1
|
Lan J, Chen L, Li Z, Liu L, Zeng R, He Y, Shen Y, Zhang T, Ding Y. Multifunctional Biomimetic Liposomes with Improved Tumor-Targeting for TNBC Treatment by Combination of Chemotherapy, Antiangiogenesis and Immunotherapy. Adv Healthc Mater 2024; 13:e2400046. [PMID: 38767575 DOI: 10.1002/adhm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Triple negative breast cancer (TNBC) featuring high relapses and metastasis shows limited clinical therapeutic efficiency with chemotherapy for the extremely complex tumor microenvironment, especially angiogenesis and immunosuppression. Combination of antiangiogenesis and immunotherapy holds promise for effective inhibition of tumor proliferation and invasion, while it remains challenging for specific targeting drug delivery to tumors and metastatic lesions. Here, a multifunctional biomimetic liposome loading Gambogic acid (G/R-MLP) is developed using Ginsenoside Rg3 (Rg3) to substitute cholesterol and cancer cell membrane coating, which is designed to increase long-circulating action by a low immunogenicity and specifically deliver gambogic acid (GA) to tumor site and metastatic lesions by homologous targeting and glucose transporter targeting. After G/R-MLP accumulates in the primary tumors and metastatic nodules, it synergistically enhances the antitumor efficacy of GA, effectively suppressing the tumor growth and lung metastasis by killing tumor cells, inhibiting tumor cell migration and invasion, achieving antiangiogenesis and improving the antitumor immunity. All in all, the strategy combining chemotherapy, antiangiogenesis, and immunotherapy improves therapeutic efficiency and prolonged survival, providing a new perspective for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z, Borji H, Pandey S. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. INORG CHEM COMMUN 2024; 164:112409. [DOI: 10.1016/j.inoche.2024.112409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
|
3
|
Lu H, Lu Q, Sun H, Wang Z, Shi X, Ding Y, Ran X, Pei J, Pan Y, Zhang Q. ROS-Responsive Fluorescent Sensor Array for Precise Diagnosis of Cancer via pH-Controlled Multicolor Gold Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38381-38390. [PMID: 37531495 DOI: 10.1021/acsami.3c09320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Intracellular reactive oxygen species (ROS) are closely associated with cancer cell types. Therefore, ROS-based pattern recognition is a promising strategy for precise diagnosis of cancer, but such a possibility has never been reported yet. Herein, we proposed an ROS-responsive fluorescent sensor array based on pH-controlled histidine-templated gold nanoclusters (AuNCs@His) to distinguish cancer cell types and their proliferation states. In this strategy, three types of AuNCs@His with diverse fluorescence profiles were first synthesized by only adjusting the pH value. Upon the addition of various ROS, fluorescence quenching of three types of AuNCs@His occurred with different degrees, thereby forming unique optical "fingerprints", which were well-clustered into several separated groups without overlap by principal component analysis (PCA). The sensing mechanism was attributable to the oxidation of AuNCs@His by ROS, as revealed by X-ray photoemission spectroscopy, Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, and electrospray ionization mass spectrometry. Based on the ROS-responsive sensing pattern, cancer cell types were successfully differentiated via PCA with 100% accuracy. Additionally, the proposed sensor array exhibited excellent performance in distinguishing the proliferation states of cancer cells, which was supported by the results of the Ki-67 immunohistochemistry assay. Overall, the ROS-responsive fluorescent sensor array can serve as a promising tool for precise diagnosis of cancer, indicating great potential for clinical application.
