1
|
Yuan Z, Han M, Li D, Hao R, Guo X, Sang S, Zhang H, Ma X, Jin H, Xing Z, Zhao C. A cost-effective smartphone-based device for rapid C-reaction protein (CRP) detection using magnetoelastic immunosensor. LAB ON A CHIP 2023; 23:2048-2056. [PMID: 36916284 DOI: 10.1039/d2lc01065h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
C-Reaction protein (CRP) is a marker of nonspecific immunity for vital signs and wound assessment, and it can be used to diagnose infections in clinical medicine. However, measuring CRP level currently requires hospital-based instruments, high-cost reagents, and a complex process, all of which have limited its full capabilities for self-detection, a growing trend in modern medicine. In this study, we developed a novel smartphone-based device using advanced methods of magnetoelastic immunosensing to mitigate these limitations. We combined a system-on-chip (SoC) hardware architecture with smartphone apps to realize the sampling of resonance frequency shift on magnetoelastic chips, which can determine the ultra-sensitivity to mass change caused by the binding of anti-CRP antibody and CRP. Through detecting a multi-group of samples, we found that the resonance frequency shift was linearly proportional to the CRP concentration in the range from 0.1 to 100 μg mL-1, with a sensitivity of 12.90 Hz μg-1 mL-1 and a detection limit of 2.349 × 10-4 μg mL-1. Meanwhile, compared with the large-scale instrument used in clinical settings, the performance of our device was stable and significantly more portable, rapid and cost-effective, offering excellent potential for modern home-based diagnosis.
Collapse
Affiliation(s)
- Zhongyun Yuan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengshu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Donghao Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Runfang Hao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongpeng Zhang
- Department of Vascular Surgery, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xingyi Ma
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Hu Jin
- Division of Electrical Engineering, Hanyang University, 15588 Ansan, Republic of Korea
| | - Zhijin Xing
- Department of Ultrasound Medicine, Shenzhen Hospital of the University of Hong Kong, 518053, Shenzhen, China
| | - Chun Zhao
- College of Information and Communication Engineering, Sungkyunkwan University, Chunchun-Dong, Changan-Ku, 440746 Suwon, Republic of Korea.
| |
Collapse
|
2
|
Chen X, Wang M, Zhao G. Point-of-Care Assessment of Hemostasis with a Love-Mode Surface Acoustic Wave Sensor. ACS Sens 2020; 5:282-291. [PMID: 31903758 DOI: 10.1021/acssensors.9b02382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monitoring of the hemostasis status is essential for therapeutic anticoagulants, undergoing surgery, cardiovascular diseases, etc. Although the clinical values of conventional blood coagulation tests have been well demonstrated, these devices have limitations such as large and expensive equipment, excessive sample volumes, long turnaround times, and difficulty in miniaturization for point-of-care use. Here, we present a novel strategy to evaluate blood hemostasis using the single-port Love-mode surface acoustic wave (SLSAW) sensor. The SLSAW sensor was designed as a plug-and-play-type unit for disposable use and operated under the harmonic resonant mode to produce frequency response to the blood coagulation cascade. Compared with a quartz crystal microbalance, Lamb wave, and film bulk acoustic resonator, the frequency shift of SLSAW was significantly increased, ranging from approximately 8960 to 10 368 kHz, which indicated enhancement of the signal-to-noise ratio. To demonstrate the feasibility of the SLSAW, studies were carried out to examine the effects of temperature and clotting reagents on coagulation times and kinetics. Activated partial thromboplastin times of plasma were validated by comparing with SYSMEX CA-7000 with the correlation (R2) as 0.996. In terms of coagulation kinetics, reaction time, clot formation time, maximum frequency shift, and clot formation rate of whole blood correlated well with corresponding parameters of the standard thromboelastography (TEG) analyzer (R2 = 0.9942, 0.9868, 0.9712, and 0.9939, respectively). The SLSAW sensor, with the advantages of low cost, small size, little sample consumption (1 μL), disposable use, and simple operation, is a promising tool for point-of-care diagnosis of hemostasis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Meng Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| |
Collapse
|
3
|
Ren L, Yu K, Tan Y. Applications and Advances of Magnetoelastic Sensors in Biomedical Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1135. [PMID: 30959981 PMCID: PMC6479581 DOI: 10.3390/ma12071135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 11/25/2022]
Abstract
