1
|
Fu T, Mi H, Shen C, Zhang S, Shangguan H, Tang J, Lin H, Yu Z. Electric field-assisted aerobic composting: From basic principles to applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125791. [PMID: 40373445 DOI: 10.1016/j.jenvman.2025.125791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Aerobic composting is an effective method for the resourceful disposal of organic solid waste. The primary factors that limit the effectiveness of conventional aerobic composting are low oxygen utilization and insufficient pile temperature. To address these challenges, a novel electric field-assisted aerobic composting (EAC) process has been developed, which applies a low-voltage electric field to traditional aerobic compost piles to enhance oxygen utilization and increase pile temperature. EAC technology demonstrates excellent environmental benefits in improving compost maturity, reducing greenhouse gas emissions, promoting heavy metal immobilization, and controlling antibiotic risks. These features and advantages position EAC as a promising new technology for aerobic composting. However, a comprehensive and critical review of the advancements in the principles, design, and optimization of the EAC system is still lacking, which restricts the scalability and developmental potential of the technology. Herein, this review critically analyzes the current advancements in the EAC process and provides directions for future applications, thereby offering essential insights for overcoming challenges and developing more economically efficient composting strategies.
Collapse
Affiliation(s)
- Tao Fu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Shuqun Zhang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
2
|
Jia WL, Wang B, Qiao LK, Gao FZ, Liu WR, He LY, Ying GG. Elimination of antibiotic resistance genes and adaptive response of Firmicutes during chicken manure composting. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138593. [PMID: 40367783 DOI: 10.1016/j.jhazmat.2025.138593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Aerobic composting is an effective method for reducing the abundance of antibiotic resistance genes (ARGs), but its effectiveness is influenced by the complex conditions during the process. However, the impact of composting conditions on the fate of ARGs and the underlying mechanisms remains unclear. This study examined the profile of ARGs, their mobility potential, hosts, and the risk of antibiotic resistome under different chicken manure composting conditions. A total of 708 ARGs were identified, and composting reduced their relative abundance by 29.4 %-82.4 %. Composting amendments and aeration rates exhibited similar elimination efficiencies for ARGs at different levels. However, low initial moisture content (50 %) caused a rebound in ARG abundance during the maturation phase. ARGs were mainly located on plasmids. After composting, the percentage of plasmid-born ARGs decreased from 46.3 %-70.8 % to 28.4 %-49.0 %. ARGs co-localized with mobile genetic elements displayed similar trends. The tolerance of Firmicutes to low moisture content played a key role in the rebound of ARGs and variations in their mobility potential. Composting reduced antibiotic resistance and ARG mobility in pathogens. Conversely, low moisture content hindered this attenuation effect in Firmicutes, which increased antibiotic resistome risk. This study provides comprehensive insights into the fate of ARGs and highlights the environmental risks of ARGs during composting.
Collapse
Affiliation(s)
- Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ben Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China.
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
3
|
Tong Z, Zhang H, Li S, Ma L, Li Z, Yong X, Liu F, Zhou J. The new strategies for high efficiency removal of antibiotics and antibiotic resistance genes by direct bio-drying of biogas slurry: Microbiological mechanisms. WATER RESEARCH 2025; 283:123763. [PMID: 40347569 DOI: 10.1016/j.watres.2025.123763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
High levels of antibiotics and antibiotic resistance genes (ARGs) still exist in biogas slurry after anaerobic digestion of cow manure. In this study, direct bio-drying strategies of cow manure biogas slurry without solid-liquid separation for the removal of antibiotics and ARGs were explored. The results showed that, after direct bio-drying of biogas slurry, the moisture contents decreased to 25.2 %-31.5 %. The maximum temperatures of the piles reached 76.1-77.4 °C, which is close to ultra-high temperatures (>80 °C). Direct biogas slurry bio-drying (CK treatment) achieved efficient removal of antibiotics, ARGs, and mobile genetic elements (MGEs) (95.4 %, 98.6 % and 86.7 % removal, respectively). Compared to the CK treatment, molecular membrane covering (MMC) alone was the most effective in further significantly decreasing the antibiotic concentration and the abundance of ARGs and MGEs in the final bio-dried samples, followed by food waste hydrochar (FHC) addition alone. Methanogenic archaea were identified as potential hosts for ARGs based on Network analysis. FHC addition-MMC increased the abundance of potential hosts for ARGs and promoted the expression of microbial methane metabolism function relative to the CK treatment during the later stages of bio-drying, thereby decreasing the removal efficiency of ARGs. The results of structural equation model and redundancy analysis showed that MGEs had the most significant direct effect on ARGs and moisture content had the highest relative contribution to changes in ARGs. In summary, direct bio-drying strategies were able to efficiently remove antibiotics and ARGs from cow manure biogas slurry and also achieve biological dewatering of the biogas slurry.
