1
|
Lv J, Wan J, Wu D, Zhang X, Xu W, Wang M, Chen S, Ye Z, Tian Y, Hu Q, Han D, Niu L. Target-mediated silver deposition-based electrochemical biosensor for highly sensitive detection of human chorionic gonadotropin. Biosens Bioelectron 2025; 267:116830. [PMID: 39368294 DOI: 10.1016/j.bios.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
As a glycoprotein hormone, human chorionic gonadotropin (hCG) is an established marker for pregnancy test. On the basis of the target-mediated silver deposition (TSD), in this work, we report the development of an amplification-free electrochemical biosensor for the highly sensitive detection of hCG. The detection of hCG involves the use of the affinity peptide-modified electrode for hCG capture (the CGGSSPPLRINRHILTR peptide containing the hCG-binding domain of the PPLRINRHILTR sequence is used as the affinity peptide), the oxidation of the diol sites of the glycan chains on hCG hormones into aldehyde groups by NaIO4, and the deposition of silver nanoparticles (AgNPs) for the solid-state voltammetric stripping analysis. Due to the deposition of multiple AgNPs while the solid-state Ag/AgCl voltammetric process has a high signal-to-noise ratio, the TSD-based electrochemical biosensor can be applied to the highly sensitive detection of hCG without the need for signal amplification. Under optimal conditions, the stripping current increased linearly with an increasing hCG concentration over the range from 1.0 to 25 mIU/mL, with a detection limit of 0.45 mIU/mL. Owing to the high specificity of the hCG-binding peptide PPLRINRHILTR, this electrochemical hCG biosensor exhibits high selectivity. The results of the quantitative assay of hCG in urine samples at the concentrations of 25, 10, and 1.0 mIU/mL are desirable, indicating the good anti-interference capability. As the TSD-based electrochemical biosensor allows the amplification-free detection of low-abundance hCG, it is easy to use and cost-effective, showing great promise in point-of-care assay of hCG for pregnancy test.
Collapse
Affiliation(s)
- Junpeng Lv
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Di Wu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiyao Zhang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenhui Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mengge Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Songmin Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhuojun Ye
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yiyan Tian
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Aldulaijan S. In-silico selection of peptides for the recognition of imidacloprid. PLoS One 2023; 18:e0295619. [PMID: 38085733 PMCID: PMC10715655 DOI: 10.1371/journal.pone.0295619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The sensitive detection of pesticides using low-cost receptors designed from peptides can widen their uses in the environmental surveillance for emerging pollutants. In-silico selection of peptides can help accelerate the design of receptor sequence banks for a given target of interest. In this work, we started from Lymnaea stagnalis acetylcholine-binding protein Q55R mutant receptor-imidacloprid complex, available in the PDB databank, to select three primary short peptides (YSP09, DMR12, WQW13 respectively having 9, 12 and 13 amino acids (AA) in length) from the pesticide interacting zones with the A, B and C chains of the nicotinic receptor. Using molecular docking and molecular dynamics (MD) simulations, we showed that the three peptides can form complexes with the target imidacloprid, having energies close to that obtained from a reference RNR12 peptide. Combination of these peptides allowed preparing a new set of longer peptides (YSM21, PSM22, PSW31 and WQA34) that have higher stability and affinity as shown by the MM-PBSA calculations. In particular, the WQA34 peptide displayed an average binding free energy of -6.44±0.27 kcal/mol, which is three times higher than that of the reference RNR12 peptide (-2.29±0.25 kcal/mol) and formed a stable complex with imidacloprid. Furthermore, the dissociation constants (Kd), calculated from the binding free energy, showed that WQA32 (40 μM) has three orders of magnitude lower Kd than the reference RNR12 peptide (3.4 × 104 μM). Docking and RMSD scores showed that the WQA34 peptide is potentially selective to the target imidacloprid with respect to acetamiprid and clothianidin. Therefore, this peptide can be used in wet-lab experiments to prepare a biosensor to selectively detect imidacloprid.
