMID: 37894067 PMCID: PMC10608829 DOI: 10.3390/microorganisms11102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated the performance of thermophilic-mesophilic (T-M) and mesophilic-thermophilic (M-T) two-phase sludge anaerobic digestion at different inoculation proportions after a change in digestion temperature. After temperature change, the pH, total ammonia nitrogen (TAN), free ammonia nitrogen (FAN), solubility chemical oxygen demand (SCOD), and total alkalinity (TA) levels of two-phase digesters were between thermophilic control digesters and mesophilic control digesters. However, the volatile fatty acid (VFA) levels of two-phase digesters were higher than those of thermophilic or mesophilic control digesters. The bacteria communities of M-T two-phase digesters were more diverse than those of T-M. After a change in digestion temperature, the bacterial community was dominated by Coprothermobacter. After a change of digestion temperature, the relative abundance (RA) of Methanobacterium, Methanosaeta, and Methanospirillum of M-T two-phase digesters was higher than that of T-M two-phase digesters. In comparison, the RA of Methanosarcina of T-M two-phase digesters was higher than that of M-T two-phase digesters. The ultimate methane yields of thermophilic control digesters were greater than those of mesophilic control digesters. Nevertheless, the ultimate methane yield levels of M-T two-phase digesters were greater than those of T-M two-phase digesters. The ultimate methane yields of all two-phase digesters presented an earlier increase and later decrease trend with the increasing inoculation proportion. Optimal methane production condition was achieved when 15% of sludge (T-M15) was inoculated under mesophilic-thermophilic conditions, which promoted 123.6% (based on mesophilic control) or 27.4% (based on thermophilic control). An optimal inoculation proportion (about 15%) balanced the number and activity of methanogens of high-solid sludge anaerobic digestion.
Collapse
Affiliation(s)
- Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.W.); (J.P.); (C.B.); (C.P.); (H.S.); (R.W.); (Z.X.); (Y.Z.); (D.L.); (L.Y.); (Q.Z.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jung M, Kim YE, Lee N, Yu H, Lee J, Lee SY, Lee YC, Oh YK. Simultaneous enhancement of lipid biosynthesis and solvent extraction of Chlorella using aminoclay nanoparticles. BIORESOURCE TECHNOLOGY 2023; 384:129314. [PMID: 37311525 DOI: 10.1016/j.biortech.2023.129314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Magnesium aminoclay nanoparticles (MgANs) exert opposing effects on photosynthetic microalgae by promoting carbon dioxide (CO2) uptake and inducing oxidative stress. This study explored the potential application of MgAN in the production of algal lipids under high CO2 concentrations. The impact of MgAN (0.05-1.0 g/L) on cell growth, lipid accumulation, and solvent extractability varied among three tested oleaginous Chlorella strains (N113, KR-1, and M082). Among them, only KR-1 exhibited significant improvement in both total lipid content (379.4 mg/g cell) and hexane lipid extraction efficiency (54.5%) in the presence of MgAN compared to those of controls (320.3 mg/g cell and 46.1%, respectively). This improvement was attributed to the increased biosynthesis of triacylglycerols and a thinner cell wall based on thin-layer chromatography and electronic microscopy, respectively. These findings suggest that using MgAN with robust algal strains can enhance the efficiency of cost-intensive extraction processes while simultaneously increasing the algal lipid content.
Collapse
Affiliation(s)
- Mikyoung Jung
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Young-Eun Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Nakyeong Lee
- Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea; Division of Environmental Materials, Honam National Institute of Biological Resources, Mokpo 58762, South Korea
| | - Hyoji Yu
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Jiye Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si 13120, South Korea
| | - You-Kwan Oh
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|