1
|
Lüchtrath C, Forsten E, Polis R, Hoffmann M, Genis AS, Kuhn AL, Hövels M, Deppenmeier U, Magnus J, Büchs J. Small-scale fed-batch cultivations of Vibrio natriegens: overcoming challenges for early process development. Bioprocess Biosyst Eng 2025; 48:1007-1024. [PMID: 40249449 PMCID: PMC12089209 DOI: 10.1007/s00449-025-03159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Vibrio natriegens is a fast-growing microbial workhorse with high potential for biotechnological applications. However, handling the bacterium in batch processes is challenging due to its high overflow metabolism and mixed acid formation under microaerobic conditions. For early process development, technologies enabling small-scale fed-batch cultivation of V. natriegens Vmax are needed. In this study, fed-batch cultivations in 96-well microtiter plates were successfully online-monitored for the first time with a µTOM device. Using the online-monitored oxygen transfer rate, a scale up to membrane-based fed-batch shake flasks was performed. The overflow metabolism was efficiently minimized by choosing suitable feed rates, and mixed acid formation was prevented. A glucose soft sensor using the oxygen transfer rate provided accurate estimates of glucose consumption throughout the fermentation, eliminating the need for offline sampling. Analyzing the impact of the inducer IPTG on the recombinant production of the enzyme inulosucrase revealed concentration-dependent effects in batch processes. In contrast, fed-batch operating mode resulted in high inulosucrase activity even without induction. Overall, an inulosucrase titer of 80 U/mL was achieved. In conclusion, the advantages of small-scale fed-batch technologies supported by a glucose soft sensor have been demonstrated for early process development for V. natriegens Vmax.
Collapse
Affiliation(s)
- Clara Lüchtrath
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Eva Forsten
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Romeos Polis
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Aylin Sara Genis
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Anna-Lena Kuhn
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marcel Hövels
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Uwe Deppenmeier
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Jørgen Magnus
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Fan M, Gu Z, Chen W, Wang H, Zhuang Y, Xia J. Micro-electrochemical DO sensor with ultra-micropore matrix fabricated with femtosecond laser processing successfully applied in on-line DO monitoring for yeast culture. Biotechnol Lett 2023; 45:449-461. [PMID: 36707453 DOI: 10.1007/s10529-023-03348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
Accurate monitoring of dissolved oxygen (DO) is vital for aerobic fermentation process control. This work presents an autoclavable Micro-Dissolved oxygen Sensor (MDS) that can monitor real time DO. The proposed sensor is much cheaper to be manufactured (< $35) and can be adapted to varying measurement environments. An ultra-micropore matrix was created using femtosecond laser processing technology to reduce flow dependency of probe signals. The validity of the proposed DO sensor was verified by testing it under different DO levels. The result revealed consistency between the new designed sensor and a commercial DO sensor. The obtained sensitivity was- 7.93 μA·L·mg-1 (MDS with ultra-micropore matrix). Moreover, the MDS can function without an oxygen-permeable membrane and a solid electrolyte was used which reduced the response time (4.6 s). For real-time monitoring, the stability of the MDS was validated during a yeast batch fermentation carried out until 18 h.
Collapse
Affiliation(s)
- Meng Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Gu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Chen
- XXL-The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - HuiFeng Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - YingPing Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| |
Collapse
|
3
|
Jungmann L, Hoffmann SL, Lang C, De Agazio R, Becker J, Kohlstedt M, Wittmann C. High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum. Microb Cell Fact 2022; 21:274. [PMID: 36578077 PMCID: PMC9798599 DOI: 10.1186/s12934-022-02003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Extremolytes enable microbes to withstand even the most extreme conditions in nature. Due to their unique protective properties, the small organic molecules, more and more, become high-value active ingredients for the cosmetics and the pharmaceutical industries. While ectoine, the industrial extremolyte flagship, has been successfully commercialized before, an economically viable route to its highly interesting derivative 5-hydroxyectoine (hydroxyectoine) is not existing. RESULTS Here, we demonstrate high-level hydroxyectoine production, using metabolically engineered strains of C. glutamicum that express a codon-optimized, heterologous ectD gene, encoding for ectoine hydroxylase, to convert supplemented ectoine in the presence of sucrose as growth substrate into the desired derivative. Fourteen out of sixteen codon-optimized ectD variants from phylogenetically diverse bacterial and archaeal donors enabled hydroxyectoine production, showing the strategy to work almost regardless of the origin of the gene. The genes from Pseudomonas stutzeri (PST) and Mycobacterium smegmatis (MSM) worked best and enabled hydroxyectoine production up to 97% yield. Metabolic analyses revealed high enrichment of the ectoines inside the cells, which, inter alia, reduced the synthesis of other compatible solutes, including proline and trehalose. After further optimization, C. glutamicum Ptuf ectDPST achieved a titre of 74 g L-1 hydroxyectoine at 70% selectivity within 12 h, using a simple batch process. In a two-step procedure, hydroxyectoine production from ectoine, previously synthesized fermentatively with C. glutamicum ectABCopt, was successfully achieved without intermediate purification. CONCLUSIONS C. glutamicum is a well-known and industrially proven host, allowing the synthesis of commercial products with granted GRAS status, a great benefit for a safe production of hydroxyectoine as active ingredient for cosmetic and pharmaceutical applications. Because ectoine is already available at commercial scale, its use as precursor appears straightforward. In the future, two-step processes might provide hydroxyectoine de novo from sugar.
