1
|
Du F, Hang Y, Zhang F, Li X, Zheng Y, Zhang Z, Ma W, Sun X. Improving Precursor Supply and Optimizing the Fermentation Process for High-Level Production of Docosapentaenoic Acid in Yarrowia Lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40240149 DOI: 10.1021/acs.jafc.5c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Docosapentaenoic acid (DPA) is widely applied in medicine and health products because of its important physiological functions. Using microbial cell factories for DPA production is considered a viable alternative to extracting DPA from seal oil. In this study, an engineering strategy for the efficient production of DPA was developed. First, the DPA biosynthesis pathway was successfully established in Yarrowia lipolytica. Then, the increase of acetyl-CoA by engineering citrate metabolism and malonyl-CoA by introducing a new orthogonal malonyl-CoA synthesis pathway was to further enhance DPA production. Furthermore, overexpression of glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME) enhanced NADPH availability. Finally, by optimizing the fermentation conditions, the DPA content of the engineered strain reached 40.0%, and the yield reached 13.0 g/L in the 5 L bioreactor, representing the highest levels reported so far in Y. lipolytica. This study provides a promising strategy to construct microbial cell factories for fatty acid biosynthesis.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yiwen Hang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yi Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xiaoman Sun
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
2
|
Sumathi Y, Dong CD, Singhania RR, Chen CW, Gurunathan B, Patel AK. Advancements in Nano-Enhanced microalgae bioprocessing. BIORESOURCE TECHNOLOGY 2024; 401:130749. [PMID: 38679239 DOI: 10.1016/j.biortech.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
Collapse
Affiliation(s)
- Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
3
|
Dubey S, Chen CW, Patel AK, Bhatia SK, Singhania RR, Dong CD. Development in health-promoting essential polyunsaturated fatty acids production by microalgae: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:847-860. [PMID: 38487279 PMCID: PMC10933236 DOI: 10.1007/s13197-023-05785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 03/17/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.
Collapse
Affiliation(s)
- Siddhant Dubey
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Reeta Rani Singhania
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
4
|
Chauhan AS, Patel AK, Singhania RR, Vadrale AP, Chen CW, Giri BS, Chang JS, Dong CD. Fine-tuning of key parameters to enhance biomass and nutritional polyunsaturated fatty acids production from Thraustochytrium sp. BIORESOURCE TECHNOLOGY 2024; 394:130252. [PMID: 38145766 DOI: 10.1016/j.biortech.2023.130252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
The escalating demand for long-chain polyunsaturated fatty acids (PUFAs) due to their vital health effects has deepened the exploration of sustainable sources. Thraustochytrium sp. stands out as a promising platform for omega-3 and 6 PUFA production. This research strategically optimizes key parameters: temperature, salinity, pH, and G:Y:P ratio and the optimized conditions for maximum biomass, total lipid, and DHA enhancement were 28 °C, 50 %, 6, and 10:1:2 respectively. Process optimization enhanced 32.30 and 31.92 % biomass (9.88 g/L) and lipid (6.57 g/L) yield. Notably, DHA concentration experienced a substantial rise of 69.91 % (1.63 g/L), accompanied by notable increases in EPA and DPA by 82.69 % and 31.47 %, respectively. MANOVA analysis underscored the statistical significance of the optimization process (p < 0.01), with all environmental factors significantly influencing biomass and lipid data (p < 0.05), particularly impacting DHA production. Thraustochytrium sp. can be a potential source of commercial DHA production with the fine-tuning of these key process parameters.
Collapse
Affiliation(s)
- Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Balendu Sheker Giri
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Tambat VS, Patel AK, Singhania RR, Vadrale AP, Tiwari A, Chen CW, Dong CD. Sustainable mixotrophic microalgae refinery of astaxanthin and lipid from Chlorella zofingiensis. BIORESOURCE TECHNOLOGY 2023; 387:129635. [PMID: 37544537 DOI: 10.1016/j.biortech.2023.129635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microalgal astaxanthin possesses numerous bioactivities and has several health applications. The current research focuses on designing and optimizing the two-stage mixotrophic bioprocess by Chlorella zofingiensis for astaxanthin production. Gradual increase in light intensity (4-8k-lux) and 3x micronutrient concentration were the key parameters for maximizing biomass yield of 2.5 g/L during 15 days of stage I. Furthermore, stress conditions (excessive CO2, light, salinity, etc.) enhanced astaxanthin yield at stage II. 20k lux light, 3x nutrients, and 5% CO2 were the best ranges for maximum astaxanthin production. Maximum biomass yield and astaxanthin content were 3.3 g/L and 16.7 mg/g, respectively, after 29 days of bioprocess. Astaxanthin biosynthesis was also affected by salinity, but less than other parameters. Astaxanthin bioprocess resulted in enhanced lipid yields of 35-37%, which could be used for biodiesel. This study shows promising scale-up potential with attractive sustainability features of Chlorella zofingiensis model for commercial astaxanthin-lipid biorefinery.
Collapse
Affiliation(s)
- Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|