1
|
Screpis GA, Aleo A, Privitera N, Capuano GE, Farina R, Corso D, Libertino S, Coniglio MA. Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms 2024; 12:1855. [PMID: 39338529 PMCID: PMC11434302 DOI: 10.3390/microorganisms12091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The detection of Legionella in environmental samples, such as water, is crucial for public health monitoring and outbreak prevention. Although effective, traditional detection methods, including culture-based techniques and polymerase chain reaction, have limitations such as long processing times, trained operators, and the need for specialized laboratory equipment. Biosensing technologies offer a promising alternative due to their rapid, sensitive, cost-effectiveness, and on-site detection capabilities. To summarize the current advancements in biosensor development for detecting Legionella in environmental samples, we used 'Legionella' AND 'biosensors' NEAR 'environmental samples' OR 'water' as keywords searching through the most relevant biomedical databases for research articles. After removing duplicates and inadequate articles from the n.1268 records identified using the PRISMA methodology exclusion criteria, we selected n.65 full-text articles which suited the inclusion criteria. Different results between the studies describing the current biosensing techniques, including optical, electrochemical, magnetic, and mass-sensitive sensors were observed. For each biosensing technique, sensitivity, specificity, and detection limits were evaluated. Furthermore, the integration of nanomaterials, microfluidics, and portable devices in biosensor systems' design were discussed, highlighting their role in enhancing detection performance. The potential challenges and future directions in the field of Legionella biosensing were also addressed, providing insights into the feasibility of implementing these technologies in routine environmental monitoring. Undoubtedly, biosensors can play a crucial role in the early detection and management of Legionella infections and outbreaks, ultimately protecting public health and safety.
Collapse
Affiliation(s)
- Giuseppe Andrea Screpis
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Andrea Aleo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Natalia Privitera
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Giuseppe Emanuele Capuano
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Roberta Farina
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Corso
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Sebania Libertino
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| |
Collapse
|
2
|
Zhang Z, Ou X, Ma L, Li C, Yang Z, Duan J. A double methylene blue labeled single-stranded DNA and hairpin DNA coupling biosensor for the detection of Fusarium oxysporum f. sp. cubense race 4. Bioelectrochemistry 2024; 156:108612. [PMID: 38035486 DOI: 10.1016/j.bioelechem.2023.108612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The DCL gene in Fusarium oxysporum f. sp. cubense Race 4 (Foc4) is a pivotal pathogenic factor causing banana fusarium wilt. Precise DCL detection is crucial for Foc4 containment. Here, we present a novel ssDNA-hDNA coupling electrochemical biosensor for highly specific DCL detection. The sensing interface was formed via electrodeposition of a composite containing reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) onto a carbon screen-printed electrode (SPE), followed by thiol-modified ssDNA functionalization. Additionally, the incorporation of hDNA, with methylene blue (MB) at both ends, binds to ssDNA through base complementarity, forming an ssDNA-hDNA coupling probe with bismethylene blue. This sensing strategy relies on DCL recognition by the hDNA probe, leading to DNA hairpin unfolding and detachment of hDNA bearing two MBs from ssDNA, generating a robust "on-off" signal. Empirical results demonstrate the sensor's amplified electrical signals, reduced background currents, and an extended detection range (6.02 × 106-3.01 × 1010 copies/μL) with a limit of detection (3.01 × 106 copies/μL) for DCL identification. We applied this sensor to analyze soil, banana leaves, and fruit samples, confirming its high specificity and stability. Moreover, post-sample detection, the sensor exhibits reusability, offering a cost-effective and rapid approach for banana wilt detection.
