1
|
Xiong X, Jiang J, Yu H, Wei Y, Chen J, Liu Z, Ji H, Chen H, Sanjaya EH, Wu L. Achieving rapid granulation and long-term stability of partial nitritation /anammox process by uniquely configured airlift inner-circulation partition bioreactor. BIORESOURCE TECHNOLOGY 2025; 428:132474. [PMID: 40174654 DOI: 10.1016/j.biortech.2025.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
To maintain the long-term stability and efficiency of the partial nitritation/anammox (PN/A) process, a novel partition bioreactor featuring a uniquely sieve plate was developed to improve the airlift inner-circulation. The bioreactor achieved startup within 38 days, effectively handling influent containing 150 mg-N/L ammonium nitrogen and 50 mg-N/L nitrite. By reducing hydraulic retention time, nitrogen loading rate was escalated to 0.60 kg-N/m3/d, maintaining over 80 % nitrogen removal. Additionally, fluctuations in nitrite-oxidizing bacteria (NOB) were automatically controlled through dissolved oxygen (DO) partitioning. Moreover, the average granules size expanded from 85 μm to 338 μm by day 127, coinciding with robust anammox activity reaching 1.02 ± 0.05 g-N/g-VSS/d by day 179. The results demonstrate that the bioreactor effectively enhanced the enrichment of functional bacteria, enabled spatial distribution of DO, promoted NOB self-regulation and sludge granulation. This approach provides an efficient solution for rapid granulation while maintaining stable performance in the PN/A process.
Collapse
Affiliation(s)
- Xiaoting Xiong
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China
| | - Jingyi Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hanbo Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yanxiao Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhihua Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Haoshuai Ji
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China.
| | | | - Lvzhou Wu
- Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China
| |
Collapse
|
2
|
Yang J, Zhang L, Sun H, Sun Z, Li J. Synergistic membrane-biofilm-sludge system coupling partial nitritation and anammox: achieving efficient nitrogen removal in high-ammonia/low-carbon condensate wastewater. BIORESOURCE TECHNOLOGY 2025; 434:132819. [PMID: 40527425 DOI: 10.1016/j.biortech.2025.132819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/28/2025] [Accepted: 06/14/2025] [Indexed: 06/19/2025]
Abstract
Condensed wastewater treatment faces challenges from elevated ammonia-nitrogen levels (1972-2365 mg/L), a low carbon-to-nitrogen ratio (0.02-0.03), and inhibitory sulfides. To overcome these, a novel hybrid system integrating an effluent membrane-enhanced fixed-biofilm activated sludge (IFAS) reactor with partial nitritation/anammox (PN/A) was developed. The system demonstrated exceptional nitrogen removal performance at a maximum nitrogen removal rate of 1.5 kg N/(m3·d) with a nitrogen removal efficiency of 82.3 %. Denitrification enhanced advanced nitrogen removal with a low nitrate production ratio (4.5 %), minimizing secondary pollution risks. Microbial analysis revealed substantial enrichment of anaerobic ammonium-oxidizing bacteria, with Candidatus Brocadia dominating the biofilm community (24.3 %). Membrane-mediated biomass retention selectively enriched Nitrosomonas (10.1 %) in suspended sludge, while biofilm detachment promoted granular anammox biomass development and further elevated Candidatus Brocadia abundance by 4.8 %. This synergistic configuration enhances process stability for treating high-ammonia/low-carbon wastewater and promotes the practical implementation of IFAS-PN/A systems.