Collapse
Affiliation(s)
- Haifeng Lu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Qi Lu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hongwu Sun
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhongkun Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xiang Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yuling Ding
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xiang Ran
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jing Pei
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yubo Pan
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qunlin Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
4
|
AuPt NPs with enhanced electrochemical oxidization activity for ratiometric electrochemical aptasensor. Biosens Bioelectron 2021; 196:113733. [PMID: 34736102 DOI: 10.1016/j.bios.2021.113733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023]
Abstract
Strong and stable electrochemical beacons are critical for the achievement of sensitive and reliable electroanalysis applications. In this work, the electrochemical oxidation performance of AuPt NPs was studied and firstly found to be largely enhanced under light illumination. Plasmonic AuPt NPs collected light energy after local surface plasmon resonance (LSPR) excitation and generated much more holes to participate in the electrochemical oxidation process of Pt0 in AuPt NPs. AuPt NPs with the electrochemical oxidation peak at around -0.7 V were utilized as detection probes for the fabrication of ratiometric electrochemical aptasensor, by introducing Co-MOF/Fe3O4/Ag nanosheets (NSs) with the electrochemical oxidation peak at 0.1 V as reference beacons. The aptamers of epithelial cell adhesion molecule (EpCAM) modified AuPt NPs were assembled with Co-MOF/Fe3O4/Ag NSs, which generated strong detection and reference signals at -0.7 V and 0.1 V, respectively. The high affinity between EpCAM and aptamers induced the separation of AuPt NPs from Co-MOF/Fe3O4/Ag NSs, resulting in the decrease of detection signal at -0.7 V and unchanged reference signal at 0.1 V. A ratiometric electrochemical aptasensor was achieved for the sensitive and reliable quantification of EpCAM in the range from 100 pg/mL to 100 ng/mL. The limit of detection (LOD) was calculated to be 13.8 pg/mL for EpCAM. Plasmon-driven electrochemical oxidation enhancement principle provides the possibility for the design and fabrication of more strong and anti-interference electroactive plasmonic metal-Pt composite nanostructures for the electroanalysis applications.
Collapse
|
5
|
Li X, Zhou Y, Wickramaratne B, Yang Y, Pappas D. A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells. Biomed Microdevices 2021; 23:28. [PMID: 33909118 DOI: 10.1007/s10544-021-00566-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic, flow cytometry, and immunomagnetic methods for cancer cell isolation have heavily relied on the Epithelial Cellular Adhesion Molecule (EpCAM) for affinity separation. While EpCAM has been used extensively for circulating tumor cell isolation, it cannot be used to isolate non-epithelial cells. The human transferrin receptor (CD71) can also be used for cancer cell isolation and has the advantage that as an affinity target it can separate virtually any cancer cell type, regardless of disease origin. However, direct comparison of the capture ability of EpCAM and CD71 has not been reported previously. In this work, cell capture with both EpCAM and CD71 were studied using a novel higher-throughput herringbone cell separation microfluidic device. Five separation chip models were designed and the one with the highest capture efficiency (average 90 ± 10%) was chosen to compare antigen targets for cell capture. Multiple cancer cell lines including CCRF-CEM, PC-3 and MDA-MB-231 were tested for cell capture performance using both ligands (anti-CD71 and anti-EpCAM) in the optimized chip design. PC-3 and MDA-MB-231 cells were spiked into blood at concentrations ranging from 0.5%-10%. PC-3 cells were separated by anti-CD71 and anti-EpCAM with 32-37% and 31-50% capture purity respectively, while MDA-MB-231 were separated with 35-53% and 33-56% capture purity using anti-CD71 and anti-EpCAM for all concentrations. The enrichment factor for the lowest concentrations of cells in blood ranged from 66-74X. The resulting enrichment of cancer cells shows that anti-CD71 was found to be statistically similar to anti-EpCAM for epithelial cancer cells, while anti-CD71 can be further used for non-epithelial cells, where anti-EpCAM cannot be used.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yun Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bhagya Wickramaratne
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yijia Yang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
6
|
Vinchhi P, Patel MM. Triumph against cancer: invading colorectal cancer with nanotechnology. Expert Opin Drug Deliv 2021; 18:1169-1192. [PMID: 33567909 DOI: 10.1080/17425247.2021.1889512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recent statistics have reported colorectal cancer (CRC) as the second leading cause of cancer-associated deaths in the world. Early diagnosis of CRC may help to reduce the mortality and associated complications. However, the conventional diagnostic techniques often lead to misdiagnosis, fail to differentiate benign from malignant tissue or diagnose only at an advanced stage. For the treatment of CRC, surgery, chemotherapy, immunotherapy, and radiotherapy have been employed. However, the quality of living of the CRC patients is highly compromised after employing current therapeutic approaches owing to the toxicity issues and relapse. AREA COVERED This review accentuates the molecular mechanisms involved in the pathogenesis, stages of CRC, conventional approaches for diagnosis and therapy of CRC and the issues confronted thereby. It provides an outlook on the advantages of employing nanotechnology-based approaches for prevention, early diagnosis, and treatment of CRC. EXPERT OPINION Employing nanotechnology-based approaches has demonstrated promising outcomes in the prevention, diagnosis, and treatment of CRC. Nanotechnology-based approaches can surmount the major drawbacks of traditional diagnostic and therapeutic approaches. Nanotechnology bestows the advantage of early detection of CRC which helps to undertake instant steps for offering efficient therapy and reducing the mortality rates. For the treatment of CRC, nanocarriers offer the benefit of achieving controlled drug release, improved drug bioavailability, enhanced tumor targetability and reduced adverse effects.
