1
|
Congthai W, Phosriran C, Chou S, Onsanoi K, Gosalawit C, Cheng KC, Jantama K. Exploiting Mixed Waste Office Paper Containing Lignocellulosic Fibers for Alternatively Producing High-Value Succinic Acid by Metabolically Engineered Escherichia coli KJ122. Int J Mol Sci 2025; 26:982. [PMID: 39940754 PMCID: PMC11817568 DOI: 10.3390/ijms26030982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Succinic acid is applied in many chemical industries in which it can be produced through microbial fermentation using lignocellulosic biomasses. Mixed-waste office paper (MWOP) containing lignocellulosic fibers is enormously generated globally. MWOP is recycled into toilet paper and cardboard, but the recovery process is costly. The reuse of MWOP to alternatively produce succinic acid is highly attractive. In this study, pretreatment of MWOPs with 1% (v/v) H2SO4 at 121 °C for 20 min was found to be optimal. The optimal conditions for the enzymatic hydrolysis of H2SO4-pretreated MWOP (AP-MWOP) were at 50 °C, with cellulase loading at 80 PCU/g AP-MWOP. This resulted in the highest glucose (22.46 ± 0.15 g/L) and xylose (5.11 ± 0.32 g/L). Succinic acid production via separate hydrolysis and fermentation (SHF) by Escherichia coli KJ122 reached 28.19 ± 0.98 g/L (productivity of 1.17 ± 0.04 g/L/h). For simultaneous saccharification and fermentation (SSF), succinic acid was produced at 24.58 ± 2.32 g/L (productivity of 0.82 ± 0.07 g/L/h). Finally, succinic acid at 51.38 ± 4.05 g/L with yield and productivity of 0.75 ± 0.05 g/g and 1.07 ± 0.08 g/L/h was achieved via fed-batch pre-saccharified SSF. This study not only offers means to reuse MWOP for producing succinic acid but also provides insights for exploiting other wastes to high-value succinic acid, supporting environmental sustainability and zero-waste society.
Collapse
Affiliation(s)
- Walainud Congthai
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Socheata Chou
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Kanyarat Onsanoi
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Chotika Gosalawit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40447, Taiwan
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| |
Collapse
|
2
|
Yang H, Zhou S. Rewiring the reductive TCA pathway and glyoxylate shunt of Escherichia coli for succinate production from corn stover hydrolysate using a two-phase fermentation strategy. BIORESOURCE TECHNOLOGY 2024; 412:131364. [PMID: 39209227 DOI: 10.1016/j.biortech.2024.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Succinate was found extensive applications in the food additives, pharmaceutical, and biopolymers industries. However, the succinate biosynthesis in E. coli required IPTG, lacked NADH, and produced high yields only under anaerobic conditions, unsuitable for cell growth. To overcome these limitations, the glyoxylate shunt and reductive TCA pathway were simultaneously enhanced to produce succinate in both aerobic and anaerobic conditions and achieve a high cell growth meanwhile. On this basis, NADH availability and sugars uptake were increased. Furthermore, an oxygen-dependent promoter was used to dynamically regulate the expression level of key genes of reductive TCA pathway to avoid the usage of IPTG. The final strain E. coli Mgls7-32 could produce succinate from corn stover hydrolysate without an inducer, achieving a titer of 72.8 g/L in 5 L bioreactor (1.2 mol/mol of total sugars). Those findings will aid in the industrial production of succinate.
