1
|
Yu X, Zhang Y, Wang X, Luo Y, Shao S, Qiu Z. Enhanced bioethanol Production from Wheat Bran Feedstock by a Mild Oxalic Acid Pretreatment. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05281-6. [PMID: 40377846 DOI: 10.1007/s12010-025-05281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
Organic acid pretreatment is one of the most promising methods to pretreat lignocellulose biomass due to its mild condition and weak corrosion to reactor. In this study, five different organic acids were used for wheat bran pretreatment, and the enzymatic hydrolysis yields of pretreated feedstocks were evaluated. Among these organic acids, oxalic acid pretreatment demonstrated the highest glucose yield of 87.93%. Subsequently, the optimization of oxalic acid pretreatment parameters was conducted including temperature, time, solid-liquid ratio, and acid usage. A high glucose yield of 96.92% was obtained at the optimal conditions: 0.8% of oxalic acid usage, 1:10 of solid-liquid ratio, and 130 ℃ for 15 min. FTIR, XRD and SEM revealed the mechanism of improved hydrolysis efficiency after oxalic acid pretreatment. Finally, the pretreated wheat bran was used for separate hydrolysis and ethanol fermentation (SHF) at 20% (w/w) solids loading. After 36 h, 23.87 g/L ethanol was produced by Saccharomyces cerevisiae DQ1 with all glucose consumed, with the yield of 0.12 g/g dry virgin wheat bran. This study provided a new insight into wheat bran pretreatment for biofuel production by a mild oxalic acid pretreatment method.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Ya Zhang
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Xianhao Wang
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Yutong Luo
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Shuai Shao
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China.
| | - Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
2
|
Ma T, Mo W, Lv B, Wang W, He H, Jian C, Liu X, Li S, Guo Y. A Review of the Nutritional Composition, Storage Challenges, Processing Technology and Widespread Use of Bamboo Shoots. Foods 2024; 13:3539. [PMID: 39593955 PMCID: PMC11592693 DOI: 10.3390/foods13223539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Bamboo shoots, as the young bamboo stems, are rich in protein, fiber, vitamins, and minerals, as well as many bioactive substances beneficial to health, and are gaining in importance worldwide as a healthy food and dietary supplement. However, fresh bamboo shoots lignify rapidly after harvesting and contain cyanogenic glycosides, limiting the safe and healthy consumption of bamboo shoots. To this end, based on the changes in nutritional composition and the physiological properties of fresh and post-harvest bamboo shoots, factors affecting the preservation of post-harvest bamboo shoots are emphasized, including a series of physical and chemical regimes and various processing methods for post-harvest preservation. Furthermore, a systematic biorefinery approach for using bamboo shoot processing residue to prepare value-added products is also discussed. Finally, the article also discusses issues related to sustainable development, safeguarding food security, and addressing potential health impacts in order to provide a scientific basis for researchers to further develop and increase the added value of bamboo shoots.
Collapse
Affiliation(s)
- Ting Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Wenfeng Mo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Beibei Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Wenxuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Hailin He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Cuiwen Jian
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yuan Guo
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530012, China
| |
Collapse
|
3
|
Xu F, Sun D, Wang Z, Li M, Yin X, Li H, Xu L, Zhao J, Bao X. Highly Efficient Production of Cellulosic Ethanol from Poplar Using an Optimal C6/C5 Co-Fermentation Strain of Saccharomyces cerevisiae. Microorganisms 2024; 12:1174. [PMID: 38930556 PMCID: PMC11205669 DOI: 10.3390/microorganisms12061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study demonstrates the effective conversion of poplar wood waste into fuel-grade ethanol. By employing a two-step pretreatment using sodium chlorite (SC)-dilute sulfuric acid (DSA), the raw material achieved a sugar conversion rate exceeding 85% of the theoretical value. Under optimized conditions, brewing yeast co-utilizing C6/C5 enabled a yield of 35 g/L ethanol from 10% solid loading delignified poplar hydrolysate. We increased the solid loading to enhance the final ethanol concentration and optimized both the hydrolysis and fermentation stages. With 20% solid loading delignified poplar hydrolysate, the final ethanol concentration reached 60 g/L, a 71.4% increase from the 10% solid loading. Our work incorporates the pretreatment, enzymatic hydrolysis, and fermentation stages to establish a simple, crude poplar waste fuel ethanol process, expanding the range of feedstocks for second-generation fuel ethanol production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianzhi Zhao
- Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | | |
Collapse
|
4
|
Huang L, Li J, Han J, Zhang Y. Robust fabrication of sulfonated graphene oxide/poly (ether sulfone) catalytic membrane reactor for efficient cellulose hydrolysis and product separation. BIORESOURCE TECHNOLOGY 2024; 393:130138. [PMID: 38040307 DOI: 10.1016/j.biortech.2023.130138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The efficient conversion of cellulose to high value-added products is important for the utilization of cellulose biomass. Achieving efficient cellulose hydrolysis and timely products separation is the essential target. Herein, a modified sulfonated graphene oxide/polydopamine deposited polyethersulfone (mGO(SO3H)-PDA/PES) membrane reactor, combining in the same unit a conversion effect and a separation effect, was prepared by suction filtration and subsequent polymerization and adhesion. The structure of PES membrane and deposition of PDA was regulated to sure that small molecules can pass through the membrane, while cellulose could not. As a result, the mGO(SO3H)-PDA/PES membrane realized the efficient cellulose hydrolysis and timely products separation under cross-flow circulation mode at 0.1 MPa, avoiding the further degradation of reducing sugar products. The yields of total reducing sugar (TRS) and glucose in separated hydrolysate reached 93.2 % and 85.5 %, respectively. This strategy provides potential guidance for efficient conversion of cellulose.