Collapse
Affiliation(s)
- Preksha Vinchhi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
7
|
Jalil O, Pandey CM, Kumar D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry 2020; 138:107733. [PMID: 33429154 DOI: 10.1016/j.bioelechem.2020.107733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
An ultrasensitive, electrochemical biosensor has been fabricated by utilizing molybdenum disulfide (MoS2) grafted reduced graphene oxide (MoS2@rGO) nanohybrid as a sensing platform. Biomolecular-assisted synthetic method was adopted to synthesize MoS2@rGO nanohybrid, where L-cys was used to reduce GO. The MoS2@rGO nanohybrid exhibits improved electrochemical performance when it has been electrophoretically deposited onto the indium tin oxide (ITO) coated glass substrate. Further, epithelialcell adhesion moleculeantibodies (anti-EpCAM) specific to cancer biomarker has been covalently immobilized on the MoS2@rGO/ITO electrodes for label-free detection of EpCAM. Electrochemical results confirm that anti-EpCAM/MoS2@rGO/ITO based biosensor can detect EpCAM in the concentration range of 0.001-20 ng mL-1 with a detection limit of 44.22 fg mL-1 (S/N = 3). The biosensor's excellent analytical performance has been attributed to the efficient immobilization of EpCAM antibodies on the MoS2@rGO surface, which results in high specificity for EpCAM antigen. The fabricated biosensor showed good selectivity, reproducibility, and stability. The successful detection of EpCAM antigen in spiked samples (human saliva, serum and urine) makes this platform an alternative method for early screening of cancer biomarker.
Collapse
Affiliation(s)
- Owais Jalil
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Chandra Mouli Pandey
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India.
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
8
|
Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Mikrochim Acta 2020; 187:275. [DOI: 10.1007/s00604-020-04233-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
|
9
|
Antibody-Targeted Nanoparticles for Cancer Treatment. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Epithelial Cell Adhesion Molecule in Primary Sjögren's Syndrome Patients: Characterization and Evaluation of a Potential Biomarker. J Immunol Res 2019; 2019:3269475. [PMID: 31886299 PMCID: PMC6915146 DOI: 10.1155/2019/3269475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Objective To determine the subcellular localization of epithelial cell adhesion molecule (EpCAM) in labial salivary gland (LSG) and evaluate the diagnostic use of the extracellular domain of EpCAM (EpEX) and intracellular domain (EpICD) for primary Sjögren's syndrome (pSS). Methods Immunohistochemical (IHC) analysis was conducted using EpEX and EpICD domain-specific antibodies on labial salivary gland biopsy (LSGB) from participants. Chi-square or Fisher's exact analysis, Mann-Whitney U-test, and Kruskal-Wallis test compared differences among groups. Independent risk factors of pSS were determined by multiple logistic regression analysis. Receiver-operator characteristic curves (ROC) were carried out to estimate the diagnostic value. Results Compared to non-SS controls, loss of membranous EpEX and EpICD expression was observed in LSGB of pSS patients, which occurred in parallel with increased accumulation of cytoplastic and nuclear EpICD. The subcellular EpEX/EpICD expressions were associated with various features of pSS patients, especially histopathological grade of LSGB. Furthermore, high IHC scores of membranous EpEX were independent risk factors for pSS, even for the pSS patients at early stage. The IHC scores of subcellular EpEX/EpICD were of great diagnostic value for pSS with high sensitivity (70-80%) and specificity (85-95%). Conclusion This study first found the aberrant expression pattern of EpCAM in LSG of pSS patients. The IHC scores of subcellular EpEX/EpICD were demonstrated to have the potential to act as diagnostic biomarkers for pSS.