Collapse
Affiliation(s)
- Lukas Jungmann
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Sarah Lisa Hoffmann
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Caroline Lang
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Raphaela De Agazio
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Judith Becker
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Michael Kohlstedt
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Christoph Wittmann
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| |
Collapse
|
4
|
Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase. BIOSENSORS-BASEL 2021; 11:bios11060171. [PMID: 34072213 PMCID: PMC8230332 DOI: 10.3390/bios11060171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte’s pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS.
Collapse
|
5
|
Zhou Y, Werner EM, Lee E, Chu M, Nguyen T, Costa KD, Hui EE, Khine M. High-resolution integrated piezoresistive sensors for microfluidic monitoring. LAB ON A CHIP 2021; 21:83-92. [PMID: 33300516 PMCID: PMC9521707 DOI: 10.1039/d0lc01046d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microfluidic devices are traditionally monitored by bulky and expensive off-chip sensors. We have developed a soft piezoresistive sensor capable of measuring micron-level strains that can be easily integrated into devices via soft lithography. We apply this sensor to achieve fast and localized monitoring of pressure, flow, and valve actuation.
Collapse
Affiliation(s)
- Yongxiao Zhou
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Contact-free infrared OD measurement for online monitoring of parallel stirred-tank bioreactors up to high cell densities. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Keil T, Dittrich B, Lattermann C, Büchs J. Optimized polymer-based glucose release in microtiter plates for small-scale E. coli fed-batch cultivations. J Biol Eng 2020; 14:24. [PMID: 32874201 PMCID: PMC7457294 DOI: 10.1186/s13036-020-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
Background Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. Recently, the polymer-based feeding system was introduced to allow fed-batch conditions in microtiter plates. Maximum glucose release rates of 0.35 mg/h per well (48-well-plate) at 37 °C can be achieved with these plates, depending on the media properties. The fed-batch cultivation of fluorescent protein-expressing E. coli at oxygen transfer rate levels of 5 mmol/L/h proved to be superior compared to simple batch cultivations. However, literature suggests that higher glucose release rates than achieved with the currently available fed-batch microtiter plate are beneficial, especially for fast-growing microorganisms. During the fed-batch phase of the cultivation, a resulting oxygen transfer rate level of 28 mmol/L/h should be achieved. Results Customization of the polymer matrix enabled a considerable increase in the glucose release rate of more than 250% to up to 0.90 mg/h per well. Therefore, the molecular weight of the prepolymer and the addition of a hydrophilic PDMS-PEG copolymer allowed for the individual adjustment of a targeted glucose release rate. The newly developed polymer matrix was additionally invariant to medium properties like the osmotic concentration or the pH-value. The glucose release rate of the optimized matrix was constant in various synthetic and complex media. Fed-batch cultivations of E. coli in microtiter plates with the optimized matrix revealed elevated oxygen transfer rates during the fed-batch phase of approximately 28 mmol/L/h. However, these increased glucose release rates resulted in a prolonged initial batch phase and oxygen limitations. The newly developed polymer-based feeding system provides options to manufacture individual feed rates in a range from 0.24–0.90 mg/h per well. Conclusions The optimized polymer-based fed-batch microtiter plate allows higher reproducibility of fed-batch experiments since cultivation media properties have almost no influence on the release rate. The adjustment of individual feeding rates in a wide range supports the early process development for slow, average and fast-growing microorganisms in microtiter plates. The study underlines the importance of a detailed understanding of the metabolic behavior (through online monitoring techniques) to identify optimal feed rates.
Collapse
Affiliation(s)
- Timm Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Barbara Dittrich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | | | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
8
|
Abstract
In conditional microbial screening, a limited number of candidate strains are tested at different conditions searching for the optimal operation strategy in production (e.g., temperature and pH shifts, media composition as well as feeding and induction strategies). To achieve this, cultivation volumes of >10 mL and advanced control schemes are required to allow appropriate sampling and analyses. Operations become even more complex when the analytical methods are integrated into the robot facility. Among other multivariate data analysis methods, principal component analysis (PCA) techniques have especially gained popularity in high throughput screening. However, an important issue specific to high throughput bioprocess development is the lack of so-called golden batches that could be used as a basis for multivariate analysis. In this study, we establish and present a program to monitor dynamic parallel cultivations in a high throughput facility. PCA was used for process monitoring and automated fault detection of 24 parallel running experiments using recombinant E. coli cells expressing three different fluorescence proteins as the model organism. This approach allowed for capturing events like stirrer failures and blockage of the aeration system and provided a good signal to noise ratio. The developed application can be easily integrated in existing data- and device-infrastructures, allowing automated and remote monitoring of parallel bioreactor systems.
