1
|
Zhang C, Wu M, Hu S, Shi S, Duan Y, Hu W, Li Y. Label-Free, High-Throughput, Sensitive, and Logical Analysis Using Biomimetic Array Based on Stable Luminescent Copper Nanoclusters and Entropy-Driven Nanomachine. Anal Chem 2023; 95:11978-11987. [PMID: 37494597 DOI: 10.1021/acs.analchem.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of an array for high-throughput and logical analysis of biomarkers is significant for disease diagnosis. DNA-templated copper nanoclusters (CuNCs) have a strong potential to serve as a label-free photoluminescence source in array platforms, but their luminescent stability and sensitivity need to be improved. Herein, we report a facile, sensitive, and robust biomimetic array assay by integrating with stable luminescent CuNCs and entropy-driven nanomachine (EDN). In this strategy, the luminescent stability of CuNCs was improved by adding fructose in CuNCs synthesis to offer a reliable label-free signal. Meanwhile, the DNA template for CuNCs synthesis was introduced into EDN with excellent signal amplification ability, in which the reaction triggered by target miRNA would cause the blunt/protruding conformation change of 3'-terminus accompanied by the production or loss of luminescence. In addition, a biomimetic array fabricated by photonic crystals (PCs) physically enhanced the emitted luminescent signal of CuNCs and achieved high-throughput signal readout by a microplate reader. The proposed assay can isothermally detect as low as 4.5 pM of miR-21. Moreover, the logical EDN was constructed to achieve logical analysis of multiple miRNAs by "AND" or "OR" logic gate operation. Therefore, the proposed assay has the advantages of label-free property, high sensitivity, flexible design, and high-throughput analysis, which provides ideas for developing a new generation of facile and smart platforms in the fields of biological analysis and clinical application.
Collapse
Affiliation(s)
- Chuyan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shaorui Shi
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Wenchuang Hu
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Idris AO, Akanji SP, Orimolade BO, Olorundare FOG, Azizi S, Mamba B, Maaza M. Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design. BIOSENSORS 2023; 13:bios13020192. [PMID: 36831958 PMCID: PMC9953865 DOI: 10.3390/bios13020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/28/2023]
Abstract
The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials-graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots-and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials.
Collapse
Affiliation(s)
- Azeez Olayiwola Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Seyi Philemon Akanji
- Petroleum Engineering, School of Engineering Department, Edith Cowan University, 270 Joondalup Drive, Perth, WA 6027, Australia
| | - Benjamin O. Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | | | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| |
Collapse
|
3
|
Solvothermal synthesis of luminescence molybdenum disulfide QDs and the ECL biosensing application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Zubair M, Wang S, Ali N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front Pharmacol 2021; 11:632079. [PMID: 33716731 PMCID: PMC7952319 DOI: 10.3389/fphar.2020.632079] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) has recently reported a 66% increase in the global number of cancer deaths since 1960. In the US alone, about one in eight women is expected to develop invasive breast cancer(s) (breast cancer) at some point in their lifetime. Traditionally, a BC diagnosis includes mammography, ultrasound, and some high-end molecular bioimaging. Unfortunately, these techniques detect BC at a later stage. So early and advanced molecular diagnostic tools are still in demand. In the past decade, various histological and immuno-molecular studies have demonstrated that BC is highly heterogeneous in nature. Its growth pattern, cytological features, and expression of key biomarkers in BC cells including hormonal receptor markers can be utilized to develop advanced diagnostic and therapeutic tools. A cancer cell's progression to malignancy exhibits various vital biomarkers, many of which are still underrepresented in BC diagnosis and treatment. Advances in genetics have also enabled the development of multigene assays to detect genetic heterogeneity in BC. However, thus far, the FDA has approved only four such biomarkers-cancer antigens (CA); CA 15-3, CA 27-29, Human epidermal growth factor receptor 2 (HER2), and circulating tumor cells (CTC) in assessing BC in body fluids. An adequately structured portable-biosensor with its non-invasive and inexpensive point-of-care analysis can quickly detect such biomarkers without significantly compromising its specificity and selectivity. Such advanced techniques are likely to discriminate between BC and a healthy patient by accurately measuring the cell shape, structure, depth, intracellular and extracellular environment, and lipid membrane compositions. Presently, BC treatments include surgery and systemic chemo- and targeted radiation therapy. A biopsied sample is then subjected to various multigene assays to predict the heterogeneity and recurrence score, thus guiding a specific treatment by providing complete information on the BC subtype involved. Thus far, we have seven prognostic multigene signature tests for BC providing a risk profile that can avoid unnecessary treatments in low-risk patients. Many comparative studies on multigene analysis projected the importance of integrating clinicopathological information with genomic-imprint analysis. Current cohort studies such as MINDACT, TAILORx, Trans-aTTOM, and many more, are likely to provide positive impact on long-term patient outcome. This review offers consolidated information on currently available BC diagnosis and treatment options. It further describes advanced biomarkers for the development of state-of-the-art early screening and diagnostic technologies.