Collapse
Affiliation(s)
- Zhihong Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Xiangying Ou
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Lizhe Ma
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Scienecs, Guangzhou 510642, China
| | - Zhou Yang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jieli Duan
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
3
|
Mesas Gómez M, Molina-Moya B, de Araujo Souza B, Boldrin Zanoni MV, Julián E, Domínguez J, Pividori MI. Improved biosensing of Legionella by integrating filtration and immunomagnetic separation of the bacteria retained in filters. Mikrochim Acta 2024; 191:82. [PMID: 38191940 PMCID: PMC10774190 DOI: 10.1007/s00604-023-06122-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
A novel approach is presented that combines filtration and the direct immunomagnetic separation of the retained bacteria Legionella in filters, for further electrochemical immunosensing. This strategy allows for the separation and preconcentration of the water-borne pathogen from high-volume samples, up to 1000 mL. The limit of detection of the electrochemical immunosensor resulted in 100 CFU mL-1 and improved up to 0.1 CFU mL-1 when the preconcentration strategy was applied in 1 L of sample (103-fold improvement). Remarkably, the immunosensor achieves the limit of detection in less than 2.5 h and simplified the analytical procedure. This represents the lowest concentration reported to date for electrochemical immunosensing of Legionella cells without the need for pre-enrichment or DNA amplification. Furthermore, the study successfully demonstrates the extraction of bacteria retained on different filtering materials using immunomagnetic separation, highlighting the high efficiency of the magnetic particles to pull out the bacteria directly from solid materials. This promising feature expands the applicability of the method beyond water systems for detecting bacteria retained in air filters of air conditioning units by directly performing the immunomagnetic separation in the filters.
Collapse
Affiliation(s)
- Melania Mesas Gómez
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Bárbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bárbara de Araujo Souza
- Department of Analytical Chemistry, Institute of Chemistry, UNESP, Universidad Estadual Paulista, Araraquara, SP, Brazil
| | - Maria Valnice Boldrin Zanoni
- Department of Analytical Chemistry, Institute of Chemistry, UNESP, Universidad Estadual Paulista, Araraquara, SP, Brazil
| | - Esther Julián
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Domínguez
- Institut d'Investigació Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
4
|
Ma J, Du M, Wang C, Xie X, Wang H, Zhang Q. Advances in airborne microorganisms detection using biosensors: A critical review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:47. [PMID: 33842019 PMCID: PMC8023783 DOI: 10.1007/s11783-021-1420-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- National Bio-Protection Engineering Center, Tianjin, 300161 China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222 China
| | - Qian Zhang
- School of Mechanical Engineering and Safety Engineering, Institute of Particle Technology, University of Wuppertal, Wuppertal, D-42119 Germany
| |
Collapse
|
5
|
Ezenarro JJ, Párraga-Niño N, Sabrià M, Del Campo FJ, Muñoz-Pascual FX, Mas J, Uria N. Rapid Detection of Legionella pneumophila in Drinking Water, Based on Filter Immunoassay and Chronoamperometric Measurement. BIOSENSORS-BASEL 2020; 10:bios10090102. [PMID: 32825468 PMCID: PMC7558583 DOI: 10.3390/bios10090102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
Legionella is a pathogenic bacterium, ubiquitous in freshwater environments and able to colonise man-made water systems from which it can be transmitted to humans during outbreaks. The prevention of such outbreaks requires a fast, low cost, automated and often portable detection system. In this work, we present a combination of sample concentration, immunoassay detection, and measurement by chronoamperometry. A nitrocellulose microfiltration membrane is used as support for both the water sample concentration and the Legionella immunodetection. The horseradish peroxidase enzymatic label of the antibodies permits using the redox substrate 3,3′,5,5′-Tetramethylbenzidine to generate current changes proportional to the bacterial concentration present in drinking water. Carbon screen-printed electrodes are employed in the chronoamperometric measurements. Our system reduces the detection time: from the 10 days required by the conventional culture-based methods, to 2–3 h, which could be crucial to avoid outbreaks. Additionally, the system shows a linear response (R2 value of 0.99), being able to detect a range of Legionella concentrations between 101 and 104 cfu·mL−1 with a detection limit (LoD) of 4 cfu·mL−1.