Collapse
|
9
|
Ebrahimzadeh Kouchesfahani M, Babaeipour V. Micro bioreactor scale-up and industrialization: a critical review of the methods, their prerequisites, and perquisites. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.19.02595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Sun Y, Liu Y, Pan J, Wang F, Li M. Perspectives on Cultivation Strategies of Archaea. MICROBIAL ECOLOGY 2020; 79:770-784. [PMID: 31432245 DOI: 10.1007/s00248-019-01422-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Archaea have been recognized as a major domain of life since the 1970s and occupy a key position in the tree of life. Recent advances in culture-independent approaches have greatly accelerated the research son Archaea. However, many hypotheses concerning the diversity, physiology, and evolution of archaea are waiting to be confirmed by culture-base experiments. Consequently, archaeal isolates are in great demand. On the other hand, traditional approaches of archaeal cultivation are rarely successful and require urgent improvement. Here, we review the current practices and applicable microbial cultivation techniques, to inform on potential strategies that could improve archaeal cultivation in the future. We first summarize the current knowledge on archaeal diversity, with an emphasis on cultivated and uncultivated lineages pertinent to future research. Possible causes for the low success rate of the current cultivation practices are then discussed to propose future improvements. Finally, innovative insights for archaeal cultivation are described, including (1) medium refinement for selective cultivation based on the genetic and transcriptional information; (2) consideration of the up-to-date archaeal culturing skills; and (3) application of multiple cultivation techniques, such as co-culture, direct interspecies electron transfer (DIET), single-cell isolation, high-throughput culturing (HTC), and simulation of the natural habitat. Improved cultivation efforts should allow successful isolation of as yet uncultured archaea, contributing to the much-needed physiological investigation of archaea.
Collapse
Affiliation(s)
- Yihua Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Parekh M, Ali A, Ali Z, Bateson S, Abugchem F, Pybus L, Lennon C. Microbioreactor for lower cost and faster optimisation of protein production. Analyst 2020; 145:6148-6161. [DOI: 10.1039/d0an01266a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microbioreactor system, with inset the microbioreactor element, and an example cultivation growth profile showing dissolved oxygen, pH and dry cell weight.
Collapse
Affiliation(s)
- Mayur Parekh
- Healthcare Innovation Centre
- School of Health and Life Sciences
- Teesside University
- Middlesbrough
- UK
| | - AbdulAziz Ali
- Healthcare Innovation Centre
- School of Health and Life Sciences
- Teesside University
- Middlesbrough
- UK
| | - Zulfiqur Ali
- Healthcare Innovation Centre
- School of Health and Life Sciences
- Teesside University
- Middlesbrough
- UK
| | - Simon Bateson
- Healthcare Innovation Centre
- School of Health and Life Sciences
- Teesside University
- Middlesbrough
- UK
| | - Fathi Abugchem
- Healthcare Innovation Centre
- School of Health and Life Sciences
- Teesside University
- Middlesbrough
- UK
| | - Leon Pybus
- FUJIFILM Diosynth Biotechnologies
- Billingham
- UK
| | | |
Collapse
|
12
|
Munch G, Schulte A, Mann M, Dinger R, Regestein L, Rehmann L, Büchs J. Online measurement of CO2 and total gas production in parallel anaerobic shake flask cultivations. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Dantism S, Röhlen D, Wagner T, Wagner P, Schöning MJ. A LAPS-Based Differential Sensor for Parallelized Metabolism Monitoring of Various Bacteria. SENSORS 2019; 19:s19214692. [PMID: 31671716 PMCID: PMC6864667 DOI: 10.3390/s19214692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022]
Abstract
Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.