Collapse
Affiliation(s)
- M. Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - S. Wang
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - N. Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
5
|
Liu J, Wang T, Xiao B, Deng M, Yu P, Qing T. Fluorometric determination of the breast cancer 1 gene based on the target-induced conformational change of a DNA template for copper nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:712-718. [PMID: 33480889 DOI: 10.1039/d0ay01712d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The breast cancer 1 (BRCA1) gene is a tumor suppressor gene, whose mutation is closely related to breast cancer. Therefore, the sensitive detection of the BRCA1 gene is extremely important for human health, particularly for women. In this study, a label-free fluorescent method based on hairpin DNA-templated copper nanoclusters (CuNCs) was for the first time developed for the detection of the BRCA1 gene. In the absence of target DNA, the detection system showed a strong red emission and produced a high emission peak. However, in the presence of the BRCA1 gene, the DNA probe hybridized with the BRCA1 gene and conformation of the DNA probe changed. As a result, the amount of produced CuNCs decreased and a low emission peak was obtained. The fluorescence intensity of the detection system was linearly correlated with the concentration of the BRCA1 gene ranging from 2 nM to 600 nM. The detectable limit was 2 nM for the BRCA1 gene assay, which was comparable with those reported by other non-amplifying sensors. Moreover, the developed method showed satisfactory recoveries for the BRCA1 gene assay in the bovine serum. The DNA-templated CuNC-based fluorescent assay thus offered a promising platform for the diagnosis of a breast cancer biomarker.
Collapse
Affiliation(s)
- Jing Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China.
| | | | | | | | | | | |
Collapse
|
6
|
Mittal S, Kaur H, Gautam N, Mantha AK. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron 2016; 88:217-231. [PMID: 27567264 DOI: 10.1016/j.bios.2016.08.028] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022]
Abstract
Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling.
Collapse
Affiliation(s)
- Sunil Mittal
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Hardeep Kaur
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Nandini Gautam
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Anil K Mantha
- Centre for Animal Sciences, Central University of Punjab, Bathinda, 151001 India.
| |
Collapse
|
7
|
Structurally responsive oligonucleotide-based single-probe lateral-flow test for detection of miRNA-21 mimics. Anal Bioanal Chem 2015; 408:1475-85. [DOI: 10.1007/s00216-015-9250-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
|
8
|
Gold nanoprobes-based resonance Rayleigh scattering assay platform: Sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression. Biosens Bioelectron 2015; 74:165-9. [DOI: 10.1016/j.bios.2015.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 12/11/2022]
|
9
|
Guo Q, Bai Z, Liu Y, Sun Q. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosens Bioelectron 2015; 77:107-10. [PMID: 26397421 DOI: 10.1016/j.bios.2015.09.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 11/29/2022]
Abstract
In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs.
Collapse
Affiliation(s)
- Qingsheng Guo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhixiong Bai
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqian Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
10
|
Wang W, Fan X, Xu S, Davis JJ, Luo X. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens Bioelectron 2015; 71:51-56. [DOI: 10.1016/j.bios.2015.04.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/30/2015] [Accepted: 04/05/2015] [Indexed: 12/22/2022]
|
11
|
Porchetta A, Idili A, Vallée-Bélisle A, Ricci F. General Strategy to Introduce pH-Induced Allostery in DNA-Based Receptors to Achieve Controlled Release of Ligands. NANO LETTERS 2015; 15:4467-71. [PMID: 26053894 PMCID: PMC4498449 DOI: 10.1021/acs.nanolett.5b00852] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/29/2015] [Indexed: 05/23/2023]
Abstract
Inspired by naturally occurring pH-regulated receptors, here we propose a rational approach to introduce pH-induced allostery into a wide range of DNA-based receptors. To demonstrate this we re-engineered two model DNA-based probes, a molecular beacon and a cocaine-binding aptamer, by introducing in their sequence a pH-dependent domain. We demonstrate here that we can finely tune the affinity of these model receptors and control the load/release of their specific target molecule by a simple pH change.
Collapse
Affiliation(s)
- Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Alexis Vallée-Bélisle
- Laboratory
of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
12
|
Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosens Bioelectron 2015; 65:62-70. [DOI: 10.1016/j.bios.2014.09.088] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
|
13
|
Liang D, You W, Yu Y, Geng Y, Lv F, Zhang B. A cascade signal amplification strategy for ultrasensitive colorimetric detection of BRCA1 gene. RSC Adv 2015. [DOI: 10.1039/c5ra01766a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of a colorimetric biosensor for breast cancer1 gene detection based on DNAzyme assistant DNA recycling and rolling circle amplification.
Collapse
Affiliation(s)
- Dong Liang
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Wei You
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Yang Yu
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Yao Geng
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- PR China
| | - Feng Lv
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Bin Zhang
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| |
Collapse
|
14
|
Machado I, Özalp VC, Rezabal E, Schäfer T. DNA aptamers are functional molecular recognition sensors in protic ionic liquids. Chemistry 2014; 20:11820-5. [PMID: 25065686 DOI: 10.1002/chem.201403354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 12/14/2022]
Abstract
The function and structural changes of an AMP molecular aptamer beacon and its molecular recognition capacity for its target, adenosine monophosphate (AMP), was systematically explored in solution with a protic ionic liquid, ethylammonium nitrate (EAN). It could be proven that up to 2 M of EAN in TBS buffer, the AMP molecular aptamer beacon was still capable of recognizing AMP while also maintaining its specificity. The specificity was proven by using the guanosine monophosphate (GMP) as target; GMP is structurally similar to AMP but was not recognized by the aptamer. We also found that in highly concentrated EAN solutions the overall amount of double stranded DNA formed, as well as its respective thermal stability, diminished gradually, but surprisingly the hybridization rate (kh ) of single stranded DNA was significantly accelerated in the presence of EAN. The latter may have important implications in DNA technology for the design of biosensing and DNA-based nanodevices in nonconventional solvents, such as ionic liquids.
