1
|
Liu X, Luo J, Xu Q, Lu Q, Ni BJ, Wang D. Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems. WATER RESEARCH 2025; 275:123190. [PMID: 39862801 DOI: 10.1016/j.watres.2025.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency. The review begins by exploring the pathways and characteristics of QS in key functional microorganisms involved in AD. We analyze the response mechanisms of QS to key environmental variables and their effects on the structure and function of microbe communities and extracellular polymeric substances secretion. Potential applications of QS in engineered AD systems are discussed, with a focus on promoting system startup, improving operational efficiency, and enhancing resistance and stability. The use of exogenous signaling molecules and quorum quenching reagents to optimize AD performance is also evaluated. Additionally, the ecological significance of QS in natural environments, such as seafloor sediments and wetlands, is explored, emphasizing its role in regulating AD-related microorganisms within complex microbial communities. Finally, the review identifies current knowledge gaps and outlines future research directions in AD, including QS database development, QS-engineered bacteria excavation, and advanced analytical methods assistants. This comprehensive review aims to bridge existing gaps in QS-related knowledge in AD and provide fresh perspectives for studying microbial communication and collaboration through QS.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Jianying Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
2
|
Wang J, Xu L, Wang Y, He C, Mei H, Xuan L, Wang Y, Dong F, Wang W. Rapid start-up and excellent performance of anaerobic membrane bioreactor for treating poly (butylene adipate-co-terephthalate) wastewater by using one-step feeding mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122544. [PMID: 39316878 DOI: 10.1016/j.jenvman.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The traditional anaerobic treatment process for highly concentrated, toxic, and acidic poly (butylene adipate-co-terephthalate) (PBAT) wastewater faces challenges. In contrast, the anaerobic membrane bioreactor (AnMBR) offers the advantage of robust performance, but the influence of start-up modes has not been explored. This study investigated the impact of one-step and stepwise startup (gradual dilution of wastewater) strategies in AnMBR treating PBAT wastewater. The results indicated that the one-step startup group achieved COD removal efficiency of 91.2% ± 2.7% and methane conversion rate of 234.7 ± 8.5 mLCH4/gCOD, which were 21.7% and 81.8 mL CH4/gCOD respectively higher than those achieved by the stepwise start-up group. Furthermore, the one-step startup led to the reduction of startup time by 10 days and the decrease in the average membrane fouling cycle by 6.6 days. Compared to the stepwise start-up group, the one-step startup group exhibited a lower abundance of Bacteroidota (11.3%), and a higher abundance of Proteobacteria (27.1%), Chloroflexi (10.5%), and Actinobacteria (11.8%). The one-step startup strategy facilitated the rapid development of a toxicity-tolerant hydrogenotrophic methanogenic pathway. Consequently, the one-step startup method provided a promising approach for the rapid start-up and excellent performance of AnMBR in PBAT wastewater treatment.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Luyao Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan Wang
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Hong Mei
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Liang Xuan
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Yuwei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
3
|
de Celis M, Modin O, Arregui L, Persson F, Santos A, Belda I, Wilén BM, Liébana R. Community successional patterns and inter-kingdom interactions during granular biofilm development. NPJ Biofilms Microbiomes 2024; 10:109. [PMID: 39426972 PMCID: PMC11490564 DOI: 10.1038/s41522-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Aerobic granular sludge is a compact and efficient biofilm process used for wastewater treatment which has received much attention and is currently being implemented worldwide. The microbial associations and their ecological implications occurring during granule development, especially those involving inter-kingdom interactions, are poorly understood. In this work, we monitored the prokaryote and eukaryote community composition and structure during the granulation of activated sludge for 343 days in a sequencing batch reactor (SBR) and investigated the influence of abiotic and biotic factors on the granule development. Sludge granulation was accomplished with low-wash-out dynamics at long settling times, allowing for the microbial communities to adapt to the SBR environmental conditions. The sludge granulation and associated changes in microbial community structure could be divided into three stages: floccular, intermediate, and granular. The eukaryotic and prokaryotic communities showed parallel successional dynamics, with three main sub-communities identified for each kingdom, dominating in each stage of sludge granulation. Although inter-kingdom interactions were shown to affect community succession during the whole experiment, during granule development random factors like the availability of settlement sites or drift acquired increasing importance. The prokaryotic community was more affected by deterministic factors, including reactor conditions, while the eukaryotic community was to a larger extent shaped by biotic interactions (including inter-kingdom interactions) and stochasticity.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
- Instituto de Ciencias Agrarias; Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lucía Arregui
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Raquel Liébana
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- AZTI, Marine Research Division, Basque Research Technology Alliance (BRTA), Sukarrieta, Spain.