Collapse
Affiliation(s)
- Haining Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Sun W, Wang S, Tan X, Guo L, Liu W, Tian W, Zhang H, Jiang T, Meng W, Liu Y, Kang Z, Lü C, Gao C, Xu P, Ma C. Production of α-ketoisovalerate with whey powder by systemic metabolic engineering of Klebsiella oxytoca. Microb Cell Fact 2024; 23:264. [PMID: 39367476 PMCID: PMC11452931 DOI: 10.1186/s12934-024-02545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Whey, which has high biochemical oxygen demand and chemical oxygen demand, is mass-produced as a major by-product of the dairying industry. Microbial fermentation using whey as the carbon source may convert this potential pollutant into value-added products. This study investigated the potential of using whey powder to produce α-ketoisovalerate, an important platform chemical. RESULTS Klebsiella oxytoca VKO-9, an efficient L-valine producing strain belonging to Risk Group 1 organism, was selected for the production of α-ketoisovalerate. The leucine dehydrogenase and branched-chain α-keto acid dehydrogenase, which catalyzed the reductive amination and oxidative decarboxylation of α-ketoisovalerate, respectively, were inactivated to enhance the accumulation of α-ketoisovalerate. The production of α-ketoisovalerate was also improved through overexpressing α-acetolactate synthase responsible for pyruvate polymerization and mutant acetohydroxyacid isomeroreductase related to α-acetolactate reduction. The obtained strain K. oxytoca KIV-7 produced 37.3 g/L of α-ketoisovalerate from lactose, the major utilizable carbohydrate in whey. In addition, K. oxytoca KIV-7 also produced α-ketoisovalerate from whey powder with a concentration of 40.7 g/L and a yield of 0.418 g/g. CONCLUSION The process introduced in this study enabled efficient α-ketoisovalerate production from low-cost substrate whey powder. Since the key genes for α-ketoisovalerate generation were integrated in genome of K. oxytoca KIV-7 and constitutively expressed, this strain is promising in stable α-ketoisovalerate fermentation and can be used as a chassis strain for α-ketoisovalerate derivatives production.
Collapse
Affiliation(s)
- Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Shuo Wang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Leilei Guo
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Wenjia Tian
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Hui Zhang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
4
|
Gosalawit C, Kory S, Phosriran C, Jantama K. Techno-economical valorization of sugarcane bagasse for efficiently producing optically pure D-(-)-lactate approaching the theoretical maximum yield in low-cost salt medium by metabolically engineered Klebsiella oxytoca. BIORESOURCE TECHNOLOGY 2024; 407:131145. [PMID: 39043279 DOI: 10.1016/j.biortech.2024.131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Sugarcane bagasse (SCB) was utilized for efficiently producing optically pure D-(-)-lactate by Klebsiella oxytoca KIS004-91T strain. Cellulase (15 U/g NaOH-treated SCB) sufficiently liberated high sugars with saccharifications of 79.8 % cellulose and 52.5 % hemicellulose. For separated hydrolysis and fermentation, D-(-)-lactate was produced at 53.5 ± 2.1 g/L (0.98 ± 0.01 g/g sugar utilized or 0.71 ± 0.01 g/g total sugars) while D-(-)-lactate at 47.2 ± 1.8 g/L (0.78 ± 0.03 g/g sugar used or 0.69 ± 0.01 g/g total sugars) was obtained under simultaneous saccharification and fermentation (SSF). D-(-)-lactate at 99.9 ± 0.9 g/L (0.97 ± 0.01 g/g sugar utilized or 0.78 ± 0.01 g/g total sugars) was improved via fed-batch SSF. Based on mass balance, raw SCB of 7 kg is required to produce 1 kg D-(-)-lactate. Unlike others, D-(-)-lactate production was performed in low-cost salt medium without requirements of rich nutrients. Costs regarding medium, purification, and waste disposal may be reduced. This unlocks economic capability of SCB bioconversion or agricultural and agro-industrial wastes into high valuable D-(-)-lactate.