We present a comprehensive investigation into magnetoelastic sensors (MES) technology applied to biomedical engineering. This includes the working principles, detection methods, and application fields of MES technology. MES are made of amorphous metallic glass ribbons and are wireless and passive, meaning that it is convenient to monitor or measure the parameters related to biomedical engineering. MES are based on the inverse magnetoelastic (Villari) effect. When MES are subjected to mechanical stress, their magnetic susceptibility will change accordingly. And the susceptibility of MES is directly related to their magnetic permeability. The varying permeability can positively reflect the applied stress. The various detection methods that have been developed for different field applications include measurement of force, stress, and strain, monitoring of various chemical indexes, and consideration of different biomedical parameters such as the degradation rate and force conditions of artificial bone, as well as various physiological indexes including ammonia level, glucose concentration, bacteria growth, and blood coagulation.
Collapse
Affiliation(s)
- Limin Ren
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | | | | |
Collapse
|
4
|
Nadkarni SK. Comprehensive Coagulation Profiling at the Point-of-Care Using a Novel Laser-Based Approach. Semin Thromb Hemost 2019; 45:264-274. [PMID: 30887486 DOI: 10.1055/s-0039-1683842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Delays in identifying internal bleeding are life-threatening, thus underscoring the need for rapid and comprehensive coagulation profiling at the bedside. The authors review a novel optical coagulation profiler that measures several coagulation metrics including prothrombin time, activated clotting time, clot polymerization rate (α-angle), clot stiffness (maximum amplitude), fibrinolysis (LY), and platelet function, using a single multifunctional instrument. The optical profiler is based on the principles of Laser Speckle Rheology that quantifies tissue viscoelasticity from light scattering patterns called laser speckle. To operate the optical profiler, whole blood (40 μL) is loaded into a disposable cartridge, laser speckle patterns are recorded via a camera, and the viscoelasticity of clotting blood is estimated from speckle intensity fluctuations. By monitoring alterations in viscoelastic moduli over time during clot initiation, thrombin generation, fibrin crosslinking, clot stabilization, and LY, global coagulation parameters are obtained within 10 minutes using a drop of whole blood. Clinical testing in over 500 patients to date has confirmed the accuracy of the optical profiler for comprehensively assessing coagulation status against conventional coagulation tests and thromboelastography. Recent studies have further demonstrated the capability to quantify platelet aggregation induced by adenosine diphosphate in a drop of platelet-rich-plasma in the absence of applied shear stress. Together, these studies demonstrate that global coagulation profiling in addition to platelet function may be accomplished using a single multifunctional device. Thus, by enabling rapid and comprehensive coagulation and platelet function profiling at the bedside, the optical profiler will likely advance the capability to identify and manage patients with an elevated risk for hemorrhage.
Collapse
Affiliation(s)
- Seemantini K Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Li Z, Wang Y, Xue X, McCracken B, Ward K, Fu J. Carbon Nanotube Strain Sensor Based Hemoretractometer for Blood Coagulation Testing. ACS Sens 2018; 3:670-676. [PMID: 29485284 PMCID: PMC6223013 DOI: 10.1021/acssensors.7b00971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coagulation monitoring is essential for perioperative care and thrombosis treatment. However, existing assays for coagulation monitoring have limitations such as a large footprint and complex setup. In this work, we developed a miniaturized device for point-of-care blood coagulation testing by measuring dynamic clot retraction force development during blood clotting. In this device, a blood drop was localized between a protrusion and a flexible force-sensing beam to measure clot retraction force. The beam was featured with micropillar arrays to assist the deposition of carbon nanotube films, which served as a strain sensor to achieve label-free electrical readout of clot retraction force in real time. We characterized mechanical and electrical properties of the force-sensing beam and optimized its design. We further demonstrated that this blood coagulation monitoring device could obtain results that were consistent with those using an imaging method and that the device was capable of differentiating blood samples with different coagulation profiles. Owing to its low fabrication cost, small size, and low consumption of blood samples, the blood coagulation testing device using carbon nanotube strain sensors holds great potential as a point-of-care tool for future coagulation monitoring.