Collapse
Affiliation(s)
- Isabel Machado
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa, 72, 20018 - Donostia - San Sebastián (Spain)
| | | | | | | |
Collapse
|
15
|
Mansor NA, Zain ZM, Hamzah HH, Noorden MSA, Jaapar SS, Beni V, Ibupoto ZH. Detection of Breast Cancer 1 (BRCA1) Gene Using an Electrochemical DNA Biosensor Based on Immobilized ZnO Nanowires. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojab.2014.32002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Ren X, Yan T, Zhang S, Zhang X, Gao P, Wu D, Du B, Wei Q. Ultrasensitive dual amplification sandwich immunosensor for breast cancer susceptibility gene based on sheet materials. Analyst 2014; 139:3061-8. [DOI: 10.1039/c4an00099d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new electrochemical dual amplification sandwich immunosensor (DASI) was designed for ultrasensitive and accurate detection of the breast cancer susceptibility gene based on the combination of N-doped graphene, hydroxypropyl chitosan and Co3O4 mesoporous nanosheets.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Tao Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Sen Zhang
- School of Resources and Environmental Sciences
- University of Jinan
- Jinan 250022, P.R. China
| | - Xiaoyue Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Picheng Gao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
- School of Resources and Environmental Sciences
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P.R. China
| |
Collapse
|
17
|
Construction of label-free electrochemical immunosensor on mesoporous carbon nanospheres for breast cancer susceptibility gene. Anal Chim Acta 2013; 770:62-7. [DOI: 10.1016/j.aca.2013.01.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 02/07/2023]
|
18
|
Stobiecka M, Molinero AA, Chałupa A, Hepel M. Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon. Anal Chem 2012; 84:4970-8. [PMID: 22524145 DOI: 10.1021/ac300632u] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A molecular beacon (MB) with stem-loop (hairpin) DNA structure and with attached fluorophore-quencher pair at the ends of the strand has been applied to study the interactions of Hg(2+) ions with a thymine-thymine (T-T) mismatch in Watson-Crick base-pairs and the ligative disassembly of MB·Hg(2+) complex by Hg(2+) sequestration with small biomolecule ligands. In this work, a five base-pair stem with configuration 5'-GGTGG...CCTCC-3' for self-hybridization of MB has been utilized. In this configuration, the four GC base-pair binding energy is not sufficient to hybridize fully at intermediate temperatures and to form a hairpin MB conformation. The T-T mismatch built-in into the stem area can effectively bind Hg(2+) ions creating a bridge, T-Hg-T. We have found that the T-Hg-T bridge strongly enhances the ability of MB to hybridize, as evidenced by an unusually large MB melting temperature shift observed on bridge formation, ΔT(m) = +15.1 ± 0.5 °C, for 100 nM MB in MOPS buffer. The observed ΔT(m) is the largest of the ΔT(m) found for other MBs and dsDNA structures. By fitting the parameters of the proposed model of reversible MB interactions to the experimental data, we have determined the T-Hg-T bridge formation constant at 25 °C, K(1) = 8.92 ± 0.42 × 10(17) M(-1) from mercury(II) titration data and K(1) = 1.04 ± 0.51 × 10(18) M(-1) from the bridge disassembly data; ΔG° = -24.53 ± 0.13 kcal/mol. We have found that the biomarker of oxidative stress and cardiovascular disease, homocysteine (Hcys), can sequester Hg(2+) ions from the T-Hg-T complex and withdraw Hg(2+) ions from MB in the form of stable Hg(Hcys)(2)H(2) complexes. Both the model fitting and independent (1)H NMR results on the thymidine-Hg-Hcys system indicate also the high importance of 1:1 complexes. The high value of K(1) for T-Hg-T bridge formation enables analytical determinations of low concentrations of Hg(2+) (limit of detection LOD = 19 nM or 3.8 ppb, based on 3σ method) and Hcys (LOD = 23 nM, 3σ method). The conditional stability constants for Hg(Hcys)H(2)(2+) and Hg(Hcys)(2)H(2) at 52 °C have been determined, β(112) = 5.37 ± 0.3 × 10(46) M(-3), β(122) = 3.80 ± 0.6 × 10(68) M(-4), respectively.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676, United States
| | | | | | | |
Collapse
|
19
|
Chen Q, Wu N, Xie M, Zhang B, Chen M, Li J, Zhuo L, Kuang H, Fu W. A novel asymmetric-loop molecular beacon-based two-phase hybridization assay for accurate and high-throughput detection of multiple drug resistance-conferring point mutations in Mycobacterium tuberculosis. Med Sci Monit 2012; 18:HY5-8. [PMID: 22460100 PMCID: PMC3560835 DOI: 10.12659/msm.882602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The accurate and high-throughput detection of drug resistance-related multiple point mutations remains a challenge. Although the combination of molecular beacons with bio-immobilization technology, such as microarray, is promising, its application is difficult due to the ineffective immobilization of molecular beacons on the chip surface. Here, we propose a novel asymmetric-loop molecular beacon in which the loop consists of 2 parts. One is complementary to a target, while the other is complementary to an oligonucleotide probe immobilized on the chip surface. With this novel probe, a two-phase hybridization assay can be used for simultaneously detecting multiple point mutations. This assay will have advantages, such as easy probe availability, multiplex detection, low background, and high-efficiency hybridization, and may provide a new avenue for the immobilization of molecular beacons and high-throughput detection of point mutations.