Collapse
Affiliation(s)
- Zhenye Tong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Haorong Zhang
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Siqin Li
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liqian Ma
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhenguo Li
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Fenwu Liu
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China.
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
4
|
Hao X, Chen M, Sang W, Shen L, Zhu L, Jiang D, Bai L. Humus Soil Inhibits Antibiotic Resistance Gene Rebound in Swine Manure Composting by Modulating Microecological Niches. Microorganisms 2025; 13:571. [PMID: 40142464 PMCID: PMC11944299 DOI: 10.3390/microorganisms13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Aerobic composting is widely used for the degradation of organic matter, simultaneously reducing the presence of antibiotic resistance genes (ARGs) in swine manure. However, the phenomenon of abundance rebound or even enrichment of ARGs is still a problem. The effect and mechanism of humus soil (Hs) on ARG reduction by adding it into the piles (0% for the control group (CK); 10% for S1 group; 20% for S2 group; and 30% for S3 group) after the thermophilic phase of composting was investigated. The results indicated that Hs promoted organic matter degradation and nitrogen loss. During days 15-36, the greatest reduction of 69.91% in total ARG abundance was observed in S2, while the abundance rebounded by 222.75% in CK and decreased only 13.71% in S3. With the 20% Hs addition, 85.42% abundance reduction for mobile genetic elements (MGEs) and 100% removal rates for aadA5, aadA9, sul1, sul2, and tetX were achieved. Moreover, the addition of Hs immediately changed the bacterial community structure of the substrate and varied the bacterial community successional direction in the treatments. Additionally, significantly positive correlations (|r| > 0.6; p < 0.05) were found between the top 20 genera and ARGs. The potential host bacteria for ARGs changed from Lactobacillus, Fermentimonas, Pusillimonas, and Ruminofilibacter in CK to Lactobacillus, Romboutsia, and Streptococcus in S2, highlighting the shift and reduction in host bacteria driven by Hs, which, in turn, influenced the abundance variations in ARGs. This study verified the feasibility of inhibiting the rebound of ARG abundance effectively by influencing the microecological niche in the pile, offering an approach for promoting a reduction in ARGs in animal wastes.
Collapse
Affiliation(s)
- Xiaoxia Hao
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengting Chen
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiping Sang
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Jiang
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.J.)
| | - Lin Bai
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Yang Y, Cui K, Huang Y, Yu K, Li C, Chen Y. Differential insights into the distribution characteristics of bacterial communities and their response to typical pollutants in the sediment and soil of large drinking water reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123947. [PMID: 39752965 DOI: 10.1016/j.jenvman.2024.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/21/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
In this study, a large drinking water reservoir (Fengshuba Reservoir) was chosen as a representative case, and the bacterial communities in the sediments and soils of Water-level fluctuating zone (WLFZ) as well as their responses to heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) were systematically investigated. The results indicated that the abundance and diversity of the bacterial community obviously changed with seasonal hydrological variations in sediments, and the absolute abundance and composition of bacteria community differed significantly between the sediment phase and soil phase. Bacteria with the ability to degrade pollutants rapidly proliferate and gain ascendancy in the soil phase, with Burkholderia-Caballeronia-Paraburkholderia (B-C-P) and Bradyrhizobium forming the core of the largest community. Furthermore, Co-occurrence network analysis indicated that a more stable bacterial community composition in the sediment phase. The community assembly pattern of bacteria in sediments exhibit a higher degree of stochasticity than that observed in soils of the WLFZ. Furthermore, the Spearman correlations found that the interaction between physicochemical factors, HMs, and PAHs with bacteria community was stronger in the soils of WLFZ. In total, the structural equation models indicated that PAHs were the main driver in altering the deterministic process of bacterial community in the sediment, while HMs and physicochemical factors had a greater effect on the bacteria community in the WLFZ. This study systematically revealed the differential characteristics of bacterial community and their response to typical pollutants between the sediments and soils of large drinking water reservoir.