Collapse
Affiliation(s)
- Zida Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yize Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brendan McCracken
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kevin Ward
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Maji D, Suster MA, Kucukal E, Sekhon UDS, Gupta AS, Gurkan UA, Stavrou EX, Mohseni P. ClotChip: A Microfluidic Dielectric Sensor for Point-of-Care Assessment of Hemostasis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1459-1469. [PMID: 28920906 PMCID: PMC6091230 DOI: 10.1109/tbcas.2017.2739724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper describes the design, fabrication, and testing of a microfluidic sensor for dielectric spectroscopy of human whole blood during coagulation. The sensor, termed ClotChip, employs a three-dimensional, parallel-plate, capacitive sensing structure with a floating electrode integrated into a microfluidic channel. Interfaced with an impedance analyzer, the ClotChip measures the complex relative dielectric permittivity, ϵr , of human whole blood in the frequency range of 40 Hz to 100 MHz. The temporal variation in the real part of the blood dielectric permittivity at 1 MHz features a time to reach a permittivity peak, , as well as a maximum change in permittivity after the peak, , as two distinct parameters of ClotChip readout. The ClotChip performance was benchmarked against rotational thromboelastometry (ROTEM) to evaluate the clinical utility of its readout parameters in capturing the clotting dynamics arising from coagulation factors and platelet activity. exhibited a very strong positive correlation ( r = 0.99, p < 0.0001) with the ROTEM clotting time parameter, whereas exhibited a strong positive correlation (r = 0.85, p < 0.001) with the ROTEM maximum clot firmness parameter. This paper demonstrates the ClotChip potential as a point-of-care platform to assess the complete hemostatic process using <10 μL of human whole blood.
Collapse
|
7
|
Tripathi MM, Egawa S, Wirth AG, Tshikudi DM, Van Cott EM, Nadkarni SK. Clinical evaluation of whole blood prothrombin time (PT) and international normalized ratio (INR) using a Laser Speckle Rheology sensor. Sci Rep 2017; 7:9169. [PMID: 28835607 PMCID: PMC5569083 DOI: 10.1038/s41598-017-08693-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
Prothrombin time (PT) and the associated international normalized ratio (INR) are routinely tested to assess the risk of bleeding or thrombosis and to monitor response to anticoagulant therapy in patients. To measure PT/INR, conventional coagulation testing (CCT) is performed, which is time-consuming and requires the separation of cellular components from whole blood. Here, we report on a portable and battery-operated optical sensor that can rapidly quantify PT/INR within seconds by measuring alterations in the viscoelastic properties of a drop of whole blood following activation of coagulation with thromboplastin. In this study, PT/INR values were measured in 60 patients using the optical sensor and compared with the corresponding CCT values. Our results report a close correlation and high concordance between PT/INR measured using the two approaches. These findings confirm the accuracy of our optical sensing approach for rapid PT/INR testing in whole blood and highlight the potential for use at the point-of-care or for patient self-testing.