Collapse
Affiliation(s)
- Josune J. Ezenarro
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, E-08193 Cerdanyola, Spain;
- Waterologies S.L, C/Dinamarca, 3 (nave 9), Polígon Industrial Les Comes, E-08700c Igualada, Spain
- Correspondence: (J.J.E.); (N.U.)
| | - Noemí Párraga-Niño
- Unitat de Malalties Infeccioses, Fundació Institut de Investigació Germans Trias I Pujol, E-08916 Badalona, Spain; (N.P.-N.); (M.S.)
| | - Miquel Sabrià
- Unitat de Malalties Infeccioses, Fundació Institut de Investigació Germans Trias I Pujol, E-08916 Badalona, Spain; (N.P.-N.); (M.S.)
| | - Fancisco Javier Del Campo
- Institut de Microelectrònica de Barcelona, CNM-CSIC, Esfera UAB-CEI, Campus Nord UAB, E-08193 Bellaterra, Spain; (F.J.D.C.); (F.-X.M.-P.)
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | - Francesc-Xavier Muñoz-Pascual
- Institut de Microelectrònica de Barcelona, CNM-CSIC, Esfera UAB-CEI, Campus Nord UAB, E-08193 Bellaterra, Spain; (F.J.D.C.); (F.-X.M.-P.)
| | - Jordi Mas
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, E-08193 Cerdanyola, Spain;
| | - Naroa Uria
- Institut de Microelectrònica de Barcelona, CNM-CSIC, Esfera UAB-CEI, Campus Nord UAB, E-08193 Bellaterra, Spain; (F.J.D.C.); (F.-X.M.-P.)
- Correspondence: (J.J.E.); (N.U.)
| |
Collapse
|
6
|
Laribi A, Allegra S, Souiri M, Mzoughi R, Othmane A, Girardot F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020; 215:120904. [PMID: 32312449 DOI: 10.1016/j.talanta.2020.120904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/20/2023]
Abstract
This work presents a comparison between static and dynamic modes of biosensing using a novel microfluidic assay for continuous and quantitative detection of Legionella pneumophila sg1 in artificial water samples. A self-assembled monolayer of 16-amino-1-hexadecanethiol (16-AHT) was covalently linked to a gold substrate, and the resulting modified surface was used to immobilize an anti-Legionella pneumophila monoclonal antibody (mAb). The modified surfaces formed during the biosensor functionalization steps were characterized using electrochemical measurements and microscopic imaging techniques. Under static conditions, the biosensor exhibited a wide linear response range from 10 to 108 CFU/mL and a detection limit of 10 CFU/mL. Using a microfluidic system, the biosensor responses exhibited a linear relationship for low bacterial concentrations ranging from 10 to 103 CFU/mL under dynamic conditions and an enhancement of sensing signals by a factor of 4.5 compared to the sensing signals obtained under static conditions with the same biosensor for the detection of Legionella cells in artificially contaminated samples.
Collapse
Affiliation(s)
- Ahlem Laribi
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France; Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
| | - Séverine Allegra
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| | - Mina Souiri
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Ridha Mzoughi
- Regional Laboratory of Hygiene, University Hospital Farhat Hached, 4000 Sousse, Tunisia and Laboratory of Analysis Treatment and Valorization of Pollutants and Products, Faculty of Pharmacy, 5000, Monastir, Tunisia
| | - Ali Othmane
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Françoise Girardot
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| |
Collapse
|
7
|
Mobed A, Hasanzadeh M, Saadati A, Hassanpour S. Synthesis and electroanalytical behaviour of AgNPs/graphite conductive nano-ink towards biosensing of bacteria genome in human biofluids. ANALYTICAL METHODS 2020; 12:1218-1228. [DOI: 10.1039/d0ay00118j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Identification of pathogens and diagnosis of infections are imperative health challenges, mainly in the case of fastidious bacteria that are hard to grow.
