1
|
Sun S, Chou Q, Ding Q, Su Y, Su H, Jeppesen E, Wang L, Zhang W. Low-dose natural clay Kaolin promotes the growth of submerged macrophytes and alters the rhizosphere microorganism community: Implications for lake restoration. J Environ Sci (China) 2025; 154:521-535. [PMID: 40049894 DOI: 10.1016/j.jes.2024.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 05/13/2025]
Abstract
Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes. Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction. However, the effects of such sediment amendments on plant growth, especially those from rhizosphere microorganisms, is limited. We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology. We found that the addition of low doses (10 % and 20 % in mass ratio) of Kaolin significantly modified sediment conditions (oxidation reduction potential and pH), with implications also for the composition, diversity, and stability of rhizosphere microorganisms. LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance, such as Spirillaceae, Rhodocyclaceae, and Burkholderiales. Moreover, low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes, thereby facilitating plant growth. A structural equation model (SEM) indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor, while the indirect effect through modulation of rhizosphere microorganisms was important. Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.
Collapse
Affiliation(s)
- Shangsheng Sun
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Ding
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuqing Su
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Haojie Su
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Limnology Laboratory, Department of Biology, Middle East Technical University, Ankara 06800, Turkey; Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqing Wang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
| | - Wei Zhang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Yang R, Liu Z, Liu Y, Yang Z, Zhang Y, Lei J, Wang J, Zhang A, Li Z. High-throughput community and metagenomic elucidate systematic performance variation and functional transition mechanisms during morphological evolution of aerobic sludge. BIORESOURCE TECHNOLOGY 2025; 429:132550. [PMID: 40245994 DOI: 10.1016/j.biortech.2025.132550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
In this study, high-throughput sequencing and metagenomics were used to investigate the microbial succession and functional gene dynamics during aerobic sludge granulation from activated sludge (AS) to aerobic granular sludge (AGS) to algal-bacterial granular sludge (ABGS). It was found that the settleability and pollutant removal efficiency of the sludge system increased with the sludge morphology evolution. Extracellular polymeric substances (EPS) analysis showed a rise in protein from 2.1 to 17.4 mg/gSS during stage of AGS and polysaccharides from 3.3 to 5.9 mg/gSS during stage of ABGS. Microbial community analysis revealed that the sludge evolution reduced species richness but enriched functional bacteria for nitrogen/phosphorus removal, while increasing the complexity of community structure and close interactions between species. Key genes involved in the tricarboxylic acid cycle, nitrogen/phosphorus and EPS metabolism were also upregulated. This study revealed the continuity mechanism and stage dependence of the functional transition during sludge morphology evolution.
Collapse
Affiliation(s)
- Rushuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yuhang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Jie Lei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
3
|
Cai W, Zhao L, Zhang J, Li Z, Li X. Aerobic granules extraction inhibits overgrowth of filamentous bacteria during start-up of aerobic granular sludge. BIORESOURCE TECHNOLOGY 2025; 420:132113. [PMID: 39863182 DOI: 10.1016/j.biortech.2025.132113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/24/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
In aerobic granular sludge (AGS) system, N-acyl homoserine lactones (AHLs) can effectively regulate the community structure and control filamentous bulking. It would be economically feasible to make mature granules into AHLs-rich AGS extract (AE) to replace synthesized AHLs. In this study, two SBRs were run in a fully aerobic environment and a short cycle (4 h) to culture AGS: R1 with AE adding; R2 served as control. After 60 days, AGS of R1 were compact and exhibited excellent settleability (avergae size 0.77 mm, SVI 44.2 ml/g, SV30/SV5 0.97). In R2, granular filamentous overgrowth occurred. R1 granules contained higher extracellular polymeric substances and proteins/polysaccharides (PN/PS) (85.0 mg/g-VSS and 2.82) compared to R2 granules. Microbial analysis showed Thauera and Zoogloea increased by 8.7-fold and 3.6-fold in R1, while Thiothrix decreased to 0.39-fold compared to R2. AE addition can help suppress filamentous bacteria overgrowth, allowing retention of more functional microorganisms.