Collapse
|
11
|
Fan CY, Hou YR, Adak AK, Waniwan JT, Dela Rosa MAC, Low PY, Angata T, Hwang KC, Chen YJ, Lin CC. Boronate affinity-based photoactivatable magnetic nanoparticles for the oriented and irreversible conjugation of Fc-fused lectins and antibodies. Chem Sci 2019; 10:8600-8609. [PMID: 31803435 PMCID: PMC6844280 DOI: 10.1039/c9sc01613a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022] Open
Abstract
The utilization of immuno-magnetic nanoparticles (MNPs) for the selective capture, enrichment, and separation of specific glycoproteins from complicated biological samples is appealing for the discovery of disease biomarkers. Herein, MNPs were designed and anchored with abundant boronic acid (BA) and photoreactive alkyl diazirine (Diaz) functional groups to obtain permanently tethered Fc-fused Siglec-2 and antiserum amyloid A (SAA) mAb with the assistance of reversible boronate affinity and UV light activation in an orientation-controlled manner. The Siglec-2-Fc-functionalized MNPs showed excellent stability in fetal bovine serum (FBS) and excellent efficiency in the extraction of cell membrane glycoproteins. The anti-SAA mAb-functionalized MNPs maintained active Ab orientation and preserved antigen recognition capability in biological samples. Thus, the BA-Diaz-based strategy holds promise for the immobilization of glycoproteins, such as antibodies, with the original protein binding activity maintained, which can provide better enrichment for the sensitive detection of target proteins.
Collapse
Affiliation(s)
- Chen-Yo Fan
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Yi-Ren Hou
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Avijit K Adak
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | | | | | - Penk Yeir Low
- Institute of Biological Chemistry , Academia Sinica , Taipei , Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry , Academia Sinica , Taipei , Taiwan
| | - Kuo-Chu Hwang
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Yu-Ju Chen
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan .
| | - Chun-Cheng Lin
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Frontier Research Center on Fundamental and Applied Sciences of Matters , Hsinchu , Taiwan
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
12
|
The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand. Anal Chim Acta 2019; 1076:154-161. [PMID: 31203960 DOI: 10.1016/j.aca.2019.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022]
Abstract
Cancer cell detection in liquid biopsies has been a widely studied application in many microfluidic devices. The use of a common antibody, such as the epithelial cell adhesion molecule (Anti-EpCAM) or other specific antibodies, has facilitated the detection and study of many cancers. However, the use of such antibodies requires a priori knowledge of the cancer source, and many cancer subtypes are missed in screening applications. There remains a need to study a wider range of cancers that maintain the streamlined antibody approach in cell affinity separations. The Human transferrin receptor (CD71) has recently been demonstrated as a cancer cell affinity target in blood samples. CD71 expression in blood cells is low, whereas proliferating cancer cells have a higher expression of the surface protein. CD71 expression is variable with cell cycle, which can impact cell separations. In this work, we investigated the effects of cell cycle and CD71 expression on cell capture metrics. Six cancer cell lines were isolated from blood via CD71 affinity capture, with a capture efficiency and purity that varied with CD71 expression. Despite variation in CD71 expression, the affinity was sufficient to isolate cancer cells spiked into blood; under optimal conditions, CD71-based capture resulted in capture purity >80%. We conclude that CD71 affinity separations show potential as a biomarker for cancer studies without sacrificing sensitivity and selectivity, and that cancer cells can be isolated from liquid biopsies over a range of expression of the target protein.