Collapse
Affiliation(s)
- Qinghai Chen
- Clinical Experimental Laboratory of Biosensor and Microarray, and Center of Molecular and Genetic Diagnosis, Southwest Hospital, 3rd Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu A, Sun Z, Wang K, Chen X, Xu X, Wu Y, Lin X, Chen Y, Du M. Molecular beacon-based fluorescence biosensor for the detection of gene fragment and PCR amplification products related to chronic myelogenous leukemia. Anal Bioanal Chem 2011; 402:805-12. [DOI: 10.1007/s00216-011-5480-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/05/2011] [Accepted: 10/05/2011] [Indexed: 11/29/2022]
|
21
|
Martinez K, Estevez MC, Wu Y, Phillips JA, Medley CD, Tan W. Locked nucleic acid based beacons for surface interaction studies and biosensor development. Anal Chem 2009; 81:3448-54. [PMID: 19351140 PMCID: PMC3164480 DOI: 10.1021/ac8027239] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA sensors and microarrays permit fast, simple, and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective, and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully realized. This is mainly a consequence of the beacon's poor stability because of the hairpin structure once immobilized onto a solid surface, commonly resulting in a low signal enhancement. Here, we report the design of a new MB that overcomes some of the limitations of MBs for surface immobilization. Essentially, this new design adds locked nucleic acid bases (LNAs) to the beacon structure, resulting in a LNA molecular beacon (LMB) with robust stability after surface immobilization. To test the efficacy of LMBs against that of regular molecular beacons (RMBs), the properties of selectivity, sensitivity, thermal stability, hybridization kinetics, and robustness for the detection of target sequences were compared and evaluated. A 25-fold enhancement was achieved for the LMB on surface with detection limits reaching the low nanomolar range. In addition, the LMB-based biosensor was shown to possess better stability, reproducibility, selectivity, and robustness when compared to the RMB. Therefore, as an alternative to conventional DNA and as a prospective tool for use in both DNA microarrays and biosensors, these results demonstrate the potential of the locked nucleic acid bases for nucleic acid design for surface immobilization.
Collapse
Affiliation(s)
- Karen Martinez
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - M.-Carmen Estevez
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Yanrong Wu
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Joseph A. Phillips
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Colin D. Medley
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | - Weihong Tan
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
22
|
Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, SantaAna M, Danley D, West T, Lanfranchi G. Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. SENSORS (BASEL, SWITZERLAND) 2009; 9:3122-48. [PMID: 22574066 PMCID: PMC3348825 DOI: 10.3390/s90403122] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 12/25/2022]
Abstract
DNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout. In this review, we will consider the different methods proposed for biochip construction, focusing on electrochemical detection of DNA. We also introduce a novel single-stranded DNA platform performing high-throughput SNP detection and gene expression profiling.
Collapse
Affiliation(s)
- Stefano Cagnin
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| | - Marcelo Caraballo
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Carlotta Guiducci
- DEIS Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; E-Mail:
- IBI-EPFL, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Station 15 CH-1015 Lausanne, Switzerland
| | - Paolo Martini
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| | - Marty Ross
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Mark SantaAna
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - David Danley
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Todd West
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Gerolamo Lanfranchi
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| |
Collapse
|
23
|
Wang HN, Dinh TV. Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. NANOTECHNOLOGY 2009; 20:065101. [PMID: 19417369 PMCID: PMC4022306 DOI: 10.1088/0957-4484/20/6/065101] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have demonstrated for the first time the feasibility of multiplex detection using the surface-enhanced Raman scattering-based molecular sentinel (MS) technology in a homogeneous solution. Two MS nanoprobes tagged with different Raman labels were used to detect the presence of the erbB-2 and ki-67 breast cancer biomarkers. The multiplexing capability of the MS technique was demonstrated by mixing the two MS nanoprobes and tested in the presence of single or multiple DNA targets.
Collapse
Affiliation(s)
- Hsin-Neng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
| | - Tuan Vo Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Departments of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Chatelain G, Brisset H, Chaix C. A thermodynamic study of ferrocene modified hairpin oligonucleotides upon duplex formation: applications to the electrochemical detection of DNA. NEW J CHEM 2009. [DOI: 10.1039/b817057f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Krusiński T, Laskowska A, Ozyhar A, Dobryszycki P. The application of an immobilized molecular beacon for the analysis of the DNA binding domains from the ecdysteroid receptor proteins Usp and EcR's interaction with the hsp27 response element. ACTA ACUST UNITED AC 2008; 13:899-905. [PMID: 18812572 DOI: 10.1177/1087057108324496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nonstandard molecular beacon described in this article consists of 2 fragments, each built of a short single-stranded oligonucleotide sequence and a double-stranded sequence. One of these hybridization probes, labeled with a fluorescence donor (fluorescein), is solid phase immobilized. The second nonimmobilized probe is labeled with a fluorescence quencher (dabcyl). Annealing of both probes via single-stranded sequences was possible only in the presence of a specific protein molecule that recognized the response element sequence initially separated between the immobilized and nonimmobilized fragments. The system was applied successfully to detect the sequence-specific interaction of a natural hsp27 response element from the promoter of the hsp27 gene with the DNA binding domains of 2 nuclear receptor proteins: ultraspiracle Usp (UspDBD) and the ecdysone receptor EcR (EcRDBD). Measured in the absence of EcRDBD, the dissociation constant, K(d) of the UspDBD-hsp27 complex, was determined to be 3.26 nM, whereas for UspDBD devoid of the A-box (UspDBDDeltaA-hsp27 ), the dissociation constant was 4.81 nM. The respective K(d) values in the presence of EcRDBD were 2.43 nM and 10.80 nM. The results obtained with the immobilized molecular beacon technology were in agreement with those obtained by conventional fluorescence titrations and by fluorescence resonance energy transfer measurements with nonimmobilized beacons.