Collapse
Affiliation(s)
- Shahriar Dantism
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Désirée Röhlen
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| |
Collapse
|
14
|
Narayanan H, Luna MF, Stosch M, Cruz Bournazou MN, Polotti G, Morbidelli M, Butté A, Sokolov M. Bioprocessing in the Digital Age: The Role of Process Models. Biotechnol J 2019; 15:e1900172. [DOI: 10.1002/biot.201900172] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Harini Narayanan
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
| | - Martin F. Luna
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
| | | | - Mariano Nicolas Cruz Bournazou
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Gianmarco Polotti
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Alessandro Butté
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Michael Sokolov
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| |
Collapse
|
15
|
Haby B, Hans S, Anane E, Sawatzki A, Krausch N, Neubauer P, Cruz Bournazou MN. Integrated Robotic Mini Bioreactor Platform for Automated, Parallel Microbial Cultivation With Online Data Handling and Process Control. SLAS Technol 2019; 24:569-582. [PMID: 31288593 DOI: 10.1177/2472630319860775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During process development, the experimental search space is defined by the number of experiments that can be performed in specific time frames but also by its sophistication (e.g., inputs, sensors, sampling frequency, analytics). High-throughput liquid-handling stations can perform a large number of automated experiments in parallel. Nevertheless, the experimental data sets that are obtained are not always relevant for development of industrial bioprocesses, leading to a high rate of failure during scale-up. We present an automated mini bioreactor platform that enables parallel cultivations in the milliliter scale with online monitoring and control, well-controlled conditions, and advanced feeding strategies similar to industrial processes. The combination of two liquid handlers allows both automated mini bioreactor operation and at-line analysis in parallel. A central database enables end-to-end data exchange and fully integrated device and process control. A model-based operation algorithm allows for the accurate performance of complex cultivations for scale-down studies and strain characterization via optimal experimental redesign, significantly increasing the reliability and transferability of data throughout process development. The platform meets the tradeoff between experimental throughput and process control and monitoring comparable to laboratory-scale bioreactors.
Collapse
Affiliation(s)
- Benjamin Haby
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Sebastian Hans
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Emmanuel Anane
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Annina Sawatzki
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Niels Krausch
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Peter Neubauer
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | | |
Collapse
|
16
|
Dantism S, Röhlen D, Selmer T, Wagner T, Wagner P, Schöning MJ. Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system. Biosens Bioelectron 2019; 139:111332. [PMID: 31132723 DOI: 10.1016/j.bios.2019.111332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
Applying biosensors for evaluation of the extracellular acidification of microorganisms in various biotechnological fermentation processes is on demand. An early stage detection of disturbances in the production line would avoid costly interventions related to metabolically inactive microorganisms. Furthermore, the determination of the number of living cells through cell plating procedure after cultivations is known as time- and material-consuming. In this work, a differential light-addressable potentiometric sensor (LAPS) system was developed to monitor the metabolic activity of Corynebacterium glutamicum (C. glutamicum ATCC13032) as typical microorganism in fermentation processes. In this context, the number of living cells in suspensions was directly determined utilizing the read-out principle of the LAPS system. The planar sensor surface of the LAPS design allows to fixate 3D-printed multi-chamber structures, which enables differential measurements. In this way, undesirable external influences such as pH variations of the medium and sensor signal drift can be compensated.
Collapse
Affiliation(s)
- Shahriar Dantism
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium
| | - Désirée Röhlen
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, 52425, Jülich, Germany
| | - Patrick Wagner
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
17
|
Keil T, Dittrich B, Lattermann C, Habicher T, Büchs J. Polymer-based controlled-release fed-batch microtiter plate - diminishing the gap between early process development and production conditions. J Biol Eng 2019; 13:18. [PMID: 30833982 PMCID: PMC6387502 DOI: 10.1186/s13036-019-0147-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fed-batch conditions are advantageous for industrial cultivations as they avoid unfavorable phenomena appearing in batch cultivations. Those are for example the formation of overflow metabolites, catabolite repression, oxygen limitation or inhibition due to elevated osmotic concentrations. For both, the early bioprocess development and the optimization of existing bioprocesses, small-scale reaction vessels are applied to ensure high throughput, low costs and prompt results. However, most conventional small-scale procedures work in batch operation mode, which stands in contrast to fed-batch conditions in large-scale bioprocesses. Extensive expenditure for installations and operation accompany almost all cultivation systems in the market allowing fed-batch conditions in small-scale. An alternative, more cost efficient enzymatic glucose release system is strongly influenced by environmental conditions. To overcome these issues, this study investigates a polymer-based fed-batch system for controlled substrate release in microtiter plates. RESULTS Immobilizing a solid silicone matrix with embedded glucose crystals at the bottom of each well of a microtiter plate is a suitable technique for implementing fed-batch conditions in microtiter plates. The results showed that the glucose release rate depends on the osmotic concentration, the pH and the temperature of the medium. Moreover, the applied nitrogen source proved to influence the glucose release rate. A new developed mathematical tool predicts the glucose release for various media conditions. The two model organisms E. coli and H. polymorpha were cultivated in the fed-batch microtiter plate to investigate the general applicability for microbial systems. Online monitoring of the oxygen transfer rate and offline analysis of substrate, product, biomass and pH confirmed that fed-batch conditions are comparable to large-scale cultivations. Furthermore, due to fed-batch conditions in microtiter plates, product formation could be enhanced by the factor 245 compared to batch cultivations. CONCLUSIONS The polymer-based fed-batch microtiter plate represents a sophisticated and cost efficient system to mimic typical industrial fed-batch conditions in small-scale. Thus, a more reliable strain screening and early process development can be performed. A systematical scale-down with low expenditure of work, time and money is possible.
