1
|
Fu T, Shen C, Mi H, Tang J, Li L, Lin H, Shangguan H, Yu Z. Alternating electric field as an effective inhibitor of bioavailability and phytotoxicity of heavy metals during electric field-assisted aerobic composting. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137842. [PMID: 40068310 DOI: 10.1016/j.jhazmat.2025.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 04/16/2025]
Abstract
Changing the form of the electric field in the electric field-assisted aerobic composting (EAC) system from direct current to alternating current is confirmed as a potential strategy to enhance compost humification to the level of hyperthermophilic composting. This study pioneered the comparative evaluation of the effects of different electric field forms on the immobilization and phytotoxicity of heavy metals during composting. The results demonstrated that the humic acid content and humification index of alternating electric field-assisted aerobic composting (AEFAC) were approximately 22.0 % and 33.7 % higher than that of EAC, respectively. Morphometric analysis of various HMs (Cu, Zn, Cr, Cd, and Pb) revealed that the amounts in the exchangeable and reducible fractions were obviously lower in AEFAC than in EAC. AEFAC reduced the bioavailability of multiple HMs to about 15.11-40.21 %, indicating the higher passivation efficiency of several HMs than EAC. PLS-PM analysis indicated that AEFAC inhibited HMs bioavailability mainly through physicochemical properties, humification parameters, and microbial communities. Phytotoxicity experiments confirmed that AEFAC improves the growth indicators of cultivated crops, resulting in a 26.2 % increase in plant height and a 36.2 % increase in root length compared to EAC. Moreover, compared with EAC, AEFAC reduces the accumulation of Cu, Zn, Cr, Cd, and Pb in cultivated plants by approximately 27.0 %, 30.9 %, 32.2 %, 8.6 %, and 10.9 %, respectively. This study provides the first proof of principle that AEFAC effectively promotes the passivation of HMs, providing a practical strategy for efficient and environmentally friendly compost disposal.
Collapse
Affiliation(s)
- Tao Fu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Long Li
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; College of Tea and Food, Wuyi University, Wuyishan 354300, China.
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
2
|
Zhou D, Luo Y, Luo Y, He Y, Chen Y, Wan Z, Wu Y. Chemodiversity of dissolved organic matter and its association with the bacterial community at a zinc smelting slag site after 10 years of direct revegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175322. [PMID: 39111427 DOI: 10.1016/j.scitotenv.2024.175322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Dissolved organic matter (DOM) plays a critical role in driving the development of biogeochemical functions in revegetated metal smelting slag sites, laying a fundamental basis for their sustainable rehabilitation. However, the DOM composition at the molecular level and its interaction with the microbial community in such sites undergoing long-term direct revegetation remain poorly understood. This study investigated the chemodiversity of DOM and its association with the bacterial community in the rhizosphere and non-rhizosphere slags of four plant species (Arundo donax, Broussonetia papyrifera, Cryptomeria fortunei, and Robinia pseudoacacia) planted at a zinc smelting slag site for 10 years. The results indicated that the relative abundance of lipids decreased from 18 % to 5 %, while the relative abundance of tannins and lignins/CRAM-like substances increased from 4 % to 10 % and from 44 % to 64 % in the revegetated slags, respectively. The chemical stability of the organic matter in the rhizosphere slag increased due to the retention of recalcitrant DOM components, such as lignins, aromatics, and tannins. As the diversity and relative abundance of the bacterial community increased, particularly within the Proteobacteria, there was better utilization of recalcitrant components (e.g., lignins/CRAM-like compounds), but this utilization was not invariable. In addition, potential preference associations between specific bacterial OTUs and DOM molecules were observed, possibly stimulated by heavy metal bioavailability. Network analysis revealed complex connectivity and strong interactions between the bacterial community and DOM molecules. These specific interactions between DOM molecules and the bacterial community enable adaptation to the harsh conditions of the slag environment. Overall, these findings provide novel insights into the transformation of DOM chemodiversity at the molecular level at a zinc smelting slag sites undergoing long-term revegetation. This knowledge could serve as a crucial foundation for developing direct revegetation strategies for the sustainable rehabilitation of metal smelting slag sites.