Collapse
Affiliation(s)
- Markandey M Tripathi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Satoru Egawa
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Department of Precision Engineering, University of Tokyo, Tokyo, Japan
| | - Alexandra G Wirth
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Diane M Tshikudi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Elizabeth M Van Cott
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Seemantini K Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
8
|
Maji D, Suster MA, Kucukal E, Gurkan UA, Stavrou EX, Mohseni P. A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:291-294. [PMID: 28268334 DOI: 10.1109/embc.2016.7590697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper describes the design and construct of a fully biocompatible, microfluidic, dielectric sensor targeted at monitoring human whole blood coagulation at the point-of-care (POC). The sensor assembly procedure involves using sputtered electrodes in a microfluidic channel with a physiologically relevant height of 50μm to create a three-dimensional (3D), parallel-plate, capacitive sensing area. The sensor is constructed with biocompatible materials of polymethyl methacrylate (PMMA) for the substrate and titanium nitride (TiN) for the sensing and floating electrodes. The real part of the complex relative dielectric permittivity of human whole blood is measured from 10kHz to 100MHz using an impedance analyzer and under static conditions. The temporal variation in dielectric permittivity at 1MHz for human whole blood undergoing coagulation shows a peak in permittivity at 5 minutes, which closely matches our previously established results. This sensor can pave the way for monitoring blood coagulation under physiologically relevant shear flow rates in the future.
Collapse
|
9
|
Sant'Anna MRV, Soares AC, Araujo RN, Gontijo NF, Pereira MH. Triatomines (Hemiptera, Reduviidae) blood intake: Physical constraints and biological adaptations. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:20-26. [PMID: 27521585 DOI: 10.1016/j.jinsphys.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In order to efficiently obtain blood from their vertebrate hosts, bloodsucking arthropods have undergone an evolutionary selection process leading to specialist adaptations in their feeding apparatus (mouthparts and suction pumps) and salivary molecules. These adaptations act to counteract haemostasis, inflammation, and immune responses in their vertebrate hosts. The association of haematophagous arthropods with vertebrate hosts during a blood feed allows the transmission of pathogens between their hosts and vectors in a tripartite interaction. Feeding mechanisms in haematophagous arthropod species have been the subject of studies over at least eight decades worldwide, as a consequence of the importance of vector-borne diseases and their impact on human health. Here we review studies of the feeding mechanisms of triatomine bugs, with a particular focus on factors that influence their feeding performance when obtaining a blood meal from different vertebrate hosts.
Collapse
Affiliation(s)
- Maurício Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Belo Horizonte CEP 31270-901, Brazil
| | - Adriana Coelho Soares
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Belo Horizonte CEP 31270-901, Brazil
| | - Ricardo Nascimento Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Belo Horizonte CEP 31270-901, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Belo Horizonte CEP 31270-901, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Belo Horizonte CEP 31270-901, Brazil.
| |
Collapse
|
10
|
Kell DB, Pretorius E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol (Camb) 2015; 7:24-52. [PMID: 25335120 DOI: 10.1039/c4ib00173g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the two phenomena are usually studied separately, we summarise a considerable body of literature to the effect that a great many diseases involve (or are accompanied by) both an increased tendency for blood to clot (hypercoagulability) and the resistance of the clots so formed (hypofibrinolysis) to the typical, 'healthy' or physiological lysis. We concentrate here on the terminal stages of fibrin formation from fibrinogen, as catalysed by thrombin. Hypercoagulability goes hand in hand with inflammation, and is strongly influenced by the fibrinogen concentration (and vice versa); this can be mediated via interleukin-6. Poorly liganded iron is a