Collapse
Affiliation(s)
- Tomasz Krusiński
- Faculty of Chemistry, Division of Biochemistry, Wroclaw University of Technology, Wroclaw, Poland
| | | | | | | |
Collapse
|
26
|
Mir M, Lozano-Sánchez P, Katakis I. Towards a target label-free suboptimum oligonucleotide displacement-based detection system. Anal Bioanal Chem 2008; 391:2145-52. [PMID: 18454283 PMCID: PMC2755782 DOI: 10.1007/s00216-008-2119-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/28/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
Abstract
A novel method for the future development of label-free DNA sensors is proposed here. The approach is based on the displacement of a labelled suboptimum mutated oligonucleotide hybridised with the immobilised biotin-capture probe. The target fully complementary to the biotin-capture probe can displace the labelled oligonucleotide causing a subsequent decrease of the signal that verifies the presence of the target. The decrease of signal was demonstrated to be proportional to the target concentration. A study of the hybridisation of mutated and complementary labelled oligonucleotides with an immobilised biotin-capture probe was carried out. Different kinetic and thermodynamic behaviour was observed for heterogeneous hybridisation of biotin-capture probe with complementary or suboptimum oligonucleotides. The displacement method evaluated colourimetrically achieved the objective of decreasing the response time from 1 h for direct hybridisation of 19-mer oligonucleotides in the direct enzyme-linked oligonucleotide assay (ELONA) to 5 min in the case of displacement detection in the micromolar concentration range.
Collapse
Affiliation(s)
- Mònica Mir
- Bioengineering and Bioelectrochemistry Group, Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avd. Països Catalans, 26, 43007, Tarragona, Spain.
| | | | | |
Collapse
|
27
|
Raab M, Hancock WO. Transport and detection of unlabeled nucleotide targets by microtubules functionalized with molecular beacons. Biotechnol Bioeng 2008; 99:764-73. [PMID: 17879297 DOI: 10.1002/bit.21645] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Shrinking biosensors down to microscale dimensions enables increases in sensitivity and the ability to analyze minute samples such as the contents of individual cells. The goal of the present study is to create mobile microscale biosensors by attaching molecular beacons to microtubules and using kinesin molecular motors to transport these functionalized microtubules across two-dimensional surfaces. Previous work has shown that microfluidic channels can be functionalized with kinesin motors such that microtubules can be transported and directed through these channels without the need for external power or pressure-driven pumping. In this work, we show that molecular beacons can be attached to microtubules such that both the fluorescence reporting capability of the beacon and the motility of the microtubules are retained. These molecular beacon-functionalized microtubules were able to bind ssDNA target sequences, transport them across surfaces, and report their presence by an increase in fluorescence that was detected by fluorescence microscopy. This work is an important step toward creating hybrid microdevices for sensitive virus detection or analyzing mRNA profiles of individual cells.
Collapse
Affiliation(s)
- Matthew Raab
- Department of Bioengineering, 229 Hallowell Building, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
28
|
Equilibrium analysis of the DNA binding domain of the ultraspiracle protein interaction with the response element from the hsp27 gene promoter--the application of molecular beacon technology. J Fluoresc 2007; 18:1-10. [PMID: 18049881 DOI: 10.1007/s10895-007-0285-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Ecdysteroids initiate molting and metamorphosis in insects via a receptor which belongs to the superfamily of nuclear receptors. The ecdysone receptor consists of two proteins: the ecdysone receptor (EcR) and the ultraspiracle (Usp). The EcR-Usp dimer conducts transcription through a hsp27(pal) response element. Usp acts as an anchor orienting the whole complex on the DNA. The molecular beacon methodology was applied to detect the sequence-specific DNA of a natural hsp27 (pal) or mutated protein interaction with the DNA binding domain from the Usp. The dissociation constant, K(d), of the UspDBD-hsp27 (pal) complex was determined to be 1.42+/-0.48 nM, whereas K(d) for UspDBD(DeltaA)-hsp27(pal) was 6.6+/-0.5 nM. Mutation of Val-71 for Ala blocks formation of the protein-DNA complex in contrast to Glu-19 mutation for Ala for which K(d)=4.31+/-1.01 nM. The results obtained with the molecular beacon technology are related to those obtained by fluorescence anisotropy titrations.
Collapse
|
29
|
Conley NR, Pomerantz AK, Wang H, Twieg RJ, Moerner WE. Bulk and single-molecule characterization of an improved molecular beacon utilizing H-dimer excitonic behavior. J Phys Chem B 2007; 111:7929-31. [PMID: 17583944 PMCID: PMC2663424 DOI: 10.1021/jp073310d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pairs of fluorophores in close proximity often show self-quenching of fluorescence by the well-known H-dimer mechanism. We use a pair of fluorophores in the new dicyanomethylenedihydrofuran (DCDHF) dye family in the design and characterization of a new fluorescent probe for nucleic acid detection, which we refer to as a self-quenched intramolecular dimer (SQuID) molecular beacon (MB). We obtain a quenching efficiency of 97.2%, higher than the only other reported value for a MB employing fluorophore self-quenching by H-dimer formation. Furthermore, the excellent single-molecule (SM) emitter characteristics of the DCDHF dyes allow observation of individual SQuID MB-target complexes immobilized on a surface, where the doubled SM emission intensity of our target-bound beacon ensures a higher signal-to-background ratio than conventional fluorophore-quencher MBs. Additional advantages of the SQuID MB are single-pot labeling, visible colorimetric detection of the target, and intrinsic single-molecule two-step photobleaching behavior, which offers a specific means of discriminating between functional MBs and spurious fluorescence.
