1
|
Yusoff MHM, Salleh MSH, Shafie MH. Isolation and characterization of antioxidant and anti-tyrosinase activities of Cosmos caudatus leaf polysaccharides using microwave-assisted extraction. Int J Biol Macromol 2025; 311:144154. [PMID: 40368199 DOI: 10.1016/j.ijbiomac.2025.144154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
This study investigates the extraction of Cosmos caudatus leaf polysaccharides (CCLP) using citric acid monohydrate (CAM) as the extraction medium. Moreover, the extraction was assisted with microwave-assisted extraction due to its advantages as high extraction efficiency with low energy consumption and short extraction period. Optimal conditions yielded a maximum of 36.06 % which achieved by Box-Behnken design analysis. Characterization studies revealed that CCLP has β-configuration with branching properties, indicated by the presence of methyl, acetyl, and sugar ring structures. CCLP exhibit low methoxyl and considered as glucose-rich polysaccharides due to glucose as its major monosaccharide compositions. Additionally, CCLP demonstrated good gelling properties, moderate viscosity and high-water solubility which further supported by high water and oil-holding capacities, enhancing its formulation potential. Bioactivity evaluation revealed significant antioxidant properties with IC50 values of 2.15 mg/mL and 8.00 mg/mL for DPPH and ABTS radicals, respectively. CCLP also exhibited potent tyrosinase inhibition, with IC50 values of 1.69 mg/mL for monophenolase and 1.31 mg/mL for diphenolase. Furthermore, its photoprotective potential, reflected by a sun protection factor (SPF) of 25.33 %, highlights its potential utility in skincare applications. These findings suggest that CCLP, with its unique structural features and strong bioactivities is a promising bioactive ingredient for managing hyperpigmentation.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Syahmi Hairul Salleh
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
2
|
Singhania RR, Patel AK, Kumar P, Perumal PK, Chen CW, Dong CD. Bioprospecting of cellulases from marine fungi for macro-algal biomass degradation for biofuel application. Int J Biol Macromol 2025; 307:141935. [PMID: 40074123 DOI: 10.1016/j.ijbiomac.2025.141935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The marine ecosystem, the largest on Earth, supports around 80 % of plant and animal species. Marine macroalgae, rich in polysaccharides like cellulose, remain underutilized despite their potential in a circular bioeconomy. Efficient valorization can promote sustainability, whereas mismanagement raises ecological concerns. Unlike lignocellulosic biomass, macroalgae lack lignin, making their processing unique. Global interest in macroalgae for biofuel applications is growing, particularly through polysaccharide-degrading biocatalysts like cellulases. Fungi, known for secreting extracellular cellulases and other enzymes, play a key role in biomass degradation. Marine fungi associated with macroalgae may possess enhanced enzymatic capabilities, enabling efficient algal polysaccharide breakdown. These fungi have immense potential in macroalgal biorefineries, facilitating the conversion of complex polysaccharides into oligosaccharides and monosaccharides for biofuels, pharmaceuticals, nutraceuticals, and cosmetics. Developing advanced bioprocessing technologies for marine fungi could provide robust cellulases that withstand industrial conditions, optimizing macroalgal biomass conversion. This review comprehensively examines cellulase production from marine fungi, their bioprocessing strategies, and their role in degrading macroalgal biomass. Additionally, other fungal enzymes and their industrial applications are briefly discussed. This study highlights the potential of marine fungi-derived cellulases in biofuel production, aligning with sustainable development goals and supporting global bioeconomic advancements.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
3
|
Zhang L, Wang W, Yang Y, Li P, Liu X, Zhu W, Yang W, Wang S, Lin Y, Liu X. Expression and immobilization of novel N-glycan-binding protein for highly efficient purification and enrichment of N-glycans, N-glycopeptides, and N-glycoproteins. Anal Bioanal Chem 2024; 416:6859-6868. [PMID: 39412696 DOI: 10.1007/s00216-024-05583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024]
Abstract
