1
|
Buarque FS, Ribeiro BD, Freire MG, Coelho MAZ, Pereira MM. Assessing the role of deep eutectic solvents in Yarrowia lipolytica inhibition. J Biotechnol 2025; 398:1-10. [PMID: 39615790 DOI: 10.1016/j.jbiotec.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Yarrowia lipolytica has gained recognition as a microorganism with biological relevance and extensive biotechnological applications. Some of its features include a high enzyme secretion capacity and a high cell-density fermentation mode. Hexokinase (YlHxk) is a vital enzyme in Y. lipolytica growth since it catalyzes glucose metabolism through phosphorylation in the glycolytic pathway. Given the potential application of deep eutectic solvents (DES) as novel solvents in biotechnological processes, this study evaluated the influence of eighteen DES on the growth of Y. lipolytica. Furthermore, this work examined the effects of individual ions on the YlHxk enzyme by analyzing its enzymatic tunnel structure, molecule transport, and molecular docking. The results revealed a significant reduction in yeast growth in the presence of most DES compared to the control (medium without DES), with the exception of the [N8881]Cl: hexanoic acid (1:1) DES. The growth varied between 11.95 ± 0.60 and 0.68 ± 0.17 g dry cell weight L-1. According to the enzymatic tunnel analysis, DES components associated with the lowest microbial growth values were transported through tunnel 1. On the other hand, DES components had their pathway facilitated through tunnel 2 ([N8881]+ and hexanoic acid) and showed growth values close to the control. Molecular docking analysis identified a similarity between all the ligands in this tunnel (including substrate and product), presenting binding interactions with the ASN273 amino acid of the YlHxk active site. Combining experimental results with computational tools provided promising insights at the molecular level, while also potentially reducing analysis costs and time, paving the way for similar approaches in broad biocatalytic reactions.
Collapse
Affiliation(s)
- Filipe S Buarque
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Brazil; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal.
| | - Bernardo D Ribeiro
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - Maria A Z Coelho
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Matheus M Pereira
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, Coimbra 3030-790, Portugal.
| |
Collapse
|
2
|
Zhao J, Niu D, Liu J, Jin Z, Mchunu NP, Singh S, Wang Z. Enhancing β-Galactosidase Performance for Galactooligosaccharides Preparation via Strategic Glucose Re-Tunneling. Int J Mol Sci 2024; 25:12316. [PMID: 39596386 PMCID: PMC11594752 DOI: 10.3390/ijms252212316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
This study focuses on the characterization and re-engineering of glucose transport in β-galactosidase (BglD) to enhance its catalytic efficiency. Computational prediction methods were employed to identify key residues constituting access tunnels for lactose and glucose, revealing distinct pockets for both substrates. In silico simulated saturation mutagenesis of residues T215 and T473 led to the identification of eight mutant variants exhibiting potential enhancements in glucose transport. Site-directed mutagenesis at T215 and T473 resulted in mutants with consistently enhanced specific activities, turnover rates, and catalytic efficiencies. These mutants also demonstrated improved galactooligosaccharide (GOS) synthesis, yielding an 8.1-10.6% enhancement over wild-type BglD yield. Structural analysis revealed that the mutants exhibited transformed configurations and localizations of glucose conduits, facilitating expedited glucose release. This study's findings suggest that the re-engineered mutants offer promising avenues for enhancing BglD's catalytic efficiency and glucose translocation, thereby improving GOS synthesis. By-product (glucose) re-tunneling is a viable approach for enzyme tunnel engineering and holds significant promise for the molecular evolution of enzymes.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Jiaqi Liu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Zhuolin Jin
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
| | - Nokuthula Peace Mchunu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
- National Research Foundation, Pretoria 0001, South Africa
- School of Life Science, University of KwaZulu Natal, Durban 4000, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa;
| | - Zhengxiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Z.); (J.L.); (Z.J.); (N.P.M.)