Collapse
Affiliation(s)
- Ahmad Mobed
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Arezoo Saadati
- Biotechnology Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Soodabeh Hassanpour
- Department of Analytical Chemistry
- Faculty of Science
- Palacky University Olomouc
- 77146 Olomouc
- Czech Republic
| |
Collapse
|
8
|
Mobed A, Hasanzadeh M, Babaie P, Aghazadeh M, Mokhtarzadeh A, Rezaee MA. Cetyltrimethyl ammonium bromide modified gold nanostructure supported by chitosan as a novel scaffold for immobilization of DNA and ultra-sensitive bioassay of Legionella pneumophila. Microchem J 2019; 149:103961. [DOI: 10.1016/j.microc.2019.05.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Mobed A, Hasanzadeh M, Babaie P, Agazadeh M, Mokhtarzadeh A, Rezaee MA. DNA-based bioassay of legionella pneumonia pathogen using gold nanostructure: A new platform for diagnosis of legionellosis. Int J Biol Macromol 2019; 128:692-699. [PMID: 30685302 DOI: 10.1016/j.ijbiomac.2019.01.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
The specific diagnosis of hard-growing bacteria is one of the most important concerns of medical bacteriology. Legionella pneumophila is one of the most important bacteria in hard growth. In spite remarkable trends in bacteriology, now day, culture is the gold standard for detection of L. pneumophila. This work is an attempt to quantification of L. pneumophila bacteria using a bioassay. The fabrication of a new electrochemical DNA-based bioassay using gold nano architecture combined with as a transducer substrate combined with toluidine blue (TB) as a redox marker was performed successful. Also, the mixture of beta‑cyclodextrin and dopamine as Poly (dopamine‑β‑Cyclodextrin) was used to proper a biointerface for stabilization of gold nanoparticles optimum immobilize of pDNA sequence (5-SH-TCGA TAC TCT CCC CGC CCC TT T TGTATCGACG-3). So, a specific thiolated pDNA was immobilized on the transducer substrate and DNA hybridization was followed by C-DNA sequence (5-ACA AAA GGG GCG GGG AGA GTA-3) using square wave voltammetry and differential pulse voltammetry. At the optimum conditions, linear range was 1 μM to 1 ZM and low limit of quantification (LLOQ) was 1 Zepto-molar. L. pneumophila were sensitively distinguished by the planned DNA sensor. Finally, the engineered DNA based bioassay could be used for identifying the L. pneumophila samples from patients or environments.
Collapse
Affiliation(s)
- Ahmad Mobed
- Student Research Committee, Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parinaz Babaie
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Agazadeh
- Student Research Committee, Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
10
|
Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens Bioelectron 2019; 129:164-174. [PMID: 30708263 DOI: 10.1016/j.bios.2019.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/09/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023]
Abstract
Biosensors have been commonly used in biomedical diagnostic tools in recent years, because of a wide range of application, such as point-of-care monitoring of treatment and disease progression, drug discovery, commonly use food control, environmental monitoring and biomedical research. Additionally, development of DNA biosensors has been increased enormously over the past few years as confirmed by the large number of scientific publications in this field. A wide range of techniques can be used for the development of DNA biosensors, such as DNA nano-machines and various signal amplification strategies. This article selectively reviews the recent advances in DNA base biosensors with various signal amplification strategies for detection of cancer DNA and microRNA, infectious microorganisms, and toxic metal ions.
Collapse
|
11
|
Mobed A, Hasanzadeh M, Aghazadeh M, Saadati A, Hassanpour S, Mokhtarzadeh A. The bioconjugation of DNA with gold nanoparticles towards the spectrophotometric genosensing of pathogenic bacteria. ANALYTICAL METHODS 2019; 11:4289-4298. [DOI: 10.1039/c9ay01339c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The investigation of important bio-molecular events such as expression of special genes has shown promise with the advent of nanotechnology.
Collapse
Affiliation(s)
- Ahmad Mobed
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mohammad Aghazadeh
- Student Research Committee
- Department of Microbiology
- Faculty of Medicine
- Tabriz University of Medical Sciences
- Iran
| | - Arezoo Saadati
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
12
|
Mobed A, Hasanzadeh M, Agazadeh M, Mokhtarzadeh A, Rezaee MA, Sadeghi J. Bioassays: The best alternative for conventional methods in detection of Legionella pneumophila. Int J Biol Macromol 2019; 121:1295-1307. [PMID: 30219511 DOI: 10.1016/j.ijbiomac.2018.09.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022]
Abstract
Fastidious bacteria are group of bacteria that not only grow slowly but also have complex nutritional needs. In this review, recent progress made on development of biosensing strategies towards quantification of Legionella pneumophila as fastidious bacteria in microbiology was investigated. In coincidence with medical bacteriology, it is the most widely used bio-monitoring, biosensors based on DNA and antibody. Also, all of legionella pneumophila genosensors and immunosensors that developed in recent years were collected analyzed. This review is meant to provide an overview of the various types of bioassays have been developed for determination of Legionella Legionella, along with significant advances over the last several years in related technologies. In addition, this review described: i) Most frequently applied principles in bioassay/biosensing of Legionellaii) The aspects of fabrication in the perspective of bioassay/biosensing applications iii) The potential of various electrochemical and optical bioassay/biosensing for the determination of Legionella and the circumvention of the most serious problem in immunosensing/immunoassay was discussed. iv) Some of bioassay/biosensing has been discussed with and without labels. v) We also summarize the latest developments in the applications of bioassay/biosensing methods for detection of Legionella. vi) The development trends of optical and electrochemical based bioassay/biosensing are also introduced.
