1
|
Wang YN, Li Y, Yang W, Wang W, Wang H, Sun Y, Xie J, Zheng Y, Cui X, Li W, Bian R. Effects of different types of municipal solid waste incineration slag on landfill stabilization and related microbiological mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114833. [PMID: 40288266 DOI: 10.1016/j.wasman.2025.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Municipal solid waste incineration slag has the potential to accelerate the stabilization of landfills, but the effects of key slag components (i.e., alkaline substances and ferromagnetic substances) on the landfilling process have not been systematically studied. Therefore, landfill bioreactors containing different types of incineration slag, including a control group (CK), raw slag (RS), iron-rich slag (FM), and alkali-rich slag (AL), mixed with refuse at 5% and 10% ratios, were established. The results showed that the addition of RS was superior than FM and AL in accelerating refuse degradation, and the degree of stabilization was significantly better at a high slag addition ratio (10%) than at a low ratio (5%). Addition of 10% RS was most effective in DOM removal in the leachate, which was mainly because the raw slag had a high content of alkaline substances (46.78%) and a relatively low content of ferromagnetic substances (7.01%). The addition of RS and AL increased the bacterial population in the early and middle stages of landfilling, but the addition of 10% FM resulted in a decrease in bacterial population. The dominant genus was Lactobacillus in the early stage of landfilling, while Clostridium and Petrimonas were the dominant genera in the late and final stages of landfilling in the slag addition systems, and alkaline substances played a vital role in the succession of bacterial community. The addition of slag promoted the abundance of amino acid metabolism and carbohydrate metabolism pathways involved in refuse degradation.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Yahui Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Wenyu Yang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Wenyu Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China.
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Jingliang Xie
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Yifan Zheng
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Xiongbo Cui
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266520, China
| |
Collapse
|
2
|
Kou B, Huo L, Cao M, Ke Y, Wang L, Tan W, Yuan Y, Zhu X. Insights into the critical roles of water-soluble organic matter and humic acid within kitchen compost in influencing cadmium bioavailability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122769. [PMID: 39369524 DOI: 10.1016/j.jenvman.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Compost has demonstrated potential as a cadmium (Cd) remediation agent, while it still remains unclear about the core components in driving the bioactive transformation of Cd. To address this issue, this study isolated three components-kitchen compost powder (KC), humic acid (HA), and water-soluble organic matter (DOM)-from kitchen compost to regulate soil properties, bacterial community structures and functions, and Cd migration risks. The results revealed that the addition of 20% KC and HA reduced the bioavailability factor of Cd by 47.20% and 16.74%, respectively, with HA contributing 35.47% of the total reduction achieved with KC. Conversely, the application of DOM increased the Cd risk through a reduction in soil pH and an increase in the abundance of Cd-activating bacteria, which adversely affected the stability of Cd complexes. However, the porous structure and organic matter in KC and HA provided adsorption sites for Cd passivation and promoted the growth of Cd-fixing bacteria. This study effectively identifies both the positive and negative effects of key compost components on Cd migration and provides scientific guidance for applying kitchen compost in soil management.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lei Wang
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
3
|
Jiang K, Jiang D, Li S, Guo Z, Zhao L, Wang J, Hao X, Bai L, Qiu S, Kang B. Impacts of mixed ferrous sulfate-biochar additives on humification and bacterial community during electric field-assisted aerobic composting. BIORESOURCE TECHNOLOGY 2024; 404:130901. [PMID: 38801959 DOI: 10.1016/j.biortech.2024.130901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study assessed the impact of nine mixed ferrous sulfates and biochars on electric field-assisted aerobic composting (EAC), focusing on the spectroscopy of dissolved organic matter (DOM) and microbial communities. Adding 1.05% ferrous sulfate and 5.25% biochar to EAC increased the specific ultraviolet absorbances at 254 and 280 nm by 142.3% and 133.9% on day 35, respectively. This ratio accelerated the early response of carboxyl groups (-COOH) and lignin (CꘌC), enhancing the relative abundance of Thermobifida (4.0%) and Thermopolyspora (4.3%). The condition contributed to humus precursor formation on day 5, increasing the maximum fluorescence intensity of the humus-like component by 74.2% compared to the control on day 35. This study is the first to develop a combined and efficient organic and inorganic additive by multiple-variable experimentation for DOM humification. Consequently, it optimizes EAC for solid waste recycling.
Collapse
Affiliation(s)
- Kunhong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China.
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Zhenzhen Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Liangbin Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Jie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Xiaoxia Hao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Lin Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Shixiu Qiu
- Institute of Animal Husbandry, Chengdu Academy of Agriculture and Forestry Sciences, P.R. China
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China.
| |
Collapse
|
4
|
Yang B, Zhang Y, Chen Z, Yang P, Peng S, Yu J, Wang D, Zhang W. Molecular insights into effects of chemical conditioning on dissolved organic phosphorus transformation and bioavailability during sludge composting. BIORESOURCE TECHNOLOGY 2024; 402:130809. [PMID: 38723729 DOI: 10.1016/j.biortech.2024.130809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Phosphorus is enriched in waste activated sludge (WAS) during wastewater treatment, and organic phosphorus (OP) is a potential slow-release P fertilizer. The chemical coagulants used in sludge dewatering leave numerous residues in WAS that affect sludge composting. In this study, the effects of polyaluminum chloride (PAC) and polyferric sulfate (PFS) on the bioconversion of dissolved OP (DOP) during sludge composting were investigated. The results revealed that PFS conditioning promoted the transformation and bioavailability of DOP, whereas PAC conditioning inhibited. Results indicated that PFS conditioning enhanced the transformation of OP molecules in the thermophilic phase. Through oxidation and dehydrogenation reactions, 1-hydroxy-pentane-3,4-diol-5-phosphate and D-ribofuranose 5-phosphate with high bioactivity were generated in the PFS-conditioned compost. Enzymatic hydrolysis experiments further verified that PFS conditioning enhanced the DOP bioavailability in the compost, whereas PAC conditioning inhibited it. The study has provided molecular insights into the effects of chemical conditioning on DOP conversion during sludge composting.