significant feature of inflammatory diseases, and hypofibrinolysis may change as a result of changes in the structure and morphology of the clot, which may be mimicked in vitro, and may be caused in vivo, by the presence of unliganded iron interacting with fibrin(ogen) during clot formation. Many of these phenomena are probably caused by electrostatic changes in the iron-fibrinogen system, though hydroxyl radical (OH˙) formation can also contribute under both acute and (more especially) chronic conditions. Many substances are known to affect the nature of fibrin polymerised from fibrinogen, such that this might be seen as a kind of bellwether for human or plasma health. Overall, our analysis demonstrates the commonalities underpinning a variety of pathologies as seen in both hypercoagulability and hypofibrinolysis, and offers opportunities for both diagnostics and therapies.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | | |
Collapse
|
11
|
Cakmak O, Ermek E, Kilinc N, Bulut S, Baris I, Kavakli IH, Yaralioglu GG, Urey H. A cartridge based sensor array platform for multiple coagulation measurements from plasma. LAB ON A CHIP 2015; 15:113-120. [PMID: 25353144 DOI: 10.1039/c4lc00809j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper proposes a MEMS-based sensor array enabling multiple clot-time tests for plasma in one disposable microfluidic cartridge. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge. This enables simple and low-cost cartridge designs and avoids reliability problems associated with electrical connections. The cartridge consists of microfluidic channels and MEMS microcantilevers placed in each channel. The microcantilevers are made of electroplated nickel. They are actuated remotely using an external electro-coil and the read-out is also conducted remotely using a laser. The phase difference between the cantilever oscillation and the coil drive is monitored in real time. During coagulation, the viscosity of the blood plasma increases resulting in a change in the phase read-out. The proposed assay was tested on human and control plasma samples for PT and aPTT measurements. PT and aPTT measurements from control plasma samples are comparable with the manufacturer's datasheet and the commercial reference device. The measurement system has an overall 7.28% and 6.33% CV for PT and aPTT, respectively. For further implementation, the microfluidic channels of the cartridge were functionalized for PT and aPTT tests by drying specific reagents in each channel. Since simultaneous PT and aPTT measurements are needed in order to properly evaluate the coagulation system, one of the most prominent features of the proposed assay is enabling parallel measurement of different coagulation parameters. Additionally, the design of the cartridge and the read-out system as well as the obtained reproducible results with 10 μl of the plasma samples suggest an opportunity for a possible point-of-care application.
Collapse
Affiliation(s)
- O Cakmak
- Koç University, Mechanical Engineering, Rumeli Feneri Yolu, 34450 Sariyer, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tripathi MM, Hajjarian Z, Van Cott EM, Nadkarni SK. Assessing blood coagulation status with laser speckle rheology. BIOMEDICAL OPTICS EXPRESS 2014; 5:817-31. [PMID: 24688816 PMCID: PMC3959840 DOI: 10.1364/boe.5.000817] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 05/23/2023]
Abstract
We have developed and investigated a novel optical approach, Laser Speckle Rheology (LSR), to evaluate a patient's coagulation status by measuring the viscoelastic properties of blood during coagulation. In LSR, a blood sample is illuminated with laser light and temporal speckle intensity fluctuations are measured using a high-speed CMOS camera. During blood coagulation, changes in the viscoelastic properties of the clot restrict Brownian displacements of light scattering centers within the sample, altering the rate of speckle intensity fluctuations. As a result, blood coagulation status can be measured by relating the time scale of speckle intensity fluctuations with clinically relevant coagulation metrics including clotting time and fibrinogen content. Our results report a close correlation between coagulation metrics measured using LSR and conventional coagulation results of activated partial thromboplastin time, prothrombin time and functional fibrinogen levels, creating the unique opportunity to evaluate a patient's coagulation status in real-time at the point of care.
