1
|
Meng X, Xu X, Huang T, Wang Q, Ai W, Qian F, Zhuang J. Autotrophic biological nitrogen removal in a non-aerated algae-partial nitritation /anammox system: Long-term performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125021. [PMID: 40106988 DOI: 10.1016/j.jenvman.2025.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
This study demonstrated the long-term process stability of algal-partial nitritation/anammox (A-PN/A) in an operational operation condition and gained insight into the mechanism during the photoperiod. Results showed that an efficient nitrogen removal characteristic was obtained under the operational conditions: algae (Oocystis borgei) to PN/A sludge mass ratio of 1:5, light intensity of 2000 lux, and photoperiod of 12:12. Moreover, in a long-term operation, the total inorganic nitrogen removal efficiency could be stabilized at 86 %. Based on Flow cytometry analysis and high-throughput sequencing, the proportion of Chlorophyta exhibited a distinct upward trend, which could provide oxygen for ammonia-oxidizing bacteria and protect anammox bacteria from photooxidative damage. In a typical light-dark cycle assay, unexpectedly, little nitrite accumulated in a typical photoperiod, indicating the partial nitritation and anammox process co-occurred in the whole experiment. There was a higher nitrogen removal rate and higher transcript levels of amoA and hzsA in light period than dark period. While the dark period played a key role in the suppression of nitrite-oxidizing bacteria genus Nitrospira and nxrB inhibition to maintain stable A-PN/A, which was proved by whole-light batch experiments.
Collapse
Affiliation(s)
- Xiaoyi Meng
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyi Xu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Tianyin Huang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Qingheng Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Ai
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feiyue Qian
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jinlong Zhuang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Zhu Y, Hou J, Meng F, Lu H, Zhang Y, Ni BJ, Chen X. Role of comammox bacteria in granular bioreactor for nitrogen removal via partial nitritation/anammox. BIORESOURCE TECHNOLOGY 2024; 406:131070. [PMID: 38971392 DOI: 10.1016/j.biortech.2024.131070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In this study, two bioprocess models were first constructed with the newly-discovered comammox process described as one-step and two-step nitrification and evaluated against relevant experimental data. The validated models were then applied to reveal the potential effect of comammox bacteria on the granular bioreactor particularly suitable for undertaking partial nitritation/anammox (PN/A) under different operating conditions of bulk dissolved oxygen (DO) and influent NH4+. The results showed although comammox bacteria-based PN/A could achieve > 80.0 % total nitrogen (TN) removal over a relatively wider range of bulk DO and influent NH4+ (i.e., 0.25-0.40 g-O2/m3 and 470-870 g-N/m3, respectively) without significant nitrous oxide (N2O) production (< 0.1 %), the bulk DO should be finely controlled based on the influent NH4+ to avoid the undesired full nitrification by comammox bacteria. Comparatively, conventional ammonium-oxidizing bacteria (AOB)-based PN/A not only required higher bulk DO to achieve > 80.0 % TN removal but also suffered from 1.7 %∼2.8 % N2O production.
Collapse
Affiliation(s)
- Ying Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiaying Hou
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
3
|
Wu L, Zhang Y, Yin J, Luo A, Tian Y, Liu Y, Xu J, Peng Y. Achieving advanced nitrogen removal from mature landfill leachate in continuous flow system involving partial nitrification-anammox and denitrification. BIORESOURCE TECHNOLOGY 2024; 399:130553. [PMID: 38460559 DOI: 10.1016/j.biortech.2024.130553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Considering the challenges associated with nitrogen removal from mature landfill leachate, a novel combined continuous-flow process integrating denitrification and partial nitrification-Anammox (PN/A) was developed using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR). In this study, IBBR successfully operated for 343 days, and when influent NH4+-N concentration of mature landfill leachate reached 1258.1 mg/L, an impressive total nitrogen removal efficiency (TNRE) of 93.3 % was achieved, along with a nitrogen removal rate (NRR) of 1.13 kg N/(m3·d). The analysis of the microbial community revealed that Candidatus Kuenenia, the dominant genus responsible for anammox, accounted for 1.7 % (day 265). Additionally, Nitrosomonas, Thauera and Truepera were identified as key contributors to the efficient removal of nitrogen from mature landfill. As a novel nitrogen removal strategy, the practical application of the IBBR system offers novel perspectives on addressing mature landfill leachate.
Collapse
Affiliation(s)
- Lina Wu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yulin Zhang
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jian Yin
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Anteng Luo
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yinghao Tian
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yufan Liu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiayuan Xu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|