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Sohraby F, Nunes-Alves A. Characterization of the Bottlenecks and Pathways for Inhibitor Dissociation from [NiFe] Hydrogenase. J Chem Inf Model 2024; 64:4193-4203. [PMID: 38728115 PMCID: PMC11134402 DOI: 10.1021/acs.jcim.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
[NiFe] hydrogenases can act as efficient catalysts for hydrogen oxidation and biofuel production. However, some [NiFe] hydrogenases are inhibited by gas molecules present in the environment, such as O2 and CO. One strategy to engineer [NiFe] hydrogenases and achieve O2- and CO-tolerant enzymes is by introducing point mutations to block the access of inhibitors to the catalytic site. In this work, we characterized the unbinding pathways of CO in the complex with the wild-type and 10 different mutants of [NiFe] hydrogenase from Desulfovibrio fructosovorans using τ-random accelerated molecular dynamics (τRAMD) to enhance the sampling of unbinding events. The ranking provided by the relative residence times computed with τRAMD is in agreement with experiments. Extensive data analysis of the simulations revealed that from the two bottlenecks proposed in previous studies for the transit of gas molecules (residues 74 and 122 and residues 74 and 476), only one of them (residues 74 and 122) effectively modulates diffusion and residence times for CO. We also computed pathway probabilities for the unbinding of CO, O2, and H2 from the wild-type [NiFe] hydrogenase, and we observed that while the most probable pathways are the same, the secondary pathways are different. We propose that introducing mutations to block the most probable paths, in combination with mutations to open the main secondary path used by H2, can be a feasible strategy to achieve CO and O2 resistance in the [NiFe] hydrogenase from Desulfovibrio fructosovorans.
Collapse
Affiliation(s)
- Farzin Sohraby
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
4
|
Fasano A, Fourmond V, Léger C. Outer-sphere effects on the O 2 sensitivity, catalytic bias and catalytic reversibility of hydrogenases. Chem Sci 2024; 15:5418-5433. [PMID: 38638217 PMCID: PMC11023054 DOI: 10.1039/d4sc00691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The comparison of homologous metalloenzymes, in which the same inorganic active site is surrounded by a variable protein matrix, has demonstrated that residues that are remote from the active site may have a great influence on catalytic properties. In this review, we summarise recent findings on the diverse molecular mechanisms by which the protein matrix may define the oxygen tolerance, catalytic directionality and catalytic reversibility of hydrogenases, enzymes that catalyse the oxidation and evolution of H2. These mechanisms involve residues in the second coordination sphere of the active site metal ion, more distant residues affecting protein flexibility through their side chains, residues lining the gas channel and even accessory subunits. Such long-distance effects, which contribute to making enzymes efficient, robust and different from one another, are a source of wonder for biochemists and a challenge for synthetic bioinorganic chemists.
Collapse
Affiliation(s)
- Andrea Fasano
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| |
Collapse
|
5
|
Kim SM, Kang SH, Lee J, Heo Y, Poloniataki EG, Kang J, Yoon HJ, Kong SY, Yun Y, Kim H, Ryu J, Lee HH, Kim YH. Identifying a key spot for electron mediator-interaction to tailor CO dehydrogenase's affinity. Nat Commun 2024; 15:2732. [PMID: 38548760 PMCID: PMC10979024 DOI: 10.1038/s41467-024-46909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Fe‒S cluster-harboring enzymes, such as carbon monoxide dehydrogenases (CODH), employ sophisticated artificial electron mediators like viologens to serve as potent biocatalysts capable of cleaning-up industrial off-gases at stunning reaction rates. Unraveling the interplay between these enzymes and their associated mediators is essential for improving the efficiency of CODHs. Here we show the electron mediator-interaction site on ChCODHs (Ch, Carboxydothermus hydrogenoformans) using a systematic approach that leverages the viologen-reactive characteristics of superficial aromatic residues. By enhancing mediator-interaction (R57G/N59L) near the D-cluster, the strategically tailored variants exhibit a ten-fold increase in ethyl viologen affinity relative to the wild-type without sacrificing the turn-over rate (kcat). Viologen-complexed structures reveal the pivotal positions of surface phenylalanine residues, serving as external conduits for the D-cluster to/from viologen. One variant (R57G/N59L/A559W) can treat a broad spectrum of waste gases (from steel-process and plastic-gasification) containing O2. Decoding mediator interactions will facilitate the development of industrially high-efficient biocatalysts encompassing gas-utilizing enzymes.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jinhee Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yoonyoung Heo
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eleni G Poloniataki
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jingu Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - So Yeon Kong
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunwoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|