Collapse
Affiliation(s)
- T. Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - B. Dittrich
- DWI – Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - C. Lattermann
- Kuhner Shaker GmbH, Kaiserstraße 100, 52134 Herzogenrath, Germany
| | - T. Habicher
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
18
|
|
19
|
Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 2018; 102:4615-4627. [DOI: 10.1007/s00253-018-8937-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
20
|
Gamboa-Melendez H, Larroude M, Park YK, Trebul P, Nicaud JM, Ledesma-Amaro R. Synthetic Biology to Improve the Production of Lipases and Esterases (Review). Methods Mol Biol 2018; 1835:229-242. [PMID: 30109656 DOI: 10.1007/978-1-4939-8672-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic biology is an emergent field of research whose aim is to make biology an engineering discipline, thus permitting to design, control, and standardize biological processes. Synthetic biology is therefore expected to boost the development of biotechnological processes such as protein production and enzyme engineering, which can be significantly relevant for lipases and esterases.
Collapse
Affiliation(s)
- Heber Gamboa-Melendez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Macarena Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young Kyoung Park
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pauline Trebul
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Sythetic Biology, Imperial College London, London, UK.
| |
Collapse
|
21
|
Panjan P, Virtanen V, Sesay AM. Towards microbioprocess control: an inexpensive 3D printed microbioreactor with integrated online real-time glucose monitoring. Analyst 2018; 143:3926-3933. [DOI: 10.1039/c8an00308d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A 3D printed micro-bioreactor and microfluidic chip with integrated screen printed glucose biosensor for online monitoring of glucose to aid micro-bioprocess control.
Collapse
Affiliation(s)
- Peter Panjan
- Measurement Technology Unit (MITY)
- University of Oulu
- 87400 Kajaani
- Finland EU
| | - Vesa Virtanen
- Measurement Technology Unit (MITY)
- University of Oulu
- 87400 Kajaani
- Finland EU
| | - Adama Marie Sesay
- Measurement Technology Unit (MITY)
- University of Oulu
- 87400 Kajaani
- Finland EU
| |
Collapse
|
22
|
Philip P, Meier K, Kern D, Goldmanns J, Stockmeier F, Bähr C, Büchs J. Systematic evaluation of characteristics of the membrane-based fed-batch shake flask. Microb Cell Fact 2017; 16:122. [PMID: 28716035 PMCID: PMC5514527 DOI: 10.1186/s12934-017-0741-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The initial part of process development involves extensive screening programs to identify optimal biological systems and cultivation conditions. For a successful scale-up, the operation mode on screening and production scale must be as close as possible. To enable screening under fed-batch conditions, the membrane-based fed-batch shake flask was developed. It is a shake flask mounted with a central feed reservoir with an integrated rotating membrane tip for a controlled substrate release. Building on the previously provided proof of principle for this tool, this work extends its application by constructive modifications and improved methodology to ensure reproducible performance. RESULTS The previously limited operation window was expanded by a systematic analysis of reservoir set-up variations for cultivations with the fast-growing organism Escherichia coli. Modifying the initial glucose concentration in the reservoir as well as interchanging the built-in membrane, resulted in glucose release rates and oxygen transfer rate levels during the fed-batch phase varying up to a factor of five. The range of utilizable membranes was extended from dialysis membranes to porous microfiltration membranes with the design of an appropriate membrane tip. The alteration of the membrane area, molecular weight cut-off and liquid volume in the reservoir offered additional parameters to fine-tune the duration of the initial batch phase, the oxygen transfer rate level of the fed-batch phase and the duration of feeding. It was shown that a homogeneous composition of the reservoir without a concentration gradient is ensured up to an initial glucose concentration of 750 g/L. Finally, the experimental validity of fed-batch shake flask cultivations was verified with comparable results obtained in a parallel fed-batch cultivation in a laboratory-scale stirred tank reactor. CONCLUSIONS The membrane-based fed-batch shake flask is a reliable tool for small-scale screening under fed-batch conditions filling the gap between microtiter plates and scaled-down stirred tank reactors. The implemented reservoir system offers various set-up possibilities, which provide a wide range of process settings for diverse biological systems. As a screening tool, it accurately reflects the cultivation conditions in a fed-batch stirred tank reactor and enables a more efficient bioprocess development.
Collapse
Affiliation(s)
- P. Philip
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - K. Meier
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - D. Kern
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Goldmanns
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - F. Stockmeier
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - C. Bähr
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
23
|
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 2016; 9:699-717. [PMID: 27629544 PMCID: PMC5072187 DOI: 10.1111/1751-7915.12408] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/04/2022] Open
Abstract
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.
