1
|
Kim J, Kim C, Jeong C, Won S, Kim SG, Lim H, Kim S, Kwak HW. Integrated process for lignin depolymerization and nanoparticle production using deep eutectic solvent. Sci Rep 2025; 15:11770. [PMID: 40189637 PMCID: PMC11973191 DOI: 10.1038/s41598-025-96237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Lignin, the most abundant natural aromatic macromolecule, holds significant potential for high-value applications. However, its complex and irregular structure, along with challenges in efficient processing, has limited its widespread use. In this study, we propose an ecofriendly continuous process utilizing deep eutectic solvents (DESs) for lignin depolymerization and subsequent production of lignin nanoparticles. DESs, composed of choline chloride and lactic acid, effectively break down lignin into low-molecular-weight homogeneous fragments while also serving as a solvent for nanoparticle formation. The depolymerized lignin nanoparticles (DLNPs) exhibited a uniform particle size distribution and enhanced surface charge due to interactions with the DES, resulting in excellent long-term dispersion stability. Chemical analyses indicated that lignin depolymerization primarily involved the cleavage of β-O-4 linkages while retaining its aromatic structure and forming condensation products such as pinoresinol and phenylcoumaran. Thermal analysis revealed that DLNP produced through this continuous process displayed improved thermal stability compared to kraft lignin, suggesting potential applications in high-temperature environments, such as flame retardants. This study demonstrates that the DES-based process is a promising alternative to conventional organic solvent methods, providing a sustainable and efficient pathway for lignin nanoparticle production and valorization.
Collapse
Affiliation(s)
- Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chaeeun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chaewoo Jeong
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sungwook Won
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seon-Gyeong Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyoseung Lim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seojin Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Zheng Q, Shi S, Gu Y, Osei PO, Wang L, Duan X, Wu X, Liao X. Utilization of structure-specific lignin extracted from coconut fiber via deep eutectic solvents to enhance the functional properties of PVA nanocomposite films. Int J Biol Macromol 2025; 297:139914. [PMID: 39818368 DOI: 10.1016/j.ijbiomac.2025.139914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.51 % while enhancing the enzymatic saccharification of cellulose, reaching a glucose yield of 85.88 %. The structural characterization of lignin revealed that acidic DES primarily cleaved β-O-4 bonds, yielding coconut fiber lignin with lower molecular weight and higher phenolic hydroxyl groups. Uniform and smooth coconut fiber lignin nanoparticles (CFLNPs) with excellent antioxidant activity were finally obtained by antisolvent method. Furthermore, PVA/CFLNPs nanocomposite films were prepared based on acidic DES CFLNPs. The results of the structural and functional analysis showed that CFLNPs significantly improved the thermal stability, mechanical properties, hydrophobicity, antioxidant and antibacterial activity of the nanocomposite films. In general, this work achieved efficient deconstruction of coconut fibers, providing insights for biorefining in the future, and more importantly, the potential to use the CFLNPs as a choice for active food packaging.
Collapse
Affiliation(s)
- Qingsong Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Shaoran Shi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Yang Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pamela Owusu Osei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Lei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Xiaorong Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
3
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
4
|
Dodangeh F, Nabipour H, Rohani S, Xu C. Applications, challenges and prospects of superabsorbent polymers based on cellulose derived from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 408:131204. [PMID: 39102965 DOI: 10.1016/j.biortech.2024.131204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The synthetic superabsorbent polymers (SAPs) market is experiencing significant growth, with applications spanning agriculture, healthcare, and civil engineering, projected to increase from $9.0 billion USD in 2019 to $12.9 billion USD by 2024. Despite this positive trend, challenges such as fluctuating raw material costs and lower biodegradability of fossil fuel-based SAPs could impede further expansion. In contrast, cellulose and its derivatives present a sustainable alternative due to their renewable, biodegradable, and abundant characteristics. Lignocellulosic biomass (LCB), rich in cellulose and lignin, shows promise as a source for eco-friendly superabsorbent polymer (SAP) production. This review discusses the applications, challenges, and future prospects of SAPs derived from lignocellulosic resources, focusing on the cellulose extraction process through fractionation and various modification and crosslinking techniques. The review underscores the potential of cellulose-based SAPs to meet environmental and market needs, offering a viable path forward in the quest for more sustainable materials.
Collapse
Affiliation(s)
- Fatemeh Dodangeh
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| | - Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Yue Z, Sun LL, Wen JL, Yao SQ, Sun SN, Cao XF. Simultaneous production of furfural, lignin and cellulose-rich residue from Eucalyptus urophylla × E. grandis by ChCl/1,2-propanediol/MIBK biphasic system pretreatment. Int J Biol Macromol 2024; 275:133522. [PMID: 38945325 DOI: 10.1016/j.ijbiomac.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the β-O-4, β-β and β-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.