Collapse
Affiliation(s)
- Jiazhi Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Haofei Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Zhaoqiang Sun
- Beijing Taike Zhikang Environmental Protection Technology Co., Ltd. Beijing 102218, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Xing Y, Li W, Liao X, Wang L, Wang B, Peng Y. Enhanced nitrogen removal from low C/N municipal wastewater in a step-feed integrated fixed-film activated sludge system: Synergizing anammox and partial denitrification with sludge fermentation liquid supplementation. WATER RESEARCH 2025; 275:123211. [PMID: 39919405 DOI: 10.1016/j.watres.2025.123211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
The scarcity of rapidly biodegradable organics, which serve as essential electron donors for the partial denitrification (PD) process, significantly hinders the combined application of PD coupled with anammox (PDA) in municipal wastewater treatment plants. This study innovatively applied, for the first time, a step-feed strategy combined with the use of sludge fermentation liquid (SFL) as an external carbon source in an integrated fixed-film activated sludge (IFAS) system, successfully driving full nitrification and PDA to achieve advanced nitrogen removal from low C/N real municipal wastewater. Moreover, the associated nitrogen removal mechanism of this system was systematically analyzed. By employing second-step SFL feed as a supplementary carbon source, the nitrogen removal efficiency reached 92.26 ± 2.77 % and the effluent total inorganic nitrogen was 6.43 ± 2.23 mg/L, with anammox contributing approximately 70 % to total inorganic nitrogen removal. 16S rRNA gene sequencing and fluorescence in situ hybridization analysis unveiled the extensive cooperation and synergistic interactions among anammox bacteria, denitrifying bacteria, and nitrifying bacteria, with Candidatus Brocadia being highly enriched in biofilms with a relative abundance of 2.21 %. Metagenomic sequencing confirmed that the relative abundance of the narGHI gene was greater than that of the nirS gene, providing stable nitrite accumulation conditions for the anammox process. Overall, this study proposes an innovative synergistic treatment scheme that utilizes a step-feed full nitrification-PDA process driven by SFL to achieve advanced nitrogen removal in municipal wastewater treatment plants. This approach is characterized by low energy consumption, low operational costs and a high nitrogen removal efficiency.
Collapse
Affiliation(s)
- Yiyuan Xing
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wenjie Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaojian Liao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
4
|
Wang W, Yang K, Li L, Han Y. Aerosol particles released from grit chambers of nine urban wastewater treatment plants in typical regions: Fugitive characteristics, quantitative drivers, and generation process. WATER RESEARCH 2025; 274:123162. [PMID: 39854778 DOI: 10.1016/j.watres.2025.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/23/2024] [Accepted: 01/17/2025] [Indexed: 01/26/2025]
Abstract
The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China. There were 160.41-432.13 μg/m3 of total particles and 455 ± 34-2181 ± 221 CFU/m3 of bacteria in aerosol particles. The chemicals in aerosol particles contained 7.35-53.70 μg/m3 of total organic carbon and 36.10-227.94 μg/m3 of water-soluble inorganic ions. The aerated grit chambers produced significantly more aerosol particles than the vortex-type grit chambers. Indoor treatment facilities were more prone to aerosol particle accumulation than outdoor facilities. The microorganisms in wastewater were the main contributing source of dominant microorganisms in aerosol particles, with a degree of explanation of 73.33 % ± 35.56 %. Mantel analysis and the partial least squares path modeling determined that the components and biodiversity of wastewater were direct determinants of aerosol emission levels and biodiversity, respectively. Geographic regions contributed to the differences in aerosol particles, primarily indirectly by affecting the components of wastewater. The bubble bursting trajectory simulation experiment simulated the bioaerosol generation process in aerated grit chambers and predicted droplet behaviours. A higher number of small film droplets corresponded to a higher concentration of bioaerosols. Arcobacter, Aeromonas, Acinetobacter, and Flavobacterium were the major pathogenic genera in aerosol particles produced by grit chambers. The annual probability of infection and the disease burden of these pathogenic bacteria cannot be ignored. This study provides a scientific basis for further understanding of aerosol particle generation and potential hazards in grit chambers of wastewater treatment plants.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaixiong Yang
- China Construction Advanced Technology Research Institute, China Construction Third Engineering Bureau Group Co., Ltd., Wuhan 430075, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Li Q, Zhao W, Cui S, Gadow SI, Qin Y, Li YY. Synergetic association of hydroxyapatite-mediated biofilm and suspended sludge enhances resilience of partial nitrification/anammox (PN/A) system treating high-strength anaerobic membrane bioreactor (AnMBR) permeate. BIORESOURCE TECHNOLOGY 2024; 412:131391. [PMID: 39216701 DOI: 10.1016/j.biortech.2024.131391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
A single-stage partial nitrification/anammox (PN/A) system with biocarriers was used to treat the permeate from an anaerobic membrane reactor (AnMBR) processing organic fraction of municipal solid wastes. The suitable Ca/P ratio and high pH in the AnMBR permeate facilitated hydroxyapatite (HAP) formation, enhancing the biofilm attachment and the settleability of suspended sludge. This maintained sufficient biomass and a stable microbial structure after flushing to mitigate the free nitrous acid inhibition. Robust anammox bacteria in the biofilm and ammonia-oxidizing bacteria in the suspended sludge ensured that the PN/A system achieved an 87.3 % nitrogen removal efficiency at an influent NH4+-N concentration of 1802 mg/L. This study demonstrates that AnMBR permeate with high Ca, P and NH4+-N content is suitable for single-stage PN/A system with biocarriers due to the high resilience enhanced by HAP, offering a reference for the treatment of high-strength AnMBR permeate.