Collapse
Affiliation(s)
- Wei Cai
- School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Liya Zhao
- School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Jin Zhang
- School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.
| | - Zhaohua Li
- School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Xinghao Li
- School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Jin Y, Tian Y, Xiong W, Wang Y, Xiao G, Wang S, Su H. Effects of carrier surface hydrophilic modification on sludge granulation: From sludge characteristics, extracellular polymeric substances, and microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124476. [PMID: 38950844 DOI: 10.1016/j.envpol.2024.124476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Aerobic granular sludge (AGS) is a powerful biotechnological tool capable of treating multiple pollutants simultaneously. However, the granulation process and pollutant removal efficiency still need to be further improved. In this study, Fe2O3- and MnO2-surface-modified straw foam-based AGS (Fe2O3@SF-AGS and MnO2@SF-AGS), with an average particle size of 3 mm, were developed and evaluated. The results showed that surface modification reduced the hydrophobic groups of carriers, facilitating the attachment and proliferation of microorganisms. Notably, MnO2@SF-AGS showed excellent granulation performance, reaching a stable state about one week earlier than the unmodified SF-AGS. The polymeric substance content of MnO2@SF-AGS was found to be 1.28 times higher than that of the control group. Furthermore, the removal rates for NH4+-N, TN, and TP were enhanced by 27.28%, 12.8%, and 32.14%, respectively. The bacterial communities exhibited significant variations in response to different surface modifications of AGS, with genera such as Saprospiraceae, Terrimonas, and Ferruginibacter playing a crucial role in the formation of AGS and the removal of pollutants specifically in MnO2@SF-AGS. The charge transfer of metal ions of MnO2@SF promotes the granulation process and pollutant removal. These results highlight that MnO2@SF-AGS is an effective strategy for improving nitrogen and phosphorus removal efficiency from wastewater.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Tian
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yaoqiang Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
5
|
Wu T, Ding J, Wang S, Pang JW, Sun HJ, Zhong L, Ren NQ, Yang SS. Insight into effect of polyethylene microplastic on nitrogen removal in moving bed biofilm reactor: Focusing on microbial community and species interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173033. [PMID: 38723954 DOI: 10.1016/j.scitotenv.2024.173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Microplastics (MPs) pollution has emerged as a global concern, and wastewater treatment plants (WWTPs) are one of the potential sources of MPs in the environment. However, the effect of polyethylene MPs (PE) on nitrogen (N) removal in moving bed biofilm reactor (MBBR) remains unclear. We hypothesized that PE would affect N removal in MBBR by influencing its microbial community. In this study, we investigated the impacts of different PE concentrations (100, 500, and 1000 μg/L) on N removal, enzyme activities, and microbial community in MBBR. Folin-phenol and anthrone colorimetric methods, oxidative stress and enzyme activity tests, and high-throughput sequencing combined with bioinformation analysis were used to decipher the potential mechanisms. The results demonstrated that 1000 μg/L PE had the greatest effect on NH4+-N and TN removal, with a decrease of 33.5 % and 35.2 %, and nitrifying and denitrifying enzyme activities were restrained by 29.5-39.6 % and 24.6-47.4 %. Polysaccharide and protein contents were enhanced by PE, except for 1000 μg/L PE, which decreased protein content by 65.4 mg/g VSS. The positive links of species interactions under 1000 μg/L PE exposure was 52.07 %, higher than under 500 μg/L (51.05 %) and 100 μg/L PE (50.35 %). Relative abundance of some metabolism pathways like carbohydrate metabolism and energy metabolism were restrained by 0.07-0.11 % and 0.27-0.4 %. Moreover, the total abundance of nitrification and denitrification genes both decreased under PE exposure. Overall, PE reduced N removal by affecting microbial community structure and species interactions, inhibiting some key metabolic pathways, and suppressing key enzyme activity and functional gene abundance. This paper provides new insights into assessing the risk of MPs to WWTPs, contributing to ensuring the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Yang L, Liu Y, Li C, Li P, Zhang A, Liu Z, Wang Z, Wei C, Yang Z, Li Z. Optimizing carbon sources regulation in the biochemical treatment systems for coal chemical wastewater: Aromatic compounds biodegradation and microbial response strategies. WATER RESEARCH 2024; 256:121627. [PMID: 38642539 DOI: 10.1016/j.watres.2024.