Collapse
Affiliation(s)
- Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Farooq A, Khawar MT, Wang Z, Tian M, Mushtaq M. Maximizing Degumming Efficiency for Firmiana simplex Bark Using Deep Eutectic Solvents. Polymers (Basel) 2024; 16:2112. [PMID: 39125139 PMCID: PMC11314601 DOI: 10.3390/polym16152112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Degumming is a critical process in the purification of natural fibers, essential for enhancing their quality and usability across various applications. Traditional degumming methods employed for natural fibers encounter inherent limitations, encompassing prolonged procedures, excessive energy consumption, adverse environmental impact, and subpar efficiency. To address these challenges, a groundbreaking wave of degumming technique has emerged, transcending these constraints and heralding a new era of efficiency, sustainability, and eco-friendly techniques. This study represents the Firmiana simplex bark (FSB) fiber's delignification by using deep eutectic solvents (DESs). The study explores the application of deep eutectic solvents, by synthesizing different types of DES using a hydrogen bond acceptor (HBA) and four representative hydrogen bond donors (HBDs) for FSB fiber degumming. This study investigates the morphologies, chemical compositions, crystallinities, and physical properties of Firmiana simplex bark fibers before and after the treatment. Furthermore, the effects and mechanisms of different DESs on dispersing FSB fibers were examined. The experimental results showed that choline chloride-urea (CU)-based DES initiates the degumming process by effectively disrupting the hydrogen bond interaction within FSB fibers, primarily by outcompeting chloride ions. Following this initial step, the DES acts by deprotonating phenolic hydroxyl groups and cleaving β-O-4 bonds present in diverse lignin units, thereby facilitating the efficient removal of lignin from the fibers. This innovative approach resulted in significantly higher degumming efficiency and ecofriendly as compared to traditional methods. Additionally, the results revealed that CU-based DES exhibits the utmost effectiveness in degumming FSB fibers. The optimal degumming conditions involve a precise processing temperature of 160 °C and a carefully controlled reaction time of 2 h yielding the most favorable outcomes. The present study presents a novel straightforward and environmentally friendly degumming method for Firmiana simplex bark, offering a substantial potential for enhancing the overall quality and usability of the resulting fibers. Our findings open new pathways for sustainable fiber-processing technologies.
Collapse
Affiliation(s)
- Amjad Farooq
- School of Textile and Garment, Qingdao University, Qingdao 266071, China;
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Muhammad Tauseef Khawar
- School of Engineering and Technology, National Textile University Faisalabad, Faisalabad 37610, Pakistan;
| | - Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Mingwei Tian
- School of Textile and Garment, Qingdao University, Qingdao 266071, China;
| | - Muhammad Mushtaq
- School of Art and Design, National Textile University Faisalabad, Faisalabad 37610, Pakistan;
| |
Collapse
|
7
|
Yong KJ, Wu TY. Fractionation of oil palm fronds using ethanol-assisted deep eutectic solvent: Influence of ethanol concentration on enhancing enzymatic saccharification and lignin β-O-4 content. ENVIRONMENTAL RESEARCH 2024; 250:118366. [PMID: 38331153 DOI: 10.1016/j.envres.2024.118366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Numerous fractionation methods have been developed in recent years for separating components such as cellulose, hemicellulose, and lignin from lignocellulosic biomass wastes. Deep eutectic solvents (DES) have recently been widely investigated as captivating green solvents for biomass fractionation. However, most acidic-based deep eutectic solvent fractionation produces condensed lignin with low β-O-4 content. Besides, most DESs exhibit high viscosity, which results in poor mass transfer properties. This study aimed to address the challenges above by incorporating ethanol into the deep eutectic solvent at various concentrations (10-50 wt%) to fractionate oil palm fronds at a mild condition, i.e., 80 °C, 1 atm. Cellulose residues fractionated with ethanol-assisted deep eutectic solvent showed a maximum glucose yield of 85.8% when 20 wt% of ethanol was incorporated in the deep eutectic solvent, significantly higher than that achieved by pure DES (44.8%). Lignin extracted with ethanol-assisted deep eutectic solvent is lighter in color and higher in β-O-4 contents (up to 44 β-O-4 per 100 aromatic units) than pure DES-extracted lignin. Overall, this study has demonstrated that incorporating ethanol into deep eutectic solvents could enhance the applicability of deep eutectic solvents in the complete valorization of lignocellulosic biomass. Highly enzymatic digestible cellulose-rich solid and β-O-4-rich lignin attained from the fractionation could serve as sustainable precursors for the production of biofuels.
Collapse
Affiliation(s)
- Khai Jie Yong
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Centre for Net-Zero Technology, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|