Collapse
Affiliation(s)
- Markandey M. Tripathi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth M. Van Cott
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
13
|
Soares AC, Araújo RN, Carvalho-Tavares J, Gontijo NDF, Pereira MH. Intravital microscopy and image analysis of Rhodnius prolixus (Hemiptera: Reduviidae) hematophagy: the challenge of blood intake from mouse skin. Parasitol Int 2013; 63:229-36. [PMID: 23886517 DOI: 10.1016/j.parint.2013.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 11/20/2022]
Abstract
Hematophagous insects transmit many of the most dangerous parasitic diseases. The transmission usually occurs during hematophagy or just after as this is when the vector and the host are in contact. The contact time is determined by the feeding performance of the insect in each host. In triatomines, feeding performance interferes with both their life cycle and the vectorial competence to transmit the hemoflagellate Trypanosoma cruzi. Triatomine bugs are vessel feeders, obtaining their blood meals directly from the vessels (venules or arterioles) of their vertebrate hosts. The host blood intake rate is not constant during the feeding, and the sucking frequency of triatomines tends to be higher and to contain fewer interruptions in pigeons than in mice. To identify the difficulties encountered by triatomine bugs in obtaining blood meals from mouse skin, we used intravital microscopy techniques associated with electromyograms of the cibarial pump. To monitor the vibration of the cannulated vessels and the blood flow through the head of the insect during the engorgement phase, we introduced a novel method for image analysis. The mean number of vessels used during a Rhodnius prolixus blood meal was 3.4±1.2, and the insects fed more in venules (63%) than in arterioles (37%). An important increase in vascular permeability was observed throughout the feeding. Platelet aggregation, rolling and leukocyte adherence were analyzed on the venular endothelium, showing remarkable increases for some time following the R. prolixus feeding. The reduction in sucking frequency that was observed during insect feeding was likely due to the increased cibarial pump filling time. The monitoring of the vessel wall pulsation also permitted the registration of regurgitation-like movements during blood pumping, with these movements being recorded mostly during the second half of the feeding. The evaluation of blood flow through the head of the insect suggested that the regurgitation-like movements were not true regurgitations and were caused by abrupt difficulties in the function of the cibarial pump. The role of the platelet plugs and the changes in blood viscosity at the R. prolixus feeding site are discussed. The method introduced in the present study to analyze the images brings new insights into the interaction between hematophagous vectors and their hosts, reinforcing the importance of insect saliva throughout the feeding process.
Collapse
Affiliation(s)
- Adriana Coelho Soares
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
14
|
The modelling of blood coagulation using the quartz crystal microbalance. J Biomech 2013; 46:437-42. [DOI: 10.1016/j.jbiomech.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022]
|
15
|
Araujo RN, Pereira MH, Soares AC, Pereira IDCA, Diotaiuti L, Gontijo NF, Lehane MJ, Guarneri AA. Effect of intestinal erythrocyte agglutination on the feeding performance of Triatoma brasiliensis (Hemiptera: Reduviidae). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:862-868. [PMID: 19524588 DOI: 10.1016/j.jinsphys.2009.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/28/2009] [Accepted: 06/04/2009] [Indexed: 05/27/2023]
Abstract
Triatoma brasiliensis is an important vector of Trypanosoma cruzi in Brazil. The feeding efficiency on its hosts depends on several parameters including the maintenance of the ingested blood at low viscosity, which could be modulated by the anterior midgut (crop) anticoagulant and haemagglutinant activities. In the present study, we characterized T. brasiliensis crop haemagglutination activity and evaluated its importance in the feeding process. Soluble crop contents (SCC) of T. brasiliensis were able to agglutinate rat, mouse and rabbit eryhtrocytes, but had no activity on cattle and Thrichomys apereoides, a rodent species commonly associated with T. brasiliensis in the wild. The haemagglutination was characterized by the immediate formation of several clusters of erythrocytes connected by flexible elastic-like fibers. The feeding efficiency of T. brasiliensis on rat (agglutinated by SCC) was almost double that from T. apereoides (not agglutinated by SCC). The influence of haemagglutination on feeding was confirmed by artificially feeding bugs on a diet composed of cattle or rat erythrocytes. The bugs fed on cattle erythrocytes had lower ingestion rates in comparison to those fed on rats. The results indicate that, in addition to other parameters, haemagglutination brought about by SCC has an important role in the feeding efficiency of T. brasiliensis.