Collapse
|
30
|
Tam-Chang SW, Carson TD, Huang L, Publicover NG, Hunter KW. Stem–loop probe with universal reporter for sensing unlabeled nucleic acids. Anal Biochem 2007; 366:126-30. [PMID: 17509514 DOI: 10.1016/j.ab.2007.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 02/23/2007] [Accepted: 03/08/2007] [Indexed: 11/29/2022]
Abstract
In this article, we present the design principles and application of a motif composed of a stem-loop probe (SP) hybridized to a fluorescently labeled universal reporter (UR) for sensing unlabeled nucleic acids. At room temperature, SP-UR is in the hairpin-closed form in which the fluorophore of UR is in proximity to the G bases of the hairpin, where consequently the fluorescent emission is quenched significantly. On hybridization with target, SP-UR is trapped in the hairpin-opened configuration in which the fluorophore and the G quenchers are apart. This turns off quenching, increases emission intensity, and signals the presence of target. Compared with the common approach that employs an oligonucleotide probe with a covalently linked fluorophore, the use of a fluorescently labeled universal reporter strand hybridized to an unlabeled stem-loop probe provides a more efficient approach to the fabrication of nucleic acid sensors and microarrays potentially useful for real-time analysis.
Collapse
Affiliation(s)
- Suk-Wah Tam-Chang
- Department of Chemistry, College of Science, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
31
|
Situma C, Moehring AJ, Noor MAF, Soper SA. Immobilized molecular beacons: a new strategy using UV-activated poly(methyl methacrylate) surfaces to provide large fluorescence sensitivities for reporting on molecular association events. Anal Biochem 2007; 363:35-45. [PMID: 17300739 PMCID: PMC2836515 DOI: 10.1016/j.ab.2006.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/21/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
We have designed appropriately prepared solid supports consisting of poly(methyl methacrylate) (PMMA) that provide enhanced performance levels for molecular beacons (MBs) that are used for recognizing and reporting on signature DNA sequences in solution. The attachment of primary amine-containing MBs to the PMMA surface was carried out by UV activating the PMMA to produce surface-confined carboxylate groups, which could then be readily coupled to the MBs using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) chemistry. The fluorescence properties of the MBs covalently attached onto this UV-activated PMMA surface were evaluated and compared with the same MBs immobilized onto glass supports. We observed improved limits of detection for the solution complement to the MBs when immobilized onto PMMA, and this was attributed to both the lower autofluorescence levels exhibited by PMMA at the detection wavelengths used and the improved quenching efficiency of the MBs when in their closed hairpin configuration when strapped to a PMMA surface as opposed to glass. As an example of the utility of the PMMA-based immobilization strategies developed for MBs, we report on the analysis of complementary DNAs specific for fruitless (fru) and Ods-site homeobox (OdsH) genes extracted from Drosophila melanogaster fruit flies. The fru gene functions in the central nervous system, where it is necessary for sex determination and male courtship behavior, whereas the OdsH gene is involved in the regulation of transcription.
Collapse
Affiliation(s)
- Catherine Situma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
32
|
Song JM, Yang MS, Kwan HT. Development of a novel DNA chip based on a bipolar semiconductor microchip system. Biosens Bioelectron 2007; 22:1447-53. [PMID: 16890422 DOI: 10.1016/j.bios.2006.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 06/19/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
We have applied an integrated circuit photodiode array (PDA) chip system to a DNA chip. The PDA chip system, constructed using conventional bipolar semiconductor technology, acts as a solid transducer surface as well as a two-dimensional photodetector. DNA hybridization was performed directly on the PDA chip. The target DNA, the Bacillus subtilis sspE gene, was amplified by polymerase chain reaction (PCR). The 340-bp PCR product was labeled using digoxigenin (DIG). A silicon nitride layer on the photodiode was treated with poly-L-lysine to immobilize the DNA on the surface of the photodiode detection elements. Consequently, the surface of the photodiode detector became positively charged. An anti-DIG-alkaline phosphatase conjugate was reacted with the hybridized DIG-labeled DNA. A color reaction was performed based on the enzymatic reaction between nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP) staining solution and a DNA complex containing antibodies. A blue precipitate was formed on the surfaces of the photodiode detection elements. Successful quantitative analysis of the hybridized PCR products was achieved from the light absorption properties of the blue enzymatic reaction product that was produced after a series of reaction processes. Our DNA chip system avoids the complicated optical alignments and light-collecting optical components that are usually required for an optical DNA chip device. As a result, a simple, compact, portable and low-cost DNA chip is achieved. This system has great potential as an alternative system to the conventional DNA reader.
Collapse
Affiliation(s)
- Joon Myong Song
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | | | | |
Collapse
|
33
|
Zuo X, Yang X, Wang K, Tan W, Wen J. A novel sandwich assay with molecular beacon as report probe for nucleic acids detection on one-dimensional microfluidic beads array. Anal Chim Acta 2007; 587:9-13. [PMID: 17386747 DOI: 10.1016/j.aca.2007.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 01/05/2007] [Accepted: 01/13/2007] [Indexed: 02/06/2023]
Abstract
A novel sandwich assay with molecular beacons as report probes has been developed and integrated into one-dimensional microfluidic beads array (1-D chip) to pursue a label-free and elution-free detection of DNA/mRNA targets. In contrast with the immobilized molecular beacons, this sandwich assay can offer lower fluorescence background and correspondingly higher sensitivity. Furthermore, this sandwich assay on 1-D chip operating in conjunction with molecular beacon technique allows multiple targets detection without the need of laborious and time-consuming elution, which makes the experiment process simple, easy to handle, and reproducible results. In the experiment, the synthesized DNA targets with different concentrations were detected with a detection limit of approximately 0.05 nM. Moreover, the mRNA expression changes in A549 cells before and after anticancer drug 5-flouorouracil treatments were detected and the results were validated by the conventional RT-PCR method.