Collapse
Affiliation(s)
- Boyuan Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zexu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China.
| | - Siwei Peng
- Datang Environment Industry Group Co., Ltd, Beijing 100097, China
| | - Junxia Yu
- Wuhan Municipal Engineering Design & Research Institute Co., Ltd, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
Zhang Y, Yang B, Peng S, Zhang Z, Cai S, Yu J, Wang D, Zhang W. Mechanistic insights into chemical conditioning on transformation of dissolved organic matter and plant biostimulants production during sludge aerobic composting. WATER RESEARCH 2024; 255:121446. [PMID: 38489963 DOI: 10.1016/j.watres.2024.121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Inorganic coagulants (aluminum and iron salt) are widely used to improve sludge dewaterability, resulting in numerous residues in dewatered sludge. Composting refers to the controlled microbial process that converts organic wastes into fertilizer, and coagulant residues in dewatered sludge can affect subsequent compost efficiency and resource recycling, which remains unclear. This work investigated the effects of two typical metal salt coagulants (poly aluminum chloride [PAC] and poly ferric sulfate [PFS]) conditioning on sludge compost. Our results revealed that PAC conditioning inhibited composting with decreased peak temperature, microbial richness, enzymatic reaction intensities, and compost quality, associated with decreased pH and microbial toxicity of aluminum. Nevertheless, PFS conditioning selectively enriched Pseudoxanthomonas sp. and resulted in more fertile compost with increased peak temperature, enzymatic reaction intensities, and humification degree. Spectroscopy and mass difference analyses indicated that PFS conditioning enhanced reaction intensities of labile biopolymers at the thermophilic stage, mainly comprising hydrolyzation (H2O), dehydrogenation (-H2, -H4), oxidation (+O1H2), and other reactions (i.e., +CH2, C2H4O1, C2H6O1). Unlike the common composting process primarily conducts humification at the cooling stage, PFS conditioning changed the main occurrence stage to the thermophilic stage. Non-targeted metabolomics revealed that indole (a humification intermediate) is responsible for the increased humification degree and indoleacetic acid content in the PFS-conditioned compost, which then promoted compost quality. Plant growth experiments further confirmed that the dissolved organic matter (DOM) in PFS-conditioned compost produced the maximum plant biomass. This study provided molecular-level evidence that PFS conditioning can promote humification and compost fertility during sludge composting, enabling chemical conditioning optimization for sustainable management of sludge.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Boyuan Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Siwei Peng
- Datang Environmental Industry Group Co., Ltd, Haidian District, Beijing 100097, China
| | - Ziwei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Liu Y, Xu J, Li X, Zhou W, Cui X, Tian P, Yu H, Wang X. Synergistic effects of Fe-based nanomaterial catalyst on humic substances formation and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2024; 395:130371. [PMID: 38278455 DOI: 10.1016/j.biortech.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
In this study, a novel Fe-based nanomaterial catalyst (Fe0/FeS) was synthesized via a self-heating process and employed to explore its impact on the formation of humic substances and the mitigation of microplastics. The results reveal that Fe0/FeS exhibited a significant increase in humic acid content (71.01 mg kg-1). Similarly, the formation of humic substances resulted in a higher humification index (4.91). Moreover, the addition of Fe0/FeS accelerated the degradation of microplastics (MPs), resulting in a lower concentration of MPs (9487 particles/kg) compared to the control experiments (22792 particles/kg). Fe0/FeS significantly increased the abundance of medium-sized MPs (50-200 μm) and reduced the abundance of small-sized (10-50 μm) and large-sized MPs (>1000 μm). These results can be attributed to the Fe0/FeS regulating the ▪OH production and specific microorganisms to promote humic substance formation and the degradation of MPs. This study proposes a feasible strategy to improve composting characteristics and reduce contaminants.
Collapse
Affiliation(s)
- Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jiayi Xu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiaolu Li
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Wuyi Zhou
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Pengjiao Tian
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Haizhong Yu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China.
| |
Collapse
|
7
|
Pan C, Yang H, Gao W, Wei Z, Song C, Mi J. Optimization of organic solid waste composting process through iron-related additives: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119952. [PMID: 38171126 DOI: 10.1016/j.jenvman.2023.119952] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Composting is an environmentally friendly method that facilitates the biodegradation of organic solid waste, ultimately transforming it into stable end-products suitable for various applications. The element iron (Fe) exhibits flexibility in form and valence. The typical Fe-related additives include zero-valent-iron, iron oxides, ferric and ferrous ion salts, which can be targeted to drive composting process through different mechanisms and are of keen interest to academics. Therefore, this review integrated relevant literature from recent years to provide more comprehensive overview about the influence and mechanisms of various Fe-related additives on composting process, including organic components conversion, humus formation and sequestration, changes in biological factors, stability and safety of composting end-products. Meanwhile, it was recommended that further research be conducted on the deep action mechanisms, biochemical pathways, budget balance analysis, products stability and application during organic solid waste composting with Fe-related additives. This review provided guidance for the subsequent targeted application of Fe-related additives in compost, thereby facilitating cost reduction and promoting circular economy objectives.
Collapse
Affiliation(s)
- Chaonan Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Jiaying Mi
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|