Collapse
Affiliation(s)
- Ricardo N Araujo
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Evans PA, Hawkins K, Lawrence M, Williams RL, Barrow MS, Thirumalai N, Williams PR. Rheometry and associated techniques for blood coagulation studies. Med Eng Phys 2007; 30:671-9. [PMID: 17900965 DOI: 10.1016/j.medengphy.2007.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
This review considers various rheometrical approaches that have been adopted to study blood coagulation, with special reference to the rheological assessment of clotting time and studies of the evolution of viscoelasticity during the course of fibrin polymerization and cross-linking. The significance of the Gel Point in blood coagulation studies is discussed as a common feature of many of these studies in that they attempt to detect a liquid-to-solid transition during coagulation. Coagulation studies based on various forms of complex shear modulus measurements are considered, the latter being based principally on controlled stress and controlled strain rheometers. Also considered are the long established technique of thromboelastography and several emerging techniques such as wave propagation measurements, free oscillation rheometry, quartz crystal microbalance measurements and surface plasmon resonance.
Collapse
Affiliation(s)
- P A Evans
- Division of Clinical Haemorheology, Swansea NHS Trust Hospital, Morriston, and Centre for Complex Fluids Processing, School of Engineering, Swansea University, Swansea, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Araujo R, Campos I, Tanaka A, Santos A, Gontijo N, Lehane M, Pereira M. Brasiliensin: A novel intestinal thrombin inhibitor from Triatoma brasiliensis (Hemiptera: Reduviidae) with an important role in blood intake. Int J Parasitol 2007; 37:1351-8. [PMID: 17575982 PMCID: PMC2653937 DOI: 10.1016/j.ijpara.2007.04.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/16/2007] [Accepted: 04/24/2007] [Indexed: 11/27/2022]
Abstract
Every hematophagous invertebrate studied to date produces at least one inhibitor of coagulation. Among these, thrombin inhibitors have most frequently been isolated. In order to study the thrombin inhibitor from Triatoma brasiliensis and its biological significance for the bug, we sequenced the corresponding gene and evaluated its biological function. The T. brasiliensis intestinal thrombin inhibitor, termed brasiliensin, was sequenced and primers were designed to synthesize double strand RNA (dsRNA). Gene knockdown (RNAi) was induced by two injections of 15 μg of dsRNA into fourth instar nymphs. Forty-eight hours after the second injection, bugs from each group were allowed to feed on hamsters. PCR results showed that injections of dsRNA reduced brasiliensin expression in the anterior midgut by approximately 71% in knockdown nymphs when compared with controls. The reduction in gene expression was confirmed by the thrombin inhibitory activity assay and the citrated plasma coagulation time assay which showed activity reductions of ∼18- and ∼3.5-fold, respectively. Knockdown nymphs ingested approximately 39% less blood than controls. In order to confirm the importance of brasiliensin in blood ingestion, fourth instar nymphs were allowed to ingest feeding solution alone or feeding solution containing 15 U of thrombin prior to blood feeding. Fifty-five percent less blood was ingested by nymphs which were fed thrombin prior to blood feeding. The results suggest that anticoagulant activity in the midgut is an important determinant of the amount of blood taken from the host. The role of anticoagulants during blood ingestion is discussed in the light of this novel insight.
Collapse
Affiliation(s)
- R.N. Araujo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Bloco 14, Sala 177, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - I.T.N. Campos
- Departamento de Bioquímica, Escola Paulista de Medicina, UNIFESP-EPM, São Paulo, SP, Brazil
| | - A.S. Tanaka
- Departamento de Bioquímica, Escola Paulista de Medicina, UNIFESP-EPM, São Paulo, SP, Brazil
| | - A. Santos
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Bloco 14, Sala 177, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - N.F. Gontijo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Bloco 14, Sala 177, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - M.J. Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - M.H. Pereira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Bloco 14, Sala 177, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
- Corresponding author. Tel.: +55 31 34992867; fax: +55 31 34992970.
| |
Collapse
|