Comprehensive and selective enrichment of N-glycans, N-glycopeptides, and N-glycoproteins prior to analysis is of great significance in N-glycomics research, reducing sample complexity, removing impurity interference, increasing sample abundance and enhancing signal intensity. However, only an Fbs1 (F-box protein that recognizes sugar chain 1) GYR variant (Fg) can enrich these N-glycomolecules solely due to its substantial binding affinity for the core pentasaccharide motif of N-glycans. Stationary phase separation is commonly used to enrich N-glycomolecules efficiently. Herein, DNA encoding the Fg was cloned into pGEX-4T-1, and the protein was expressed with a GST tag, which facilitates the convenient and efficient immobilization of recombinant GST-tagged Fg to GSH agarose resin. The yield of the GST-tagged Fg reached to 0.05 g/L after optimization of the induction condition, and the purified protein exhibited good identification ability and excellent stability for months. In particular, the immobilized GST-tagged Fg can enrich N-glycans released by PNGase F and capture derivatized N-glycans possessing an intact terminal N-acetyl glucosamine (GlcNAc). Validation of immobilized GST-tagged Fg with standard N-glycopeptides and N-glycoproteins revealed its high loading capacity, sensitivity, and selectivity. The novel immobilized GST-tagged Fg is a convenient and efficient enrichment material specific for N-glycans, N-glycopeptides, and N-glycoproteins, suggesting excellent performance and prospects for industrial application.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Wenhui Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueqin Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Pengjie Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenjie Zhu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Yawei Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Sun L, Xu C, Tong S, Gu X. Enhancing cellulose hydrolysis via cellulase immobilization on zeolitic imidazolate frameworks using physical adsorption. Bioprocess Biosyst Eng 2024; 47:1071-1080. [PMID: 38811469 DOI: 10.1007/s00449-024-03030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
This study investigates the immobilization of cellulase on zeolitic imidazolate frameworks (ZIFs) by physical adsorption, specifically the ZIF-8-NH2 and Fe3O4@ZIF-8-NH2, to enhance enzymatic hydrolysis efficiency. The immobilization process was thoroughly analyzed, including optimization of conditions and characterization of ZIF carriers and immobilized enzymes. The impacts on the catalytic activity of cellulase under various temperatures, pH levels, and storage conditions were examined. Additionally, the reusability of the immobilized enzyme was assessed. Results showed the cellulase immobilized on Fe3O4@ZIF-8-NH2 exhibited a high loading capacity of 339.64 mg/g, surpassing previous studies. Its relative enzymatic activity was found to be 71.39%. Additionally, this immobilized enzyme system demonstrates robust reusability, retaining 68.42% of its initial activity even after 10 cycles. These findings underscore the potential of Fe3O4@ZIF-8-NH2 as a highly efficient platform for cellulase immobilization, with promising implications for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
5
|
Jia S, Chen Z, Li Y, Li C, Duan C, Lim KH, Kawi S. Construction of greenly biodegradable bacterial cellulose/UiO-66-NH 2 composite separators for efficient enhancing performance of lithium-ion battery. Int J Biol Macromol 2024; 269:131988. [PMID: 38701999 DOI: 10.1016/j.ijbiomac.2024.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The disposal of waste lithium batteries, especially waste separators, has always been a problem, incineration and burial will cause environmental pollution, therefore, the development of degradable and high-performance separators has become an important challenge. Herein, UiO-66-NH2 particles were successfully anchored onto bacterial cellulose (BC) separators by epichlorohydrin (ECH) as a crosslinker, then a BC/UiO-66-NH2 composite separator was prepared by vacuum filtration. The ammonia groups (-NH2) from UiO-66-NH2 can form hydrogen bonds with PF6- in the electrolyte, promoting lithium-ion transference. Additionally, UiO-66-NH2 can store the electrolyte and tune the porosity of the separator. The lithium ion migration number (0.62) of the battery assembled with BC/UiO-66-NH2 composite separator increased by 50 % compared to the battery assembled with commercial PP separator (0.45). The discharge specific capacity of the battery assembled with BC/UIO-66-NH2 composite separator after 50 charge and discharge cycles is 145.4 mAh/g, which is higher than the average discharge specific capacity of 114.3 mAh/g of the battery assembled with PP separator. When the current density is 2C, the minimum discharge capacity of the battery assembled with BC/UiO-66-NH2 composite separator is 85.3 mAh/g. The electrochemical performance of the BC/UiO-66-NH2 composite separator is significantly better than that of the commercial PP separator. In addition, -NH2 can offer a nitrogen source to facilitate degradation of the BC separators, whereby the BC/UiO-66-NH2 composite separator could be completely degraded in 15 days.