Collapse
Affiliation(s)
- Chotika Gosalawit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sokha Kory
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
5
|
Phosriran C, Jantama K. Systematic reengineering of Klebsiella oxytoca KC004-TF160 for enhancing metabolic carbon flux towards succinate production pathway. BIORESOURCE TECHNOLOGY 2024; 407:131137. [PMID: 39043278 DOI: 10.1016/j.biortech.2024.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Klebsiella oxytoca KP001-TF60 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflBΔtdcDΔpmd) was re-engineered to direct more carbon flux towards succinate production with less acetate. Glucose uptake, cell growth, and carbon distribution were restricted by alterations in relative expressions and nucleotide sequences of genes associated with PEP and pyruvate metabolisms. Transcripts of pck, ppc, and frd genes were up-regulated for enhancing NADH reoxidation during succinate production while increased pyk and tdcE transcripts were observed due to maintenance of acetyl-CoA through the oxidative branch of TCA cycle. Based on whole-genome sequencing, several genes in sugars-specific PTS (ptsG, bglF, chbR, fruA, mtlR, and treY), ABC transporters (alsK, and rbsK), Major Facilitator Superfamily (uhpB and setB), and catabolite repression (cyaA and csrB) were found to be mutated. The strain produced succinate yield up to 0.89 g/g (∼80 % theoretical maximum) with acetate < 1 g/L, and may be one of the succinate producers applied in an industrial-production scale with simplified purification processes.
Collapse
Affiliation(s)
- Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
6
|
Hammad Hussain M, Sajid S, Martuscelli M, Aldahmash W, Zubair Mohsin M, Ashraf K, Guo M, Mohsin A. Sustainable biosynthesis of lycopene by using evolutionary adaptive recombinant Escherichia coli from orange peel waste. Heliyon 2024; 10:e34366. [PMID: 39114001 PMCID: PMC11305264 DOI: 10.1016/j.heliyon.2024.e34366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
This study aimed to evaluate the hydrolysates from orange peel waste (OPW) as the low-cost carbon source for lycopene production. Initially, the dilute acid pretreatment combined with enzymatic hydrolysis of OPW resulted in a total sugar concentration of 62.18 g/L. Meanwhile, a four-month adaptive laboratory evolution (ALE) experiment using a d-galacturonic acid minimal medium resulted in an improvement in the growth rate of our previously engineered Escherichia coli strain for lycopene production. After evolutionary adaptation, response surface methodology (RSM) was adapted to optimize the medium composition in fermentation. The results obtained from RSM analysis revealed that the 5.53 % carbon source of orange peel hydrolysate (OPH), 6.57 g/L nitrogen source, and 30 °C temperature boosted lycopene production in the final strain. Subsequently, the optimized treatment for lycopene fermentation was then conducted in a 5 L batch fermenter under the surveillance of a kinetic model that uses the Logistic equation for strain growth (μm = 0.441 h-1), and Luedeking-Piret equations for lycopene production (Pm = 1043 mgL-1) with growth rate constant (α = 0.1491). At last, lycopene biosynthesized from OPH was extracted and analyzed for qualitative validation. Likewise, its data on phytic acid (between 1.01 % and 0.86 %) and DPPH radical scavenging (between 38.06 % and 29.08 %) highlighted the better antioxidant capacity of lycopene. In conclusion, the OPH can be used as a fermentation feedstock which opens new possibilities of exploiting fruit crop residues for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Subra Sajid
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Maria Martuscelli
- Department of Bioscience and Food, Agricultural and Environmental Technology, University of the Studies of Teramo, Via Balzarini 1, 64100, Teramo (TE), Italy
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
7
|
Xiang L, Zhang X, Lei Y, Wu J, Yan G, Chen W, Li S, Wang W, Jin JM, Liang C, Tang SY. Designing a highly efficient type III polyketide whole-cell catalyst with minimized byproduct formation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:93. [PMID: 38961423 PMCID: PMC11223281 DOI: 10.1186/s13068-024-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Polyketide synthases (PKSs) are classified into three types based on their enzyme structures. Among them, type III PKSs, catalyzing the iterative condensation of malonyl-coenzyme A (CoA) with a CoA-linked starter molecule, are important synthases of valuable natural products. However, low efficiency and byproducts formation often limit their applications in recombinant overproduction. RESULTS Herein, a rapid growth selection system is designed based on the accumulation and derepression of toxic acyl-CoA starter molecule intermediate products, which could be potentially applicable to most type III polyketides biosynthesis. This approach is validated by engineering both chalcone synthases (CHS) and host cell genome, to improve naringenin productions in Escherichia coli. From directed evolution of key enzyme CHS, beneficial mutant with ~ threefold improvement in capability of naringenin biosynthesis was selected and characterized. From directed genome evolution, effect of thioesterases on CHS catalysis is first discovered, expanding our understanding of byproduct formation mechanism in type III PKSs. Taken together, a whole-cell catalyst producing 1082 mg L-1 naringenin in flask with E value (evaluating product specificity) improved from 50.1% to 96.7% is obtained. CONCLUSIONS The growth selection system has greatly contributed to both enhanced activity and discovery of byproduct formation mechanism in CHS. This research provides new insights in the catalytic mechanisms of CHS and sheds light on engineering highly efficient heterologous bio-factories to produce naringenin, and potentially more high-value type III polyketides, with minimized byproducts formation.