Collapse
|
13
|
Narayan T, Kumar S, Kumar S, Augustine S, Yadav BK, Malhotra BD. Protein functionalised self assembled monolayer based biosensor for colon cancer detection. Talanta 2019; 201:465-473. [PMID: 31122452 DOI: 10.1016/j.talanta.2019.04.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
We report results of the studies relating to the fabrication of a surface plasmon resonance (SPR) based label-free immunosensor for real-time monitoring of endothelin-1 (ET-1), a colon cancer biomarker. A gold disk modified with a self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (11-MUA) was functionalised via covalent immobilization of monoclonal anti-ET-1 antibodies using EDC-NHS (1-(3-(dimethylamine)-propyl)-3-ethylcarbodiimide hydrochloride, N-hydroxy succinimide) chemistry. This immunosensing platform (ethanolamine/anti-ET-1/11-MUA/Au) was characterized via atomic force microscopy (AFM), contact angle (CA) and Fourier transform infrared (FT-IR) spectroscopic techniques. The fabricated SPR electrode was further used to detect ET-1 in the broad concentration range 2-100 pg mL-1, with a detection limit of 0.30 pg mL-1 and remarkable sensitivity of 2.18 mo pg-1mL. The adsorption mechanism was studied using monophasic model and the values of association (ka) and dissociation (kd) constants for anti-ET-1 and ET-1 binding were calculated to be 4.4 ± 0.4 × 105 M-1 s-1 and 2.04 ± 0.0003 × 10-3 s-1, respectively. The results obtained via analysis of serum samples of colorectal cancer patients were found to be in good agreement with those obtained from enzyme-linked immunosorbent assay (ELISA) technique. Further, electrochemical studies were performed to prove the efficacy of the fabricated platform as a point of care device for the detection of ET-1.
Collapse
Affiliation(s)
- Tarun Narayan
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Saurabh Kumar
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India; Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bengaluru, 560012, India
| | - Suveen Kumar
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India; Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shine Augustine
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - B K Yadav
- Rajiv Gandhi Cancer Institute and Research Centre, Delhi, 110085, India; National Liver Disease Biobank, Institute of Liver and Biliary Sciences, Delhi, 110070 India
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
14
|
Chen J, Shang B, Zhang H, Zhu Z, Chen L, Wang H, Ran F, Chen Q, Chen J. Enzyme-free ultrasensitive fluorescence detection of epithelial cell adhesion molecules based on a toehold-aided DNA recycling amplification strategy. RSC Adv 2018; 8:14798-14805. [PMID: 35541343 PMCID: PMC9079946 DOI: 10.1039/c8ra01362d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Epithelial cell adhesion molecules (EpCAMs) play a significant role in tumorigenesis and tumor development. EpCAMs are considered to be tumor signaling molecules for cancer diagnosis, prognosis and therapy. Herein, an enzyme-free and highly sensitive fluorescent biosensor, with a combined aptamer-based EpCAM recognition and toehold-aided DNA recycling amplification strategy, was developed for sensitive and specific fluorescence detection of EpCAMs. Due to highly specific binding between EpCAMs and corresponding aptamers, strand a, which is released from the complex of aptamer/strand a in the presence of EpCAMs which is bound to the corresponding aptamer, triggered the toehold-mediated strand displacement process. An amplified fluorescent signal was achieved by recycling strand a for ultrasensitive EpCAM detection with a detection limit as low as 0.1 ng mL-1, which was comparable or superior to that of reported immunoassays and biosensor strategies. In addition, high selectivity towards EpCAMs was exhibited when other proteins were selected as control proteins. Finally, this strategy was successfully used for the ultrasensitive fluorescence detection of EpCAMs in human serum samples with satisfactory results. Importantly, the present strategy may be also expanded for the detection of other targets using the corresponding aptamers.