Collapse
Affiliation(s)
- Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Qiang Fei
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA
| | - Sagar M Utturkar
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37919, USA
| | - Steven D Brown
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37919, USA.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
24
|
Tan CKL, Davies MJ, McCluskey DK, Munro IR, Nweke MC, Tracey MC, Szita N. Electromagnetic stirring in a microbioreactor with non-conventional chamber morphology and implementation of multiplexed mixing. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2015; 90:1927-1936. [PMID: 27546945 PMCID: PMC4973846 DOI: 10.1002/jctb.4762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microbioreactors have emerged as novel tools for early bioprocess development. Mixing lies at the heart of bioreactor operation (at all scales). The successful implementation of micro-stirring methods is thus central to the further advancement of microbioreactor technology. The aim of this study was to develop a micro-stirring method that aids robust microbioreactor operation and facilitates cost-effective parallelization. RESULTS A microbioreactor was developed with a novel micro-stirring method involving the movement of a magnetic bead by sequenced activation of a ring of electromagnets. The micro-stirring method offers flexibility in chamber designs, and mixing is demonstrated in cylindrical, diamond and triangular shaped reactor chambers. Mixing was analyzed for different electromagnet on/off sequences; mixing times of 4.5 s, 2.9 s, and 2.5 s were achieved for cylindrical, diamond and triangular shaped chambers, respectively. Ease of micro-bubble free priming, a typical challenge of cylindrical shaped microbioreactor chambers, was obtained with a diamond-shaped chamber. Consistent mixing behavior was observed between the constituent reactors in a duplex system. CONCLUSION A novel stirring method using electromagnetic actuation offering rapid mixing and easy integration with microbioreactors was characterized. The design flexibility gained enables fabrication of chambers suitable for microfluidic operation, and a duplex demonstrator highlights potential for cost-effective parallelization. Combined with a previously published cassette-like fabrication of microbioreactors, these advances will facilitate the development of robust and parallelized microbioreactors. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Matthew J Davies
- Department of Biochemical EngineeringUniversity College LondonUK
| | | | - Ian R Munro
- School of Engineering and TechnologyUniversity of HertfordshireUK
| | - Mauryn C Nweke
- Department of Biochemical EngineeringUniversity College LondonUK
| | - Mark C Tracey
- School of Engineering and TechnologyUniversity of HertfordshireUK
| | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonUK
| |
Collapse
|
25
|
Husain AR, Hadad Y, Zainal Alam MNH. Development of Low-Cost Microcontroller-Based Interface for Data Acquisition and Control of Microbioreactor Operation. ACTA ACUST UNITED AC 2015; 21:660-70. [PMID: 26185253 DOI: 10.1177/2211068215594770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Indexed: 12/27/2022]
Abstract
This article presents the development of a low-cost microcontroller-based interface for a microbioreactor operation. An Arduino MEGA 2560 board with 54 digital input/outputs, including 15 pulse-width-modulation outputs, has been chosen to perform the acquisition and control of the microbioreactor. The microbioreactor (volume = 800 µL) was made of poly(dimethylsiloxane) and poly(methylmethacrylate) polymers. The reactor was built to be equipped with sensors and actuators for the control of reactor temperature and the mixing speed. The article discusses the circuit of the microcontroller-based platform, describes the signal conditioning steps, and evaluates the capacity of the proposed low-cost microcontroller-based interface in terms of control accuracy and system responses. It is demonstrated that the proposed microcontroller-based platform is able to operate parallel microbioreactor operation with satisfactory performances. Control accuracy at a deviation less than 5% of the set-point values and responses in the range of few seconds have been recorded.
Collapse
Affiliation(s)
- Abdul Rashid Husain
- Department of Control and Mechatronic Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Yaser Hadad
- Department of Control and Mechatronic Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Muhd Nazrul Hisham Zainal Alam
- Process Systems Engineering Centre, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
26
|
Sales KC, Rosa F, Sampaio PN, Fonseca LP, Lopes MB, Calado CRC. In situ near-infrared (NIR) versus high-throughput mid-infrared (MIR) spectroscopy to monitor biopharmaceutical production. APPLIED SPECTROSCOPY 2015; 69:760-772. [PMID: 25955848 DOI: 10.1366/14-07588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coli cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R(2)) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.