Collapse
Affiliation(s)
- Lilan Huang
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jinwei Li
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jin Han
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Zhang H, Hou L, Zhang W, Lin Y, Liu X, Zhao S, Chang C. Coupling process for preparing biomass-based furfural and levulinic acid from corncob: Extraction, green chemistry and techno-economic assessment. BIORESOURCE TECHNOLOGY 2024; 394:130301. [PMID: 38211714 DOI: 10.1016/j.biortech.2024.130301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The purpose of this study is to design and investigate two coupling processes for acid-catalyzed hydrolysis of corncob, achieving the simultaneous preparation of biomass-based furfural and levulinic acid (LA). Meanwhile, high concentration and yield of LA were obtained through a situ feeding strategy of pretreated furfural residue with high solids loading (20%, w/v). In Scenario A, 2-methyltetrahydrofuran was selected as the solvent for the LA extraction process compared with the neutralization process in Scenario B. Techno-economic assessment results show that Scenario A is technically feasible and cost-competitive, with an internal rate of return of 21.92%, a net present value of 121 million US dollars, a carbon efficiency of 72%, an environmental factor of 4.38, and a process mass intensity of 32.19. This study will provide new insights for fully utilizing lignocellulosic biomass to prepare renewable energy resources, comprehensively evaluating the economic feasibility, and promoting green and low-carbon development.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Liutao Hou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Weihong Zhang
- Henan Jiaozuo Huakang Sugar Alcohol Technology Co. Ltd., Jiaozuo 454150, China
| | - Yucheng Lin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xueli Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shiqiang Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou 450001, China.
| | - Chun Chang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| |
Collapse
|
6
|
Tang W, Huang C, Tang Z, He YC. Employing deep eutectic solvent synthesized by cetyltrimethylammonium bromide and ethylene glycol to advance enzymatic hydrolysis efficiency of rape straw. BIORESOURCE TECHNOLOGY 2023; 387:129598. [PMID: 37532057 DOI: 10.1016/j.biortech.2023.129598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
An efficient deep eutectic solvent (DES) was synthesized by cetyltrimethylammonium bromide (CTAB) and ethylene glycol (EG) and employed to treat rape straw (RS) for advancing enzymatic saccharification in this work. By optimizing the pretreatment parameters, the results displayed that the novel DES was strongly selective towards removing lignin and xylan while preserving cellulose. Under optimum conditions with 1:6 of CTAB: EG in DES, 180 °C and 80 min, the enzymatic hydrolysis efficiency of RS was enhanced by 46.0% due to the 62.2% of delignification and 53.2% of xylan removal during CTAB: EG pretreatment. In terms of the recalcitrant structure of RS, DES pretreatment caused the increment of cellulosic accessibility, reduction of hydrophobicity and surface area of lignin, and migration of cellulosic crystalline structure, which was associated with its enzymatic hydrolysis efficiency. Overall, this study presented an emerging method for the effective fractionation and valorization of lignocellulosic biomass within biorefinery technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
7
|
Yang Q, Tang W, Ma C, He YC. Efficient co-production of xylooligosaccharides, furfural and reducing sugars from yellow bamboo via the pretreatment with biochar-based catalyst. BIORESOURCE TECHNOLOGY 2023; 387:129637. [PMID: 37549711 DOI: 10.1016/j.biortech.2023.129637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The research on the efficient use of biomass to produce chemical products has received extensive attention. In this work, a novel heterogeneous biocarbon-based heterogeneous catalyst AT-Sn-YB was prepared using yellow bamboo (YB) as a carrier, and its physical properties were proved to be good by various characterization and stability experiments. In the γ-valerolactone/water (3:1, v/v) medium containing 100 mM CuCl2, the use of AT-Sn-YB (3.6 wt%) under 170 °C for 20 min was applied to catalyze YB into furfural (80.3% yield), accompanied with 2.8 g/L xylooligosaccharides. The YB solid residue obtained from treatment was efficiently saccharified to reducing sugars (17.2 g/L). Accordingly, comprehensive understanding of efficiently co-producing xylooligosaccharides, furfural and reducing sugars from YB was demonstrated via the pretreatment with biochar-based catalyst. This study innovatively used a new type of solid acid to complete the efficient co-production of chemical products, and realized the value-added utilization of yellow bamboo.
Collapse
Affiliation(s)
- Qizhen Yang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|