Collapse
Affiliation(s)
- Yongjie Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuansheng Huang
- College of Ecology and Environment, Xinjiang University, Urumqi, 830017, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
6
|
He Y, Chen W, Xiang Y, Zhang Y, Xie L. Unveiling the effect of PFOA presence on the composting process: Roles of oxidation stress, carbon metabolism, and humification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135682. [PMID: 39236542 DOI: 10.1016/j.jhazmat.2024.135682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA), an emerging pollutant, has been frequently detected in organic solid waste. It becomes a major concern for compost application, but studies on its toxic effects during composting are rare. This study evaluated the impact of PFOA presence at the environmentally relevant level on the humification process and microbiology during composting. The results showed that the PFOA presence (15.5 μg/kg dry) caused 45.5 % and 40.5 % decreases in the total organic carbon and humic acid-like substances, respectively. PFOA negatively affected microbial activity during the thermophilic period, as evidenced by the increases in reactive oxygen species and lactate dehydrogenase concentration. It altered the microbial community with an enrichment of Bacteroidota, conducive to resisting press. Unexpectedly, the PFOA presence induced hormesis at the maturity period, consistent with stimulated carbon metabolism (i.e., glycolysis and oxidative phosphorylation). The modulated microbial metabolism stimulated the catabolic metabolism of small-molecule humus precursors and reduced intracellular quinone availability. Furthermore, the secretion of auxiliary activities for crude fiber degradation was suppressed, which decreased the generation of extracellular quinone, and thereby impeded the humification process. These findings deciphered the metabolic response of composting to PFOA presence and highlighted the potential carbon loss of PFOA-containing composting.
Collapse
Affiliation(s)
- Yingying He
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weizhen Chen
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yuankun Xiang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yue Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - Li Xie
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Zhang F, Cui K, Yuan X, Huang Y, Yu K, Li CX, Zhang X, Chen Y. Differentiated cognition of the effects of human activities on typical persistent organic pollutants and bacterioplankton community in drinking water source. ENVIRONMENTAL RESEARCH 2024; 252:118815. [PMID: 38555085 DOI: 10.1016/j.envres.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Accelerated urbanization in developing countries led to a typical gradient of human activities (low, moderate and high human activities), which affected the pollution characteristics and ecological functions of aquatic environment. However, the occurrence characteristics of typical persistent organic pollutants, including organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs), and bacterioplankton associated with the gradient of human activities in drinking water sources is still lacking. Our study focused on a representative case - the upper reaches of the Dongjiang River (Pearl River Basin, China), a drinking water source characterized by a gradient of human activities. A comprehensive analysis of PAHs, OCPs and bacterioplankton in the water phase was performed using gas chromatography-mass spectrometry (GC-MS) and the Illumina platform. Moderate human activity could increase the pollution of OCPs and PAHs due to local agricultural activities. The gradient of human activities obviously influenced the bacterioplankton community composition and interaction dynamics, and low human activity resulted in low bacterioplankton diversity. Co-occurrence network analysis indicated that moderate human activity could promote a more modular organization of the bacterioplankton community. Structural equation models showed that nutrients could exert a negative influence on the composition of bacterioplankton, and this phenomenon did not change with the gradient of human activities. OCPs played a negative role in shaping bacterioplankton composition under the low and high human activities, but had a positive effect under the moderate human activity. In contrast, PAHs showed a strong positive effect on bacterioplankton composition under low and high human activities and a weak negative effect under moderate human activity. Overall, these results shed light on the occurrence characteristics of OCPs, PAHs and their ecological effects on bacterioplankton in drinking water sources along the gradient of human activities.
Collapse
Affiliation(s)
- Feng Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinrui Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuansheng Huang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Xuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
8
|
Feng M, Liu Y, Yang L, Li Z. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - A review. BIORESOURCE TECHNOLOGY 2023; 390:129861. [PMID: 37863331 DOI: 10.1016/j.biortech.2023.129861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Collapse
Affiliation(s)
- Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lie Yang
- Wuhan University of Technology, School of Resources & Environmental Engineering, Wuhan 430070, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|