Collapse
Affiliation(s)
- Dongran Zhou
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Youfa Luo
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.
| | - Yang Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yu He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yulu Chen
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Ma F, Zhu T, Wang Y, Torii S, Wang Z, Zhao C, Li X, Zhang Y, Quan H, Yuan C, Hao L. Adsorption mechanism and remediation of heavy metals from soil amended with hyperthermophilic composting products: Exploration of waste utilization. BIORESOURCE TECHNOLOGY 2024; 410:131292. [PMID: 39153701 DOI: 10.1016/j.biortech.2024.131292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Due to high humification, hyperthermophilic composting products (HP) show potential for remediating heavy metal pollution. However, the interaction between HP and heavy metals remains unclear. This study investigated the adsorption mechanism and soil remediation effect of HP on heavy metals. The results showed that the maximum adsorption capacity of HP increased by an average of 30.74 % compared to conventional composting products. HP transformed 34.87 % of copper, 42.55 % of zinc, and 35.63 % of lead from exchangeable and reducible forms into residual and oxidizable forms, thus reducing the soil risk level. In conclusion, HP significantly enhanced the adsorption of heavy metals and their transformation from unstable to stable forms, primarily due to the higher content of hydroxyl and carboxyl groups. This study aims to demonstrate the effectiveness of HP for remediating heavy metal pollution and to enhance the understanding of the underlying mechanism, which lays a foundation for waste utilization.
Collapse
Affiliation(s)
- Feng Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; Department of Mechanical and Mathematical Engineering, Kumamoto University, Kumamoto 860-8555, Japan
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Shuichi Torii
- Department of Mechanical and Mathematical Engineering, Kumamoto University, Kumamoto 860-8555, Japan
| | - Zhipeng Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Chaoyue Zhao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Xu Li
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Yanping Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Haoyu Quan
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Chunli Yuan
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, MOE, Shenyang University, Shenyang 110044, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Bai Z, Li T, Zhang S, Wang G, Xu X, Zhou W, Pan X, Pu Y, Jia Y, Yang Z, Long L. Effects of climate and geochemical properties on the chemical forms of soil Cd, Pb and Cr along a more than 4000 km transect. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133746. [PMID: 38341885 DOI: 10.1016/j.jhazmat.2024.133746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Soil heavy metal speciation has received much attention for their different ecological and environmental effects. However, the effects of climate and soil geochemical properties on them in uncontaminated soils at macroscale were still unclear. Therefore, a transect more than 4000 km was chosen to study the effects of these factors on soil Cd, Pb and Cr forms. The results revealed that mean annual temperature and precipitation showed significant positive relations with the exchangeable and Fe-Mn oxide bound states of Cd, Pb and Cr, and residual Cr. And humidity and drought indexes were significantly positively correlated with their organic and carbonate bound forms, respectively. As for soil geochemical properties, pH displayed significant negative relationships with exchangeable, Fe-Mn oxide and organic bound Pb and Cr, and exchangeable Cd. Fe2O3 was significantly positively with the exchangeable and Fe-Mn oxide bound Cd, Pb and Cr, and residual Cr. And soil organic matter showed positive relations with organic bound Pb and Cr, and residual Cd and Cr, displayed negative relationships with carbonated bound Pb and Cr. Overall, climate and soil geochemical properties together affect the transformation and transport of heavy metals between different forms in uncontaminated soils.