Collapse
Affiliation(s)
- Ahmad Mobed
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Agazadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javid Sadeghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
13
|
Ruiz-Tórtola Á, Prats-Quílez F, González-Lucas D, Bañuls MJ, Maquieira Á, Wheeler G, Dalmay T, Griol A, Hurtado J, Bohlmann H, Götzen R, García-Rupérez J. Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. JOURNAL OF BIOPHOTONICS 2018; 11:e201800030. [PMID: 29664230 DOI: 10.1002/jbio.201800030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/12/2018] [Indexed: 05/20/2023]
Abstract
An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probes-upon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensors-is reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5' termination. Those MBs incorporate a biotin moiety close to their 3' termination in order to selectively bind a streptavidin molecule to them. The different photonic sensing responses obtained toward the target oligonucleotide detection, when the streptavidin molecule was bound to the MB probes or not, demonstrate the conformational change suffered by the MB upon hybridization, which promotes the displacement of the streptavidin molecule away from the surface of the photonic sensing structure.
Collapse
Affiliation(s)
- Ángela Ruiz-Tórtola
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| | | | - Daniel González-Lucas
- Departamento de Química, IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Valencia, Spain
| | - María-José Bañuls
- Departamento de Química, IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Valencia, Spain
| | - Ángel Maquieira
- Departamento de Química, IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Valencia, Spain
| | - Guy Wheeler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| | - Juan Hurtado
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| | - Helge Bohlmann
- microTEC Gesellschaft für Mikrotechnologie mbH, Duisburg, Germany
| | - Reiner Götzen
- microTEC Gesellschaft für Mikrotechnologie mbH, Duisburg, Germany
| | - Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
14
|
Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron 2016; 77:400-8. [DOI: 10.1016/j.bios.2015.09.048] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022]
|
15
|
Yang Y, Gao F, Cai X, Yuan X, He S, Gao F, Guo H, Wang Q. β-Cyclodextrin functionalized graphene as a highly conductive and multi-site platform for DNA immobilization and ultrasensitive sensing detection. Biosens Bioelectron 2015; 74:447-53. [DOI: 10.1016/j.bios.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
|
16
|
Chen X, Wang Q, Wang L, Guo H, Yang Y, Li F, Gao F. Construction of a Novel Colitoxin DNA Biosensor Based on Cross-Linker-Free Fixation of Probe Fragments on the Interface of Rugby-Ball-Shaped CoS2 Submicroparticles and Poly(2-thiophenesulfonyl chloride) Composite Film. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503831k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoqian Chen
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Liheng Wang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Hongxu Guo
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yizhen Yang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feiming Li
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feng Gao
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| |
Collapse
|
17
|
Sun X, Jia M, Guan L, Ji J, Zhang Y, Tang L, Li Z. Multilayer graphene-gold nanocomposite modified stem-loop DNA biosensor for peanut allergen-Ara h1 detection. Food Chem 2014; 172:335-42. [PMID: 25442562 DOI: 10.1016/j.foodchem.2014.09.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 06/20/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Abstract
In this study, we developed an electrochemically-amplified, stem-loop DNA biosensor to detect the peanut allergen Ara h1. Specifically, we electrodeposited a multilayer graphene-gold nanocomposite onto a glassy carbon electrode and then immobilised a thiolated hairpin DNA-biotin probe onto the modified electrode surface. The multilayer graphene-gold composite has good dispersion ability, and can amplify the electrochemical signal due to its high electron-transfer efficiency. The probe was switched to an "off" state in the presence of target DNA. The prepared biosensor demonstrated a linear response ranging from 10(-16) to 10(-13)M, with an ultrasensitive detection limit of 0.041 fM. Moreover, the biosensor showed excellent selectivity, as well as the ability to discriminate between a complementary target and a one-base mismatch or non-complementary sequence. Results show that this prepared DNA biosensor can be successfully used to detect the peanut allergen Ara h1 in a peanut milk beverage. Findings can be applied to the prevention of allergic reactions, thus improving human health and safety.