| |
Collapse
|
4
|
Zhuo M, Quan X, Li N, Yin R. Mediating the performance of anaerobic granular sludge by exogenous flavin supplementation: Flavin binding capacity and behavior, interspecies electron transfer, and methane production. ENVIRONMENTAL RESEARCH 2024; 242:117712. [PMID: 37993045 DOI: 10.1016/j.envres.2023.117712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Although flavins are known as effective electron mediators, the binding capacity of exogenous flavins by anaerobic granular sludge (AGS) and their role in interspecies electron transfer (IET) remains unknown. In this study, AGS was mediated by using three exogenous flavins of riboflavin (RF), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). Results showed that the total amounts of flavins associated with extracellular polymeric substance (EPS) of AGS increased by 2.03-2.42 and 3.83-4.94 folds, after exposure to 50 and 200 μM of exogenous flavins, respectively. A large portion of FMN and FAD was transformed into RF by AGS. Exogenous flavin mediation also stimulated the production of EPS and cytochrome c (c-Cyts) as well as cytochrome-bound flavins. The increased abundance of these electron mediators led to a reduced electrochemical impedance of EPS and improved extracellular electron transfer capacity. The methane production of AGS after mediation with exogenous RF, FMN, and FAD increased by 19.03-31.71%, 22.86-26.04%, and 28.51-33.44%, respectively. This study sheds new light on the role of exogenous flavins in promoting the IET process of a complex microbial aggregate of AGS.
Collapse
Affiliation(s)
- Meihui Zhuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Naiyu Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ruoyu Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
5
|
Zhang J, Li X, Du R, Li X, Zhang Q, Peng Y. Rapid formation of denitrification granules for nitrite accumulation by increasing nitrogen loading rates and resistance to industrial wastewater. BIORESOURCE TECHNOLOGY 2024; 394:130238. [PMID: 38142908 DOI: 10.1016/j.biortech.2023.130238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The nitrite (NO2-) accumulation in partial denitrification (PD) offers the possibility of widespread application of anammox process. In this study, the rapid establishment of PD granular system was achieved by increasing nitrogen loading rates (NLR) from 0.9 to 4.8 kg N/(m3·d), with the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 87.0 % within 18 days. Growth evidence indicated that the functional genus Thauera was significantly enriched (12.5 %→76.4 %), with nitrate (NO3-) reduction rates (SNO3) improving by 5.4 times from 13.0 to 70.7 mg N/(g VSS·h). Importantly, the rapid aggregation of PD biomass as granules ensured robustness and resistance of PD feeding with the electroplating tail wastewater (NO3--N of 103.0 ± 5.0 mg/L), obtaining stable NTR above 91.5 %. This study demonstrated the achievability of the fast development of PD granules and the adaptability and robustness of treating nitrate-containing industrial wastewater, which provided a promising method for efficient nitrogen transformation in industrial applications.
Collapse
Affiliation(s)
- Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
6
|
Lv L, Chen J, Liu X, Gao W, Sun L, Wang P, Ren Z, Zhang G, Li W. Roles and regulation of quorum sensing in anaerobic granular sludge: Research status, challenges, and perspectives. BIORESOURCE TECHNOLOGY 2023; 387:129644. [PMID: 37558106 DOI: 10.1016/j.biortech.2023.129644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Anaerobic granular sludge (AnGS) has a complex and important internal microbial communication system due to its unique microbial layered structure. As a concentration-dependent communication system between bacterial cells through signal molecules, QS (quorum sensing) is widespread in AnGS and exhibits great potential to regulate microbial behaviors. Therefore, the universal functions of QS in AnGS have been systematically summarized in this paper, including the influence on the metabolic activity, physicochemical properties, and microbial community of AnGS. Subsequently, the common QS-based AnGS regulation approaches are reviewed and analyzed comprehensively. The regulation mechanism of QS in AnGS is analyzed from two systems of single bacterium and mixed bacteria. This review can provide a comprehensive understanding of QS functions in AnGS systems, and promote the practical application of QS-based strategies in optimization of AnGS treatment process.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiarui Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|