Collapse
Affiliation(s)
- Qian Li
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wenzhao Zhao
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shen Cui
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Samir I Gadow
- Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
6
|
Themeli E, Koumaki E, Kaperonis P, Michalaki S, Mamais D, Noutsopoulos C, Malamis S. Development of an integrated fixed-film activated sludge (IFAS) reactor treating landfill leachate for the biological nitrogen removal through nitritation-denitritation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121709. [PMID: 38968889 DOI: 10.1016/j.jenvman.2024.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The current work investigated the performance of an Integrated Fixed-Film Activated Sludge Sequencing Batch Reactor (IFAS-SBR) for Biological Nitrogen Removal (BNR) from mature landfill leachate through the nitritation-denitritation process. During the experimental period two IFAS-SBR configurations were examined using two different biocarrier types with the same filling ratio (50%). The dissolved oxygen (DO) concentration ranged between 2 and 3 mg/L and 4-6 mg/L in the first (baseline-IFAS) and the second (S8-IFAS) setup, respectively. Baseline-IFAS operated for 542 days and demonstrated a high and stable BNR performance maintaining a removal efficiency above 90% under a Nitrogen Loading Rate (NLR) up to 0.45 kg N/m3-d, while S8-IFAS, which operated for 230 days, was characterized by a limited and unstable BNR performance being unable to operate sufficiently under an NLR higher than 0.20 kg N/m3-d. It also experienced a severe inhibition period, when the BNR process was fully deteriorated. Moreover, S8-IFAS suffered from extensive biocarrier stagnant zones and a particularly poor sludge settleability. The attached biomass cultivated in both IFAS configurations had a negligible content of nitrifying bacteria, probably attributed to the insufficient DO diffusion through the biofilm, caused by the low DO concentration in the liquid in the baseline case and the extensive stagnant zones in the S8-IFAS case. As a result of the high biocarrier filling ratio, the S8-IFAS was unstable and low. This was probably attributed to the mass transfer limitations caused by the biocarrier stagnant zones, which hinder substrate and oxygen diffusion, thus reducing the biomass activity and increasing its vulnerability to inhibitory and toxic factors. Hence, the biocarrier filling fraction is a crucial parameter for the efficient operation of the IFAS-SBR and should be carefully selected taking into consideration both the media type and the overall reactor configuration.
Collapse
Affiliation(s)
- Evangelia Themeli
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Elena Koumaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Panagiotis Kaperonis
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Spiridoula Michalaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Simos Malamis
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| |
Collapse
|
7
|
Zhou W, Hao J, Guo Y, Zhao C, Zhang M, Zhang S, Han F. Revealing bioresponses of biofilm and flocs to salinity gradient in halophilic biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 401:130727. [PMID: 38643952 DOI: 10.1016/j.biortech.2024.130727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Understanding the different biological responses to salinity gradient between coexisting biofilm and flocs is crucial for regulating the ecological function of biofilm system. This study investigated performance, dynamics, and community assembly of biofilm system under 3 %-7% salinity gradient. The removal efficiency of NH4+-N remained stable and exceeded 93 % at 3 %-6% salinity, but decreased to below 80 % at 7 % salinity. The elevated salinity promoted the synthesis of extracellular polymer substrates, inhibited microbial respiration, and significantly regulated the microbial community structure. Compared to flocs, biofilm exhibited greater species diversity and richer Nitrosomonas. It was found diffusion limitations dominated the microbial community assembly under the salinity gradient. And microbial network revealed positive interactions predominated the microbial relationships, designating norank Spirochaetaceae, unclassified Micrococcales, Corynebacterium, and Pusillimonas as keystone species. Moreover, distinct salinity preferences in nitrogen transformation-related genes were observed. This study can improve the understanding to the regulation of biofilm systems to salt stresses.
Collapse
Affiliation(s)
- Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Jie Hao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Yiting Guo
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|