Collapse
Affiliation(s)
- Kevin C Sales
- Engineering Faculty, Catholic University of Portugal, Estrada Octávio Pato, 2635-631, Rio de Mouro, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Quantifying the sensitivity of G. oxydans ATCC 621H and DSM 3504 to osmotic stress triggered by soluble buffers. J Ind Microbiol Biotechnol 2015; 42:585-600. [PMID: 25645092 DOI: 10.1007/s10295-015-1588-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
In Gluconobacter oxydans cultivations on glucose, CaCO3 is typically used as pH-buffer. This buffer, however, has disadvantages: suspended CaCO3 particles make the medium turbid, thereby, obstructing analysis of microbial growth via optical density and scattered light. Upon searching for alternative soluble pH-buffers, bacterial growth and productivity was inhibited most probably due to osmotic stress. Thus, this study investigates in detail the osmotic sensitivity of G. oxydans ATCC 621H and DSM 3504 using the Respiratory Activity MOnitoring System. The tested soluble pH-buffers and other salts attained osmolalities of 0.32-1.19 osmol kg(-1). This study shows that G. oxydans ATCC 621H and DSM 3504 respond quite sensitively to increased osmolality in comparison to other microbial strains of industrial interest. Osmolality values of >0.5 osmol kg(-1) should not be exceeded to avoid inhibition of growth and product formation. This osmolality threshold needs to be considered when working with soluble pH-buffers.
Collapse
|
28
|
Wang L, Ma S, Wang X, Bi H, Han X. Mixing enhancement of a passive microfluidic mixer containing triangle baffles. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1837] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin 150001 China
| | - Shenghua Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin 150001 China
| | - Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin 150001 China
| | - Hongmei Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin 150001 China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
29
|
Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z. The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 2014; 192 Pt B:323-38. [PMID: 24698846 DOI: 10.1016/j.jbiotec.2014.03.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on recent progress in the technology of high throughput (HTP) cultivation and its increasing application in quality by design (QbD) -driven bioprocess development. Several practical HTP strategies aimed at shortening process development (PD) timelines from DNA to large scale processes involving commercially available HTP technology platforms, including microtiter plate (MTP) culture, micro-scale bioreactors, and in parallel fermentation systems, etc., are critically reviewed in detail. This discussion focuses upon the relative strengths and weaknesses or limitations of each of these platforms in this context. Emerging prototypes of micro-bioreactors reported recently, such as milliliter (mL) scale stirred tank bioreactors, and microfludics integrated micro-scale bioreactors, and their potential for practical application in QbD-driven HTP process development are also critically appraised. The overall aim of such technology is to rapidly gain process insights, and since the analytical technology deployed in HTP systems is critically important to the achievement of this aim, this rapidly developing area is discussed. Finally, general future trends are critically reviewed.
Collapse
Affiliation(s)
- Quan Long
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Xiuxia Liu
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Yankun Yang
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Lu Li
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | | | | | - Zhonghu Bai
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China.
| |
Collapse
|
30
|
|
31
|
Kirk TV, Szita N. Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 2013; 110:1005-19. [PMID: 23280578 PMCID: PMC3790518 DOI: 10.1002/bit.24824] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/08/2012] [Accepted: 12/06/2012] [Indexed: 12/02/2022]
Abstract
Since their introduction in 2001 miniaturized bioreactor systems have made great advances in function and performance. In this article the dissolved oxygen (DO) transfer performance of submilliliter microbioreactors, and 1–10 mL minibioreactors was examined. Microbioreactors have reached kLa values of 460 h-1, and are offering instrumentation and some functionality comparable to production systems, but at high throughput screening volumes. Minibioreactors, aside from one 1,440 h-1kLa system, have not offered as high rates of DO transfer, but have demonstrated superior integration with automated fluid handling systems. Microbioreactors have been typically limited to studies with E. coli, while minibioreactors have offered greater versatility in this regard. Further, mathematical relationships confirming the applicability of kLa measurements across all scales have been derived, and alternatives to fluorescence lifetime DO sensors have been evaluated. Finally, the influence on reactor performance of oxygen uptake rate (OUR), and the possibility of its real-time measurement have been explored. Biotechnol. Bioeng. 2013; 110: 1005–1019. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy V Kirk
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE United Kingdom
| | | |
Collapse
|
32
|
Gernaey KV, Baganz F, Franco-Lara E, Kensy F, Krühne U, Luebberstedt M, Marx U, Palmqvist E, Schmid A, Schubert F, Mandenius CF. Monitoring and control of microbioreactors: An expert opinion on development needs. Biotechnol J 2012; 7:1308-14. [DOI: 10.1002/biot.201200157] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/15/2012] [Accepted: 08/23/2012] [Indexed: 01/29/2023]
|
33
|
|
34
|
Gebhardt G, Hortsch R, Kaufmann K, Arnold M, Weuster-Botz D. A new microfluidic concept for parallel operated milliliter-scale stirred tank bioreactors. Biotechnol Prog 2011; 27:684-90. [DOI: 10.1002/btpr.570] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/14/2010] [Indexed: 11/11/2022]
|
35
|
Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Müller C, Kensy F, Büchs J. Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 2010; 9:86. [PMID: 21073740 PMCID: PMC3000389 DOI: 10.1186/1475-2859-9-86] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/13/2010] [Indexed: 12/04/2022] Open
Abstract
Background The efficiency of biotechnological production processes depends on selecting the best performing microbial strain and the optimal cultivation conditions. Thus, many experiments have to be conducted, which conflicts with the demand to speed up drug development processes. Consequently, there is a great need for high-throughput devices that allow rapid and reliable bioprocess development. This need is addressed, for example, by the fiber-optic online-monitoring system BioLector which utilizes the wells of shaken microtiter plates (MTPs) as small-scale fermenters. To further improve the application of MTPs as microbioreactors, in this paper, the BioLector technology is combined with microfluidic bioprocess control in MTPs. To realize a user-friendly system for routine laboratory work, disposable microfluidic MTPs are utilized which are actuated by a user-friendly pneumatic hardware. Results This novel microfermentation system was tested in pH-controlled batch as well as in fed-batch fermentations of Escherichia coli. The pH-value in the culture broth could be kept in a narrow dead band of 0.03 around the pH-setpoint, by pneumatically dosing ammonia solution and phosphoric acid to each culture well. Furthermore, fed-batch cultivations with linear and exponential feeding of 500 g/L glucose solution were conducted. Finally, the scale-up potential of the microscale fermentations was evaluated by comparing the obtained results to that of fully controlled fermentations in a 2 L laboratory-scale fermenter (working volume of 1 L). The scale-up was realized by keeping the volumetric mass transfer coefficient kLa constant at a value of 460 1/h. The same growth behavior of the E. coli cultures could be observed on both scales. Conclusion In microfluidic MTPs, pH-controlled batch as well as fed-batch fermentations were successfully performed. The liquid dosing as well as the biomass growth kinetics of the process-controlled fermentations agreed well both in the microscale and laboratory scale. In conclusion, a user-friendly and disposable microfluidic system could be established which allows scaleable, fully controlled and fully monitored fermentations in working volumes below 1 milliliter.
Collapse
Affiliation(s)
- Matthias Funke
- AVT-Biochemical Engineering, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bareither R, Pollard D. A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need. Biotechnol Prog 2010; 27:2-14. [PMID: 21312350 DOI: 10.1002/btpr.522] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/13/2010] [Indexed: 11/10/2022]
Abstract
The pharmaceutical and biotech industries face continued pressure to reduce development costs and accelerate process development. This challenge occurs alongside the need for increased upstream experimentation to support quality by design initiatives and the pursuit of predictive models from systems biology. A small scale system enabling multiple reactions in parallel (n ≥ 20), with automated sampling and integrated to purification, would provide significant improvement (four to fivefold) to development timelines. State of the art attempts to pursue high throughput process development include shake flasks, microfluidic reactors, microtiter plates and small-scale stirred reactors. The limitations of these systems are compared to desired criteria to mimic large scale commercial processes. The comparison shows that significant technological improvement is still required to provide automated solutions that can speed upstream process development.
Collapse
Affiliation(s)
- Rachel Bareither
- Biologics New & Enabling Technologies, Biologics Development, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA
| | | |
Collapse
|
37
|
Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Müller C, Kensy F, Büchs J. Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 2010; 107:497-505. [DOI: 10.1002/bit.22825] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Mechatronics design principles for biotechnology product development. Trends Biotechnol 2010; 28:230-6. [DOI: 10.1016/j.tibtech.2010.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 11/19/2022]
|
39
|
Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Kähler C, Radespiel R, Büttgenbach S, Franco-Lara E, Krull R. Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae. Biotechnol Prog 2010; 26:1259-70. [DOI: 10.1002/btpr.449] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Marques MPC, Cabral JMS, Fernandes P. A microwell platform for the scale-up of a multistep bioconversion to bench-scale reactors: Sitosterol side-chain cleavage. Biotechnol J 2010; 5:402-12. [DOI: 10.1002/biot.200900098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Hortsch R, Stratmann A, Weuster-Botz D. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms. Biotechnol Bioeng 2010; 106:443-51. [DOI: 10.1002/bit.22706] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Schäpper D, Alam MNHZ, Szita N, Eliasson Lantz A, Gernaey KV. Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 2009; 395:679-95. [PMID: 19649621 DOI: 10.1007/s00216-009-2955-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Schäpper
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
43
|
Marques MP, Magalhães S, Cabral JM, Fernandes P. Characterization of 24-well microtiter plate reactors for a complex multistep bioconversion: From sitosterol to androstenedione. J Biotechnol 2009; 141:174-80. [DOI: 10.1016/j.jbiotec.2009.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/10/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
|
44
|
Hortsch R, Weuster-Botz D. Power consumption and maximum energy dissipation in a milliliter-scale bioreactor. Biotechnol Prog 2009; 26:595-9. [DOI: 10.1002/btpr.338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|