Collapse
Affiliation(s)
- Jishun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Bing Shang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hua Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Zhengpeng Zhu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Long Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hongmei Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Fengying Ran
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Jun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| |
Collapse
|
15
|
Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates. Adv Healthc Mater 2018; 7. [PMID: 28961378 DOI: 10.1002/adhm.201700607] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/31/2017] [Indexed: 01/11/2023]
Abstract
Targeted nanomedicines have significantly changed the way new therapeutics are designed to treat disease. Central to successful therapeutics is the ability to control the dynamics of protein-nanomaterial interactions to enhance the therapeutic effect of the nanomedicine. The aim of this review is to illustrate the diversity and versatility of the conjugation approaches involved in the synthesis of antibody-nanoparticle conjugates, and highlight significant new advances in the field of bioconjugation. Such nanomedicines have found utility as both advanced therapeutic agents, as well as more complex imaging contrast agents that can provide both anatomical and functional information of diseased tissue. While such conjugates show significant promise as next generation targeted nanomedicines, it is recognized that there are in fact no clinically approved targeted therapeutics on the market. This fact is reflected upon within this review, and attempts are made to draw some reasoning from the complexities associated with the bioconjugation chemistry approaches that are typically utilized. Present trends, as well as future directions of next generation targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Amal J. Sivaram
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| |
Collapse
|
16
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
17
|
Lim JM, Ryu MY, Yun JW, Park TJ, Park JP. Electrochemical peptide sensor for diagnosing adenoma-carcinoma transition in colon cancer. Biosens Bioelectron 2017; 98:330-337. [PMID: 28697446 DOI: 10.1016/j.bios.2017.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
|
18
|
Saroja B, SelwinMich Priyadharson A. Adaptive pillar K-means clustering-based colon cancer detection from biopsy samples with outliers. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2017. [DOI: 10.1080/21681163.2017.1350603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B. Saroja
- School of Electrical and Computing, Vel Tech University, Avadi, Chennai
| | | |
Collapse
|
19
|
O’Connell CL, Nooney R, McDonagh C. Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy. Biosens Bioelectron 2017; 91:190-198. [DOI: 10.1016/j.bios.2016.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
20
|
Oriented conjugation of antibodies against the epithelial cell adhesion molecule on fluorescently doped silica nanoparticles for flow-cytometric determination and in vivo imaging of EpCAM, a biomarker for colorectal cancer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2211-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Bravo K, Ortega FG, Messina GA, Sanz MI, Fernández-Baldo MA, Raba J. Integrated bio-affinity nano-platform into a microfluidic immunosensor based on monoclonal bispecific trifunctional antibodies for the electrochemical determination of epithelial cancer biomarker. Clin Chim Acta 2017; 464:64-71. [DOI: 10.1016/j.cca.2016.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/23/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023]
|
22
|
Ranjan R, Esimbekova EN, Kratasyuk VA. Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron 2016; 87:918-930. [PMID: 27664412 DOI: 10.1016/j.bios.2016.09.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/06/2016] [Accepted: 09/17/2016] [Indexed: 12/14/2022]
Abstract
The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia
| | - Elena N Esimbekova
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia.
| | - Valentina A Kratasyuk
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russia
| |
Collapse
|
23
|
Tao L, Zhang C, Zhang J, Sun Y, Li X, Yan K, Jin B, Zhang Z, Yang K. Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1849-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Chen L, She X, Wang T, He L, Shigdar S, Duan W, Kong L. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles. NANOSCALE 2015; 7:14080-92. [PMID: 26242620 DOI: 10.1039/c5nr03527a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.
Collapse
Affiliation(s)
- Lijue Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 2015; 44:4645-71. [DOI: 10.1039/c4cs00270a] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review a selection of the most recent examples of imaging techniques applied to silica-based NPs for imaging is reported.