Collapse
Affiliation(s)
- Xinbing Zuo
- State Key Laboratory of Chemo/Biosensing & Chemometrics, Biomedical Engineering Center, College of Chemistry & Chemical Engineering, Hunan University, Engineering Research Center for Bio-Nanotechnology of Hunan Province, Changsha 410082, China
| | | | | | | | | |
Collapse
|
34
|
Chin CD, Linder V, Sia SK. Lab-on-a-chip devices for global health: past studies and future opportunities. LAB ON A CHIP 2007; 7:41-57. [PMID: 17180204 DOI: 10.1039/b611455e] [Citation(s) in RCA: 440] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A rapidly emerging field in lab-on-a-chip (LOC) research is the development of devices to improve the health of people in developing countries. In this review, we identify diseases that are most in need of new health technologies, discuss special design criteria for LOC devices to be deployed in a variety of resource-poor settings, and review past research into LOC devices for global health. We focus mainly on diagnostics, the nearest-term application in this field.
Collapse
Affiliation(s)
- Curtis D Chin
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
35
|
Marmé N, Friedrich A, Müller M, Nolte O, Wolfrum J, Hoheisel JD, Sauer M, Knemeyer JP. Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nucleic Acids Res 2006; 34:e90. [PMID: 16870719 PMCID: PMC1540729 DOI: 10.1093/nar/gkl495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We demonstrate the specific identification of single nucleotide polymorphism (SNP) responsible for rifampicin resistance of Mycobacterium tuberculosis applying fluorescently labeled DNA-hairpin structures (smart probes) in combination with single-molecule fluorescence spectroscopy. Smart probes are singly labeled hairpin-shaped oligonucleotides bearing a fluorescent dye at the 5′ end that is quenched by guanosine residues in the complementary stem. Upon hybridization to target sequences, a conformational change occurs, reflected in a strong increase in fluorescence intensity. An excess of unlabeled (‘cold’) oligonucleotides was used to prevent the formation of secondary structures in the target sequence and thus facilitates hybridization of smart probes. Applying standard ensemble fluorescence spectroscopy we demonstrate the identification of SNPs in PCR amplicons of mycobacterial rpoB gene fragments with a detection sensitivity of 10−8 M. To increase the detection sensitivity, confocal fluorescence microscopy was used to observe fluorescence bursts of individual smart probes freely diffusing through the detection volume. By measuring burst size, burst duration and fluorescence lifetime for each fluorescence burst the discrimination accuracy between closed and open (hybridized) smart probes could be substantially increased. The developed technique enables the identification of SNPs in 10−11 M solutions of PCR amplicons from M.tuberculosis in only 100 s.
Collapse
Affiliation(s)
- Nicole Marmé
- Institute of Physical Chemistry, University of HeidelbergIm Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Achim Friedrich
- Department of Functional Genome Analysis, German Cancer Research CenterIm Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Matthias Müller
- Institute of Physical Chemistry, University of HeidelbergIm Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Oliver Nolte
- Institute of Physical Chemistry, University of HeidelbergIm Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Jürgen Wolfrum
- Institute of Physical Chemistry, University of HeidelbergIm Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Jörg D. Hoheisel
- Department of Functional Genome Analysis, German Cancer Research CenterIm Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Markus Sauer
- Applied Laser Physics and Laser Spectroscopy, University of BielefeldUniversitätsstrasse 25, 33615 Bielefeld, Germany
| | - Jens-Peter Knemeyer
- Department of Functional Genome Analysis, German Cancer Research CenterIm Neuenheimer Feld 580, 69120 Heidelberg, Germany
- To whom correspondence should be addressed. Tel: +49 622 154 5044; Fax: +49 622 154 5050;
| |
Collapse
|
36
|
|
37
|
Bang GS, Cho S, Kim BG. A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 2006; 21:863-70. [PMID: 16257654 DOI: 10.1016/j.bios.2005.02.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/02/2005] [Accepted: 02/04/2005] [Indexed: 01/25/2023]
Abstract
A beacon aptamer-based biosensor for the detection of thrombin was developed using electrochemical transduction method. Gold surface was modified with a beacon aptamer covalently linked at 5'-terminus with a linker containing a primary aliphatic amine. Methylene blue (MB) was intercalated into the beacon sequence, and used as an electrochemical marker. When the beacon aptamer immobilized on gold surface encounters thrombin, the hairpin forming beacon aptamer is conformationally changed to release the intercalated MB, resulting a decrease in electrical current intensity in voltamogram. The peak signal of the MB is clearly decreased by the binding of thrombin onto the beacon aptamer. The linear range of the signal was observed between 0 and 50.8 nM of thrombin with 0.999 correlation factor. This method was able to linearly and selectively detect thrombin with a detection limit of 11 nM.