Collapse
Affiliation(s)
- Zhiqiang Bai
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Xiaomei Pan
- Chengdu Agricultural College, Wenjiang 611130, PR China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| |
Collapse
|
5
|
Song C, Gao Y, Sun Q, Zhao Y, Qi H, Chen Z, Li J, Wang S, Wei Z. Insight into the pathways of biochar/smectite-induced humification during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167298. [PMID: 37742972 DOI: 10.1016/j.scitotenv.2023.167298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
As representative organic and inorganic additives, both biochar and smectite exhibit an excellent capacity to improve humification efficiency during composting. Nevertheless, the mechanisms underlying biochar/smectite-induced compost humification have still not been fully explored from the perspective of overall organic substances. In this study, three composting treatments were performed as follows: 10 % biochar-amended composting, 10 % smectite-amended composting and natural composting without any additive. UV-visible parameters and synchronous hetero two-dimensional correlation spectra showed that biochar accelerated dissolved organic matter (DOM) complications, unsaturation and aromatization. For example, biochar promoted the C2 and simple C3 peaks to convert into a sophisticated C3/360 peak. However, the effect of smectite was negligible in complicating the DOM structure. Both biochar and smectite displayed an invigorating role in promoting humic substance (HS) formation. The strengthened relations between bacterial richness and physicochemical indicators and HS fractions might contribute to the positive action of biochar/smectite on HS synthesis. Network analysis showed that both bacterial functional omnipotence and specialization in response to the addition of catalysts may contribute to compost humification. The chemical pathway involved in DOM humification was intensified by enhancing the role of pH in biochar composting and weakening the degradation of unsaturated aromatic compounds of DOM with smectite addition. These findings benefit the practical application of biochar/smectite in promoting composting efficiency.
Collapse
Affiliation(s)
- Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunxiang Gao
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Qihaoqiang Sun
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Qi
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zhiru Chen
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Shenghui Wang
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- College of Life Science, Liaocheng University, Liaocheng 252000, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Xuehan F, Xiaojun G, Weiguo X, Ling Z. Effect of the addition of biochar and wood vinegar on the morphology of heavy metals in composts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118928-118941. [PMID: 37922076 DOI: 10.1007/s11356-023-30645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
In the experiment, the morphology of heavy metals (Pb, Cr, Cd, and Ni, HMs) was characterized using flame atomic absorption spectroscopy. In addition, Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) were used to characterize the correlation between environmental factors and metal morphology in the rotting compost from several angles. The results showed that the humus treated with wood vinegar solution had a high degree of humification and rich aromatic structure. FTIR spectroscopy confirmed that the degree of humus aromatization gradually increased during the composting process, which enhanced the complexation of humus (HS) with HMs but had less effect on Ni. In addition, the optimum concentration of wood vinegar (WV) was determined to be 1.75%. The results of the study showed that in the Pb passivation treatment group, the proportion of soluble (Red) and exchangeable states (Exc) converted to oxidized (Oxi) and residual states (Res) was 8%, 14%, 6%, 1%, and 12% in the CK, T1, T2, T3, and T4 treatment groups, respectively; in the Cr passivation treatment group, the proportion of Cr-Red and Cr-Exc converted to oxidized and residual states was 31%, 33%, 25%, 29%, and 25%; in the Cd passivation treatment group, the proportions of Cd-Red and Cd-Exc converted to oxidized and residual states were 5%, 15%, 4%, 9%, and 11%, respectively; whereas the Ni treatment group did not show any significant passivation effect. The proportion of Pb-Oxi was relatively stable, Cr-Oxi was converted to Cr-Res, whereas Cd showed the conversion of Cd-Oxi to Cd-Exc. SUVA254 and SUVA280 showed significant positive correlations with Pb-Res, Cr-Res and Ni-Res, and significant positive correlations with moisture content (MC); whereas MC was significantly negatively correlated with each form of HMs. Total potassium (TK), total nitrogen (TN), and both carbon (TOC) were negatively correlated with Pb-Res and Pb-Exc. Structural equation modeling verified the relationship between environmental factors and HMs, and the composting results showed that the addition of biochar (BC) and a higher percentage of WV could increase compost decomposition and passivate HMs to improve its agronomic function.
Collapse
Affiliation(s)
- Fu Xuehan
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Guo Xiaojun
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Xu Weiguo
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Zhou Ling
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China.
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China.
| |
Collapse
|