Collapse
Affiliation(s)
- Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Min Jia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu Guan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lili Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zaijun Li
- School of Chemical and Material Engineering of Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Xiang D, Zhai K, Xiang W, Wang L. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I. Talanta 2014; 129:249-53. [PMID: 25127591 DOI: 10.1016/j.talanta.2014.05.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity.
Collapse
Affiliation(s)
- Dongshan Xiang
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, China; School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Kun Zhai
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Wenjun Xiang
- Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Lianzhi Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
19
|
Tak M, Gupta V, Tomar M. Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Biosens Bioelectron 2014; 59:200-7. [PMID: 24727606 DOI: 10.1016/j.bios.2014.03.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 02/01/2023]
Abstract
Zinc oxide (ZnO) nanostructures possessing flower-like morphology have been synthesised onto platinized silicon substrate by simple and economical hydrothermal method. The interaction of physically immobilized single stranded thiolated DNA (ss th-DNA) probe of N. meningitides onto the nanostructured ZnO (ZNF) matrix surface have been investigated using cyclic voltammetry (CV) and electrochemical impeadance spectroscopy (EIS). The electrochemical sensing response behaviour of the DNA bioelectrode (ss th-DNA/ZNF/Pt/Si) has been studied by both differential pulse voltammetric (DPV) as well as impedimetric techniques. The fabricated DNA biosensor can quantify wide range of the complementary target ss th-DNA in the range 5-240 ng μl(-1) with good linearity (R=0.98), high sensitivity (168.64 μA ng(-1) μl cm(-2)) and low detection limit of about 5 ng μl(-1). Results emphasise that the fabricated flower-like ZnO nanostructures offer a useful platform for the immobilization of DNA molecules and could be exploited for efficient detection of complementary target single stranded DNA corresponding to N. meningitides.
Collapse
Affiliation(s)
- Manvi Tak
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Vinay Gupta
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Monika Tomar
- Department of Physics, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
20
|
Miao X, Guo X, Xiao Z, Ling L. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosens Bioelectron 2014; 59:54-7. [PMID: 24690562 DOI: 10.1016/j.bios.2014.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/16/2014] [Accepted: 03/03/2014] [Indexed: 01/03/2023]
Abstract
Direct recognition of double-stranded DNA (dsDNA) was crucial to disease diagnosis and gene therapy, because DNA in its natural state is double stranded. Here, a novel sensor for the sequence-specific recognition of dsDNA was developed based on the structure change of ferrocene (Fc) redox probe modified molecular beacon (MB). For constructing such a sensor, gold nanoparticles (AuNPs) were initially electrochemical-deposited onto glass carbon electrode (GCE) surface to immobilize thiolated MB in their folded states with Au-S bond. Hybridization of MB with target dsDNA induced the formation of parallel triplex DNA and opened the stem-loop structure of it, which resulted in the redox probe (Fc) away from the electrode and triggered the decrease of current signals. Under optimal conditions, dsDNA detection could be realized in the range from 350 pM to 25 nM, with a detection limit of 275 pM. Moreover, the proposed method has good sequence-specificity for target dsDNA compared with single base pair mismatch and two base pairs mismatches.