Collapse
Affiliation(s)
- Gyeong Sook Bang
- School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-ku, South Korea
| | | | | |
Collapse
|
38
|
Deng P, Lee YK, Cheng P. Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors. Biosens Bioelectron 2006; 21:1443-50. [PMID: 16099153 DOI: 10.1016/j.bios.2005.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 11/23/2022]
Abstract
Two-dimensional micro-bubble actuator arrays were developed and studied in detail to enhance the hybridization kinetics of a DNA micro-biosensor. The hybridization between a molecular beacon, a kind of oligonucleotide probe, and its complement was investigated in a millimeter-sized PDMS based reaction chamber, where various 2D micro-heater arrays were distributed on the bottom for micro-bubble generation. The hybridization assay without the micro-bubble actuation revealed that the fluorescence increased fast at the beginning and slowed down after that. However, a uniform fluorescence increase was observed when periodic micro-bubble agitation was introduced in the static hybridization solution. A comparison of hybridization assays with and without micro-bubble agitation revealed that the hybridization time could be effectively shortened by 33% with 10 cycles of micro-bubble agitation from a 2 x 1 bubble actuator array, and by 43% with 10 cycles of micro-bubble agitation from a 2 x 2 bubble actuator array.
Collapse
Affiliation(s)
- Peigang Deng
- Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon
| | | | | |
Collapse
|
39
|
Bally M, Halter M, Vörös J, Grandin HM. Optical microarray biosensing techniques. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2375] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Li S, Floriano PN, Christodoulides N, Fozdar DY, Shao D, Ali MF, Dharshan P, Mohanty S, Neikirk D, McDevitt JT, Chen S. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection. Biosens Bioelectron 2005; 21:574-80. [PMID: 16202870 DOI: 10.1016/j.bios.2004.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 12/10/2004] [Accepted: 12/13/2004] [Indexed: 11/18/2022]
Abstract
This paper presents disposable protein analysis chips with single- or four-chamber-constructed from poly(dimethylsiloxane) (PDMS) and silicon. The chips are composed of a multilayer stack of PDMS layers that sandwich a silicon microchip. This inner silicon chip features an etched array of micro-cavities hosting polymeric beads. The sample is introduced into the fluid network through the top PDMS layer, where it is directed to the bead chamber. After reaction of the analyte with the probe beads, the signal generated on the beads is captured with a CCD camera, digitally processed, and analyzed. An established bead-based fluorescent assay for C-reactive protein (CRP) was used here to characterize these hybrid chips. The detection limit of the single-chamber protein chip was found to be 1 ng/ml. Additionally, using a back pressure compensation method, the signals from each chamber of the four-chamber chip were found to fall within 10% of each other.
Collapse
Affiliation(s)
- Shifeng Li
- Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, C2200 Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Du H, Strohsahl CM, Camera J, Miller BL, Krauss TD. Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. J Am Chem Soc 2005; 127:7932-40. [PMID: 15913384 DOI: 10.1021/ja042482a] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The separate developments of microarray patterning of DNA oligonucleotides, and of DNA hairpins as sensitive probes for oligonucleotide identification in solution, have had a tremendous impact on basic biological research and clinical applications. We have combined these two approaches to develop arrayable and label-free biological sensors based on fluorescence unquenching of DNA hairpins immobilized on metal surfaces. The thermodynamic and kinetic response of these sensors, and the factors important in hybridization efficiency, were investigated. Hybridization efficiency was found to be sensitive to hairpin secondary structure, as well as to the surface distribution of DNA hairpins on the substrate. The identity of the bases used in the hairpin stem as well as the overall loop length significantly affected sensitivity and selectivity. Surface-immobilized hairpins discriminated between two sequences with a single base-pair mismatch with high sensitivity (over an order of magnitude difference in signal) under identical assay conditions (no change in stringency). This represents a significant improvement over other microarray-based techniques.
Collapse
Affiliation(s)
- Hui Du
- Department of Chemistry, and The Center for Future Health, University of Rochester, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
42
|
Weis BK, Balshaw D, Barr JR, Brown D, Ellisman M, Lioy P, Omenn G, Potter JD, Smith MT, Sohn L, Suk WA, Sumner S, Swenberg J, Walt DR, Watkins S, Thompson C, Wilson SH. Personalized exposure assessment: promising approaches for human environmental health research. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:840-8. [PMID: 16002370 PMCID: PMC1257643 DOI: 10.1289/ehp.7651] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Accepted: 03/03/2005] [Indexed: 05/03/2023]
Abstract
New technologies and methods for assessing human exposure to chemicals, dietary and lifestyle factors, infectious agents, and other stressors provide an opportunity to extend the range of human health investigations and advance our understanding of the relationship between environmental exposure and disease. An ad hoc Committee on Environmental Exposure Technology Development was convened to identify new technologies and methods for deriving personalized exposure measurements for application to environmental health studies. The committee identified a "toolbox" of methods for measuring external (environmental) and internal (biologic) exposure and assessing human behaviors that influence the likelihood of exposure to environmental agents. The methods use environmental sensors, geographic information systems, biologic sensors, toxicogenomics, and body burden (biologic) measurements. We discuss each of the methods in relation to current use in human health research; specific gaps in the development, validation, and application of the methods are highlighted. We also present a conceptual framework for moving these technologies into use and acceptance by the scientific community. The framework focuses on understanding complex human diseases using an integrated approach to exposure assessment to define particular exposure-disease relationships and the interaction of genetic and environmental factors in disease occurrence. Improved methods for exposure assessment will result in better means of monitoring and targeting intervention and prevention programs.
Collapse
Affiliation(s)
- Brenda K Weis
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|