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The complex composition of coal chemical wastewater (CCW), marked by numerous highly toxic aromatic compounds, induces the destabilization of the biochemical treatment system, leading to suboptimal treatment efficacy. In this study, a biochemical treatment system was established to efficiently degrade aromatic compounds by quantitatively regulating the dosage of co-metabolized substrates (specifically, the chemical oxygen demand (COD) Glucose: COD Sodium acetate = 3:1, 1:3, and 1:1). The findings demonstrated that the system achieved optimal performance under the condition that the ratio of COD Glucose to COD Sodium acetate was 3:1. When the co-metabolized substrate was added to the system at an optimal ratio, examination of pollutant removal and cumulative effects revealed that the removal efficiencies for COD and total organic carbon (TOC) reached 94.61 % and 86.40 %, respectively. The removal rates of benzene series, nitrogen heterocyclic compounds, polycyclic aromatic hydrocarbons, and phenols were 100 %, 100 %, 63.58 %, and 94.12 %, respectively. Research on the physiological response of microbial cells showed that, under optimal ratio regulation, co-metabolic substrates led to a substantial rise in microbial extracellular polymeric substances (EPS) secretion, particularly extracellular proteins. When the system reached the end of its operation, the contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) for proteins in the optimal group were 7.12 mg/g-SS and 152.28 mg/g-SS, respectively. Meanwhile, the ratio of α-Helix / (β-Sheet + Random coil) and the proportion of intermolecular interaction forces were also increased in the optimal group. At system completion, the ratio of α-Helix / (β-Sheet + Random coil) reached 0.717 (LB-EPS) and 0.618 (TB-EPS), respectively. Additionally, the proportion of intermolecular interaction forces reached 74.83 % (LB-EPS) and 55.03 % (TB-EPS). An in-depth analysis of the metabolic regulation of microorganisms indicated that the introduction of optimal ratios of co-metabolic substrates contributed to a noteworthy upregulation in the expression of Catechol 2,3-dioxygenase (C23O) and Dehydrogenase (DHA). The expression levels of C23O and DHA were measured at 0.029 U/mg Pro·g MLSS and 75.25 mg TF·(g MLSS·h)-1 (peak value), respectively. Correspondingly, enrichment of aromatic compound-degrading bacteria, including Thauera, Saccharimonadales, and Candidatus_Competibacter, occurred, along with the upregulation of associated functional genes such as Catechol 1,2-dioxygenase, Catechol 2,3-dioxygenase, Protocatechuate 3,4-dioxygenase, and Protocatechuate 4,5-dioxygenase. Considering the intricate system of multiple coexisting aromatic compounds in real CCW, this study not only obtained an optimal ratio for carbon source addition but also enhanced the efficient utilization of carbon sources and improved the capability of the system to effectively degrade aromatic compounds. Additionally, this paper established a theoretical foundation for metabolic regulation and harmless treatment within the biochemical treatment of intricate systems, exemplified by real CCW.
Collapse
Affiliation(s)
- Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chen Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Pengfei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Chen X, Gong Y, Li Z, Guo Y, Zhang H, Hu B, Yang W, Cao Y, Mu R. Key function of Kouleothrix in stable formation of filamentous aerobic granular sludge at low superficial gas velocity with polymeric substrates. BIORESOURCE TECHNOLOGY 2024; 397:130466. [PMID: 38373501 DOI: 10.1016/j.biortech.2024.130466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Forming and maintaining stable aerobic granular sludge (AGS) at a low superficial gas velocity (SGV) is challenging, particularly with polymeric substrates. This study cultivated filamentous aerobic granular sludge (FAGS) with filamentous Kouleothrix (Type 1851) at low SGV (0.15 cm/s) utilizing mixed acetate-soluble starch. Within approximately 260 days, notable increases in the relative abundance of Kouleothrix (from 4 % to 10 %) and Ca. Competibacter (from 1 % to 26 %) were observed through 16S rRNA gene analysis. Metagenomic analysis revealed increased expression of functional genes involved in volatile fatty acid (VFA) production (e.g., ackA and pta) and polyhydroxyalkanoate synthesis (e.g., phbB and phbC). Kouleothrix acted as a skeleton for bacterial attachment and was the key fermenting bacteria promoting granulation and maintaining granule stability. This study provides insight into the formation of FAGS with low-energy and non-VFA substrates.
Collapse
Affiliation(s)
- Xi Chen
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Yanzhe Gong
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yingming Guo
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hongjiang Zhang
- North China Electric Power Research Institute Co., Ltd, Beijing 100045, China
| | - Bin Hu
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Wenhao Yang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yinhuan Cao
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Ruihua Mu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|