Collapse
Affiliation(s)
- Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Xiaoting Guo
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhiyou Xiao
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Liansheng Ling
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
21
|
Grabowska I, Stachyra A, Góra-Sochacka A, Sirko A, Olejniczak AB, Leśnikowski ZJ, Radecki J, Radecka H. DNA probe modified with 3-iron bis(dicarbollide) for electrochemical determination of DNA sequence of Avian Influenza Virus H5N1. Biosens Bioelectron 2014; 51:170-6. [DOI: 10.1016/j.bios.2013.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/01/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
22
|
Abi A, Ferapontova EE. Electroanalysis of single-nucleotide polymorphism by hairpin DNA architectures. Anal Bioanal Chem 2012; 405:3693-703. [PMID: 23263518 DOI: 10.1007/s00216-012-6633-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/27/2012] [Accepted: 12/06/2012] [Indexed: 12/21/2022]
Abstract
Genetic analysis of infectious and genetic diseases and cancer diagnostics require the development of efficient tools for fast and reliable analysis of single-nucleotide polymorphism (SNP) in targeted DNA and RNA sequences often responsible for signalling disease onset. Here, we highlight the main trends in the development of electrochemical genosensors for sensitive and selective detection of SNP that are based on hairpin DNA architectures exhibiting better SNP recognition properties compared with linear DNA probes. SNP detection by electrochemical hairpin DNA beacons is discussed, and comparative analysis of the existing SNP sensing strategies based on enzymatic and nanoparticle signal amplification schemes is presented.
Collapse
Affiliation(s)
- Alireza Abi
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
| | | |
Collapse
|
23
|
Rai V, Hapuarachchi HC, Ng LC, Soh SH, Leo YS, Toh CS. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. PLoS One 2012; 7:e42346. [PMID: 22927927 PMCID: PMC3426509 DOI: 10.1371/journal.pone.0042346] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/03/2012] [Indexed: 11/21/2022] Open
Abstract
A nanoporous alumina membrane-based ultrasensitive DNA biosensor is constructed using 5′-aminated DNA probes immobilized onto the alumina channel walls. Alumina nanoporous membrane-like structure is carved over platinum wire electrode of 76 µm diameter dimension by electrochemical anodization. The hybridization of complementary target DNA with probe DNA molecules attached inside the pores influences the pore size and ionic conductivity. The biosensor demonstrates linear range over 6 order of magnitude with ultrasensitive detection limit of 9.55×10−12 M for the quantification of ss-31 mer DNA sequence. Its applicability is challenged against real time cDNA PCR sample of dengue virus serotype1 derived from asymmetric PCR. Excellent specificity down to one nucleotide mismatch in target DNA sample of DENV3 is also demonstrated.
Collapse
Affiliation(s)
- Varun Rai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute, National Environmental Agency, Singapore, Singapore
| | - Siew Hwa Soh
- Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yee Sin Leo
- Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore
| | - Chee-Seng Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
24
|
Rai V, Deng J, Toh CS. Electrochemical nanoporous alumina membrane-based label-free DNA biosensor for the detection of Legionella sp. Talanta 2012; 98:112-7. [DOI: 10.1016/j.talanta.2012.06.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 11/26/2022]
|
25
|
Janssen KPF, Knez K, Vanysacker L, Schrooten J, Spasic D, Lammertyn J. Enabling fiber optic serotyping of pathogenic bacteria through improved anti-fouling functional surfaces. NANOTECHNOLOGY 2012; 23:235503. [PMID: 22609831 DOI: 10.1088/0957-4484/23/23/235503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Significant research efforts are continually being directed towards the development of sensitive and accurate surface plasmon resonance biosensors for sequence specific DNA detection. These sensors hold great potential for applications in healthcare and diagnostics. However, the performance of these sensors in practical usage scenarios is often limited due to interference from the sample matrix. This work shows how the co-immobilization of glycol(PEG) diluents or 'back filling' of the DNA sensing layer can successfully address these problems. A novel SPR based melting assay is used for the analysis of a synthetic oligomer target as well as PCR amplified genomic DNA extracted from Legionella pneumophila. The benefits of sensing layer back filling on the assay performance are first demonstrated through melting analysis of the oligomer target and it is shown how back filling enables accurate discrimination of Legionella pneumophila serogroups directly from the PCR reaction product with complete suppression of sensor fouling.
Collapse
Affiliation(s)
- K P F Janssen
- BIOSYST-MeBioS, KU Leuven, Willem De Croylaan 42, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|