Collapse
Affiliation(s)
- Claudia Caltagirone
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Alexandre Bettoschi
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Alessandra Garau
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Riccardo Montis
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| |
Collapse
|
26
|
Li H, Wang M, Qiang W, Hu H, Li W, Xu D. Metal-enhanced fluorescent detection for protein microarrays based on a silver plasmonic substrate. Analyst 2014; 139:1653-60. [DOI: 10.1039/c3an01875j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Fery-Forgues S. Fluorescent organic nanocrystals and non-doped nanoparticles for biological applications. NANOSCALE 2013; 5:8428-8442. [PMID: 23900346 DOI: 10.1039/c3nr02657d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The recently developed fluorescent organic nanocrystals and non-doped nanoparticles (FONs) occupy a special position among other nanoparticle systems that are used for studying a variety of fundamental processes in the life sciences. Understanding their particular photophysical behavior allows proper design of FONs. The usual preparation methods are described. It is shown that FONs lead to original applications as biochemical sensors and biolabels for immunoassays. They also show high potentialities for bio-imaging of cell cultures, drug-delivery control, angiography and in vivo bio-imaging of solid tumors.
Collapse
Affiliation(s)
- Suzanne Fery-Forgues
- CNRS, ITAV-USR 3505, Advanced Technology Institute in Life Sciences, 1 place Pierre Potier, Oncopole-BP 50624, 31106 Toulouse, France.
| |
Collapse
|
28
|
Arap W, Pasqualini R, Montalti M, Petrizza L, Prodi L, Rampazzo E, Zaccheroni N, Marchiò S. Luminescent silica nanoparticles for cancer diagnosis. Curr Med Chem 2013; 20:2195-211. [PMID: 23458621 PMCID: PMC4309985 DOI: 10.2174/0929867311320170005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 01/25/2013] [Accepted: 02/10/2013] [Indexed: 12/22/2022]
Abstract
Fluorescence imaging techniques are becoming essential for preclinical investigations, necessitating the development of suitable tools for in vivo measurements. Nanotechnology entered this field to help overcome many of the current technical limitations, and luminescent nanoparticles (NPs) are one of the most promising materials proposed for future diagnostic implementation. NPs also constitute a versatile platform that can allow facile multi-functionalization to perform multimodal imaging or theranostics (simultaneous diagnosis and therapy). In this contribution we have mainly focused on dye doped silica or silica-based NPs conjugated with targeting moieties to enable imaging of specific cancer cells. We also cite and briefly discuss a few non-targeted systems for completeness. We summarize common synthetic approaches to these materials, and then survey the most recent imaging applications of silica-based nanoparticles in cancer. The field of theranostics is particularly important and stimulating, so, even though it is not the central topic of this paper, we have included some significant examples. We conclude with a short section on NP-based systems already in clinical trials and examples of specific applications in childhood tumors. This review aims to describe and discuss, through focused examples, the great potential of these materials in the medical field, with the aim to encourage further research to implement applications, which today are still rare.
Collapse
Affiliation(s)
- W Arap
- MD Anderson Cancer Center, Houston, TX 77230, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tao L, Song C, Sun Y, Li X, Li Y, Jin B, Zhang Z, Yang K. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells. Anal Chim Acta 2012; 761:194-200. [PMID: 23312331 DOI: 10.1016/j.aca.2012.11.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 11/26/2022]
Abstract
A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO(4) oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.
Collapse
Affiliation(s)
- Liang Tao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012; 7:4391-408. [PMID: 22927757 PMCID: PMC3420598 DOI: 10.2147/ijn.s33838] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 12/23/2022] Open
Abstract
Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor margins, identify residual tumor cells and micrometastases, and determine whether a tumor has been completely removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resistance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. The present review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Metabolomics and Enzymology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
31
|
Gonçalves AS, Macedo AS, Souto EB. Therapeutic nanosystems for oncology nanomedicine. Clin Transl Oncol 2012; 14:883-90. [DOI: 10.1007/s12094-012-0912-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|