1
|
Oliveira de Lima JG, Alves Oshiro A, Falcão Haddad F, de Souza Alves Guimarães A, Scarim CB, de Baptista Neto Á, Santos-Ebinuma VC. Biotechnological advances in torularhodin production: artificial neural networks as a tool for improving and biocompatibility studies. Prep Biochem Biotechnol 2025:1-11. [PMID: 40387852 DOI: 10.1080/10826068.2025.2502767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Torularhodin is a bioactive carotenoid synthesized by certain microorganisms through complex cellular processes regulated by factors like nutrient availability. However, enhancing torularhodin production is a challenging task that requires costly and time-intensive experimental approaches. To address these limitations, computational modeling and simulation have become valuable tools for predicting and optimizing carotenoid biosynthesis. Among these techniques, polynomial models derived from multiple regressions provide useful insights but often struggle with the nonlinear nature of biological systems. In contrast, Artificial Neural Networks (ANNs) offer a more flexible alternative, improving predictive accuracy where traditional models fall short. This study aimed to optimize torularhodin production in Rhodotorula glutinis using ANN-based simulations and Response Surface Methodology (RSM) while also assessing the biocompatibility of the crude extract containing carotenoids. An experimental design with two independent variables (Tween 80 and malt extract) was implemented to evaluate their impact on torularhodin yield. ANN modeling successfully increased torularhodin production by approximately 10.69%, demonstrating its efficiency in bioprocess optimization. Additionally, microbial biomass extracts containing carotenoids exhibited biocompatibility in the Chorioallantoic Membrane assay, suggesting potential applications in pharmaceutical and food industries. These findings reinforce the importance of ANN modeling in optimizing microbial carotenoid production for sustainable biotechnology.
Collapse
Affiliation(s)
- Júlio Gabriel Oliveira de Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ariane Alves Oshiro
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Felipe Falcão Haddad
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - André de Souza Alves Guimarães
- Academic Unit of Biotechnology and Bioprocess Engineering, Center for Sustainable Development of the Semi-Arid, Federal University of Campina Grande (UFCG), Sumé, Brazil
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Álvaro de Baptista Neto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Valéria C Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
2
|
Zhang J, Liu M, Han T, Luo L, Zhang Y, Yuan G, Fang X, Han F, Chen X, Wang Y. Advance toward function, production, and delivery of natural astaxanthin: A promising candidate for food ingredients with future perspectives. Food Chem 2025; 463:141428. [PMID: 39353306 DOI: 10.1016/j.foodchem.2024.141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Astaxanthin (AST) exhibits potent antioxidant activity, effectively preventing neurological diseases and cancer. Presently, producing AST from microorganisms like Haematococcus pluvialis and Phaffia rhodozyma is a growing trend. This review summarizes the main research topics on AST in the past five years. AST plays a crucial role in cancer and diabetes prevention, as well as neuroprotection, however, the presence of both free and esterified forms of AST results in differences in their functionality and applications. The primary challenges in industrial production of natural AST lie in breeding high-yield natural producers and developing methods to enhance yield. The use of high-quality food matrix materials and preparation methods is crucial for the delivery system of loaded AST. This study elucidates the bottlenecks and future development directions encountered by natural AST during industrialization, aiming to promote the healthy and rapid growth of the food industry.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Meizhen Liu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tiantian Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lu Luo
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
| | - Ying Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xubo Fang
- Zhejiang International Maritime College, Zhoushan, China
| | - Fangrui Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K, de Parrodi CA, López-Mena ER, Mejía-Méndez JL, Lozada-Ramírez JD. Recent Advances in the Therapeutic Potential of Carotenoids in Preventing and Managing Metabolic Disorders. PLANTS (BASEL, SWITZERLAND) 2024; 13:1584. [PMID: 38931016 PMCID: PMC11207240 DOI: 10.3390/plants13121584] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Carotenoids constitute compounds of significant biological interest due to their multiple biological activities, such as antimicrobial, anticancer, antiadipogenic, antidiabetic, and antioxidant properties. Metabolic syndrome (MetS) comprehends a series of metabolic abnormalities (e.g., hypertension, obesity, and atherogenic dyslipidemia) that can affect children, adolescents, and the elderly. The treatment of MetS involves numerous medications, which, despite their efficacy, pose challenges due to prolonged use, high costs, and various side effects. Carotenoids and their derivatives have been proposed as alternative treatments to MetS because they reduce serum triglyceride concentrations, promote insulin response, inhibit adipogenesis, and downregulate angiotensin-converting enzyme activity. However, carotenoids are notably sensitive to pH, light exposure, and temperature. This review addresses the activity of carotenoids such as lycopene, lutein, fucoxanthin, astaxanthin, crocin, and β-carotene towards MetS. It includes a discussion of sources, extraction methods, and characterization techniques for analyzing carotenoids. Encapsulation approaches are critically reviewed as alternatives to prevent degradation and improve the biological performance of carotenoids. A brief overview of the physiopathology and epidemiology of the diseases, including MetS, is also provided.
Collapse
Affiliation(s)
- Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico;
| | - Juan Alonso Martínez-Thomas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Karen Schürenkämper-Carrillo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Zapopan 45121, Colonia Nuevo México, Mexico;
| | - Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| |
Collapse
|
4
|
Mussagy CU, Hucke HU, Ramos NF, Ribeiro HF, Alves MB, Mustafa A, Pereira JFB, Farias FO. Tailor-made solvents for microbial carotenoids recovery. Appl Microbiol Biotechnol 2024; 108:234. [PMID: 38400930 PMCID: PMC10894098 DOI: 10.1007/s00253-024-13049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
In recent years, microbial carotenoids have emerged as a promising alternative for the pharmaceutical and food industries, particularly in promoting human health due to their potent antioxidant and antimicrobial properties. Microbial carotenoids, particularly those produced by yeast, bacteria, and microalgae, are synthesized intracellularly, requiring the use of solvents for their effective extraction and recovery. The conventional use of toxic volatile organic solvents (VOCs) like hexane, petroleum ether, and dimethyl sulfoxide in the extraction of microbial carotenoids has been common. However, ongoing research is introducing innovative, non-toxic, environmentally friendly tailor-made solvents, such as ionic liquids (IL) and deep eutectic solvents (DES), indicating a new era of cleaner and biocompatible technologies. This review aims to highlight recent advancements in utilizing IL and DES for obtaining carotenoids from microorganisms. Additionally, we explore the utilization of in silico tools designed to determine the solubilities of microbial carotenoids in tailor-made DES and ILs. This presents a promising alternative for the scientific community, potentially reducing the need for extensive experimental screening of solvents for the recovery of microbial carotenoids in the separation processing. According to our expert perspective, both IL and DES exhibit a plethora of exceptional attributes for the recovery of microbial carotenoids. Nevertheless, the current employment of these solvents for recovery of carotenoids is restricted to scientific exploration, as their feasibility for practical application in industrial settings has yet to be conclusively demonstrated. KEY POINTS: • ILs and DES share many tailoring properties for the recovery of microbial carotenoids • The use of ILs and DES for microbial carotenoid extraction remains driven by scientific curiosity. • The economic feasibility of ILs and DES is yet to be demonstrated in industrial applications.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile.
| | - Henua U Hucke
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile
| | - Nataly F Ramos
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile
| | - Helena F Ribeiro
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Mariana B Alves
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Jorge F B Pereira
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|