Collapse
Affiliation(s)
- Sarah Aldulaijan
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Wang Z, Zheng S, Zhang C, Wang W, Wang Q, Li Z, Wang S, Zhang L, Liu Y. Introduction of multilayered quantum dot nanobeads into competitive lateral flow assays for ultrasensitive and quantitative monitoring of pesticides in complex samples. Mikrochim Acta 2023; 190:361. [PMID: 37606829 DOI: 10.1007/s00604-023-05913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
A competitive fluorescent lateral flow assay (CFLFA) is proposed for direct, ultrasensitive, quantitative detection of common pesticides imidacloprid (IMI) and carbendazim (CBZ) in complex food samples by using silica-core multilayered quantum dot nanobeads (SiO2-MQB) as liquid fluorescent tags. The SiO2-MQB nanostructure comprises a 200-nm SiO2 core and a shell of hundreds of carboxylated QDs (excitation/emission maxima ~365/631 nm), and can generate better stability, superior dispersibility, and higher luminescence than traditional fluorescent beads, greatly improving the sensitivity of current LFA methods for pesticides. Moreover, using liquid SiO2-MQB directly instead of via the conjugate pad both simplifies the structure of LFA system and improves the efficiency of immunobinding reactions between nanotags and the targets. Applying these methods, the established CFLFA realized the stable and accurate detection of IMI and CBZ in 12 min, with detection limits down to 1.94 and 14.79 pg/mL, respectively. The SiO2-MQB-CFLFA is practicable for application to real food samples (corn, apple, cucumber, and cabbage), and undoubtedly a promising and low-cost tool for on-site monitoring of trace pesticide residues.
Collapse
Affiliation(s)
- Zhenmei Wang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Shuai Zheng
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Chijian Zhang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Wenqi Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Qian Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Zhigang Li
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Shu Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China.
| | - Long Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China.
| | - Yong Liu
- Wan Jiang new industry technology development center, Tongling, 244000, People's Republic of China.
| |
Collapse
|
4
|
Qin H, Zhao S, Gong H, Yu Z, Chen Q, Liang P, Zhang D. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. BIOSENSORS 2023; 13:bios13040479. [PMID: 37185554 PMCID: PMC10136131 DOI: 10.3390/bios13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic framework (MOF) compounds are centered on metal ions or metal ion clusters, forming lattices with a highly ordered periodic porous network structure by connecting organic ligands. As MOFs have the advantages of high porosity, large specific surface area, controllable pore size, etc., they are widely used in gas storage, catalysis, adsorption, separation and other fields. SERS substrate based on MOFs can not only improve the sensitivity of SERS analysis but also solve the problem of easy aggregation of substrate nanoparticles. By combining MOFs with SERS, SERS performance is further improved, and tremendous research progress has been made in recent years. In this review, three methods of preparing MOF-based SERS substrates are introduced, and the latest applications of MOF-based SERS substrates in biosensors, the environment, gases and medical treatments are discussed. Finally, the current status and prospects of MOF-based SERS analysis are summarized.
Collapse
Affiliation(s)
- Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Huaping Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples. Food Chem X 2022; 15:100375. [PMID: 36211748 PMCID: PMC9532719 DOI: 10.1016/j.fochx.2022.100375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
The metabolism and residue status of neonicotinoids were briefly summarized in this work. Sample pretreatment techniques for the analysis of neonicotinoids were critically discussed. The commonly used detection methods for neonicotinoids residues were also pointed out.
In recent years, the residues of neonicotinoid insecticide in food and environmental samples have attracted extensive attention. Neonicotinoids have many adverse effects on human health, such as cancer, chronic disease, birth defects, and infertility. They have substantial toxicity to some non-target organisms (especially bees). Hence, monitoring the residues of neonicotinoid insecticides in foodstuffs is necessary to guarantee public health and ecological stability. This review aims to summarize and assess the metabolic features, residue status, sample pretreatment methods (solid-phase extraction (SPE), Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), and some novel pretreatment methods), and detection methods (instrument detection, immunoassay, and some innovative detection methods) for neonicotinoid insecticide residues in food and environmental samples. This review provides detailed references and discussion for the analysis of neonicotinoid insecticide residues, which can effectively promote the establishment of innovative detection methods for neonicotinoid insecticide residues.
Collapse
|
6
|
Xie W, Ju Y, Zhang J, Yang Y, Zeng Y, Wang H, Li L. Highly sensitive and specific determination of imidacloprid pesticide by a novel Fe3O4@SiO2@MIPIL fluorescent sensor. Anal Chim Acta 2022; 1195:339449. [DOI: 10.1016/j.aca.2022.339449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/01/2022]
|
7
|
Abstract
Recent global warming has resulted in shifting of weather patterns and led to intensification of natural disasters and upsurges in pests and diseases. As a result, global food systems are under pressure and need adjustments to meet the change—often by pesticides. Unfortunately, such agrochemicals are harmful for humans and the environment, and consequently need to be monitored. Traditional detection methods currently used are time consuming in terms of sample preparation, are high cost, and devices are typically not portable. Recently, Surface Enhanced Raman Scattering (SERS) has emerged as an attractive candidate for rapid, high sensitivity and high selectivity detection of contaminants relevant to the food industry and environmental monitoring. In this review, the principles of SERS as well as recent SERS substrate fabrication methods are first discussed. Following this, their development and applications for agrifood safety is reviewed, with focus on detection of dye molecules, melamine in food products, and the detection of different classes of pesticides such as organophosphate and neonicotinoids.