Collapse
Grants
- 2022M713331 the China Postdoctoral Science Foundation
- Grant No. 31970080, 31971337, 31961133016 and 31971382 the National Natural Science Foundation of China
- Grant No. 31970080, 31971337, 31961133016 and 31971382 the National Natural Science Foundation of China
- Grant No. 31970080, 31971337, 31961133016 and 31971382 the National Natural Science Foundation of China
- Grant 2021YFC2100502, 2021YFC2103300, 2018YFA0900701, and 2021YFC2103901 the National Key Research and Development Program of China
- Grant 2021YFC2100502, 2021YFC2103300, 2018YFA0900701, and 2021YFC2103901 the National Key Research and Development Program of China
- YJKYYQ20210032 Instrument Developing Project of Chinese Academy of Science
Collapse
Affiliation(s)
- La Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuanxuan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Lei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangru Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhong Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Kumar V, Kumar P, Maity SK, Agrawal D, Narisetty V, Jacob S, Kumar G, Bhatia SK, Kumar D, Vivekanand V. Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:72. [PMID: 38811976 PMCID: PMC11137917 DOI: 10.1186/s13068-024-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Pankaj Kumar
- Department of Chemical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
9
|
Cao M, Sun W, Wang S, Di H, Du Q, Tan X, Meng W, Kang Z, Liu Y, Xu P, Lü C, Ma C, Gao C. Efficient L-valine production using systematically metabolic engineered Klebsiella oxytoca. BIORESOURCE TECHNOLOGY 2024; 395:130403. [PMID: 38295958 DOI: 10.1016/j.biortech.2024.130403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
L-Valine, a branched-chain amino acid with diversified applications, is biosynthesized with α-acetolactate as the key precursor. In this study, the metabolic flux in Klebsiella oxytoca PDL-K5, a Risk Group 1 organism producing 2,3-butanediol as the major fermentation product, was rearranged to L-valine production by introducing exogenous L-valine biosynthesis pathway and blocking endogenous 2,3-butanediol generation at the metabolic branch point α-acetolactate. After further enhancing L-valine efflux, strengthening pyruvate polymerization and selecting of key enzymes for L-valine synthesis, a plasmid-free K. oxytoca strain VKO-9 was obtained. Fed-batch fermentation with K. oxytoca VKO-9 in a 7.5 L fermenter generated 122 g/L L-valine with a yield of 0.587 g/g in 56 h. In addition, repeated fed-batch fermentation was conducted to prevent precipitation of L-valine due to oversaturation. The average concentration, yield, and productivity of produced L-valine in three cycles of repeated fed-batch fermentation were 81.3 g/L, 0.599 g/g, and 3.39 g/L/h, respectively.
Collapse
Affiliation(s)
- Menghao Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuo Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Di
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qihang Du
- Shandong Institute of Metrology, Jinan 250101, China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|