Collapse
Affiliation(s)
- Shuaitian Jia
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300400, PR China
| | - Zan Chen
- Key Laboratory of Separator and Separator Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin, 300131, PR China.
| | - Yinhui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300400, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Cuijia Duan
- Key Laboratory of Separator and Separator Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin, 300131, PR China
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
6
|
Semba H, Horiguchi HK, Tsuboi H, Ishikawa K, Koda A. Effects of heterologous expression and N-glycosylation on the hyperthermostable endoglucanase of Pyrococcus furiosus. J Biosci Bioeng 2024; 137:329-334. [PMID: 38461105 DOI: 10.1016/j.jbiosc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of β-1,4-glucosidic linkages in cellulose and β-glucan structures that contain β-1,3- and β-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.
Collapse
Affiliation(s)
- Hironori Semba
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan.
| | - Haruka Kado Horiguchi
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| | - Hirokazu Tsuboi
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan; Rare Sugar and Enzyme Research, Dep. I, R&D, Matsutani Chemical Industry Co. Ltd., 5-3 Kitaitami, Itami, Hyogo 664-8508, Japan
| | - Akio Koda
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| |
Collapse
|
7
|
Feng J, Techapun C, Phimolsiripol Y, Phongthai S, Khemacheewakul J, Taesuwan S, Mahakuntha C, Porninta K, Htike SL, Kumar A, Nunta R, Sommanee S, Leksawasdi N. Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. BIORESOURCE TECHNOLOGY 2024; 392:129926. [PMID: 37925084 DOI: 10.1016/j.biortech.2023.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Corn, rice, wheat, and sugar are major sources of food calories consumption thus the massive agricultural waste (AW) is generated through agricultural and agro-industrial processing of these raw materials. Biological conversion is one of the most sustainable AW management technologies. The abundant supply and special structural composition of cellulose, hemicellulose, and lignin could provide great potential for waste biological conversion. Conversion of hemicellulose to xylitol, cellulose to ethanol, and utilization of remnant whole cells biomass to synthesize phenylacetylcarbinol (PAC) are strategies that are both eco-friendly and economically feasible. This co-production strategy includes essential steps: saccharification, detoxification, cultivation, and biotransformation. In this review, the implemented technologies on each unit step are described, the effectiveness, economic feasibility, technical procedures, and environmental impact are summarized, compared, and evaluated from an industrial scale viewpoint.
Collapse
Affiliation(s)
- Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Suphat Phongthai
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Krisadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Anbarasu Kumar
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Thanjavur 613403, India.
| | - Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
8
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
9
|
Zhang J, Zhuo X, Wang Q, Ji H, Chen H, Hao H. Effects of Different Nitrogen Levels on Lignocellulolytic Enzyme Production and Gene Expression under Straw-State Cultivation in Stropharia rugosoannulata. Int J Mol Sci 2023; 24:10089. [PMID: 37373235 DOI: 10.3390/ijms241210089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Stropharia rugosoannulata has been used in environmental engineering to degrade straw in China. The nitrogen and carbon metabolisms are the most important factors affecting mushroom growth, and the aim of this study was to understand the effects of different nitrogen levels on carbon metabolism in S. rugosoannulata using transcriptome analysis. The mycelia were highly branched and elongated rapidly in A3 (1.37% nitrogen). GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were mainly involved in starch and sucrose metabolism; nitrogen metabolism; glycine, serine and threonine metabolism; the MAPK signaling pathway; hydrolase activity on glycosyl bonds; and hemicellulose metabolic processes. The activities of nitrogen metabolic enzymes were highest in A1 (0.39% nitrogen) during the three nitrogen levels (A1, A2 and A3). However, the activities of cellulose enzymes were highest in A3, while the hemicellulase xylanase activity was highest in A1. The DEGs associated with CAZymes, starch and sucrose metabolism and the MAPK signaling pathway were also most highly expressed in A3. These results suggested that increased nitrogen levels can upregulate carbon metabolism in S. rugosoannulata. This study could increase knowledge of the lignocellulose bioconversion pathways and improve biodegradation efficiency in Basidiomycetes.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xinyi Zhuo
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hao Ji
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|