Collapse
|
8
|
Tan F, Zhai M, Meng X, Wang Y, Zhao H, Wang X. Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices. Biosens Bioelectron 2021; 184:113220. [PMID: 33878592 DOI: 10.1016/j.bios.2021.113220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 01/07/2023]
Abstract
A hybrid recognition interface combining peptide and molecularly imprinted polymer (MIP) was achieved by introducing a vancomycin binding tripeptide in the preparation of MIP to implement high affinity and specificity recognition of vancomycin in complex matrices. The tripeptide that can specifically bind vancomycin was immobilized onto gold nanoparticles (GNPs) deposited on a glassy carbon electrode (GCE) by Au-S bond, and then a controlled electropolymerization of dopamine was carried out to imprint the vancomycin-peptide complex. After removing vancomycin from the polydopamine (PDA), hybrid peptide-MIP cavities containing multiple binding sites for vancomycin in the MIPDA/peptide/GNPs/GCE were obtained. The electrode had better selectivity and higher sensitivity toward vancomycin than either peptide or MIP modified GNPs/GCE, and the limit of quantification was as low as 10 pM by electrochemical impedance spectroscopy. The real samples, including fetal calf serum, probiotic drink and honey spiked with 0.17-2.0 μM vancomycin were analyzed on the MIPDA/peptide/GNPs/GCE, with the recoveries of 92.16-104.67%. The present study provides a sensitive, reliable method for the detection of vancomycin in complex matrices.
Collapse
Affiliation(s)
- Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Mingyan Zhai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xuejie Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaochun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
9
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Cheng YF, Pranantyo D, Kasi G, Lu ZS, Li CM, Xu LQ. Amino-containing tannic acid derivative-mediated universal coatings for multifunctional surface modification. Biomater Sci 2020; 8:2120-2128. [PMID: 32211644 DOI: 10.1039/d0bm00242a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of a universal coating strategy for the construction of functional surfaces and modulation of surface properties is of great research interest. Tannic acid (TA) could serve as a sole precursor for the deposition of colorless coatings on substrate surfaces. However, the deposition of TA requires a high salt concentration (0.6 M), which may limit its practical application. Herein, primary amine moieties were introduced on the gallic acid groups in TA. The resultant amine-containing TA derivative (TAA) can self-polymerize under mild conditions (10 mM, Tris buffer), and form uniform and colorless coatings in a material-independent manner. In comparison with the TA coating under the same preparation conditions, the TAA coating exhibits an increased thickness as measured by ellipsometry. The TAA coating is adapted for secondary surface functionalization. The hydrophilic mPEG brushes can be grafted on the TAA coating to inhibit non-specific protein adsorption. A biotin probe can be immobilized on the TAA coating to promote specific binding with avidin. In addition, the TAA coating can be utilized for in situ reduction of silver ions to AgNPs. The resulting AgNP-loaded TAA coating can inhibit bacterial adhesion and prevent biofilm formation.
Collapse
Affiliation(s)
- Yan Fang Cheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China.
| | - Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Gopinath Kasi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China.
| | - Zhi Song Lu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China.
| | - Chang Ming Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China.
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China.
| |
Collapse
|
11
|
Atanasov PA, Nedyalkov NN, Fukata N, Jevasuwan W, Subramani T. Surface-Enhanced Raman Spectroscopy (SERS) of Neonicotinoid Insecticide Thiacloprid Assisted by Silver and Gold Nanostructures. APPLIED SPECTROSCOPY 2020; 74:357-364. [PMID: 31617380 DOI: 10.1177/0003702819878267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study expresses our results on surface-enhanced Raman spectroscopy (SERS) analyses of neonicotinoid insecticide thiacloprid, i.e., Calypso 480 SC, in quantities much smaller than usually applied in the agricultural medicine. Advanced Ag and Au nanostructures created by the thermal deposition technique on Al2O3 ceramic were applied as active substrates for SERS analyses. The minimum concentration of thiacloprid detected was 380 µM and the enhancement factor was estimated to be about 3 × 103. The intensity of the SERS peaks increased by an order of magnitude after pulsed laser annealing of the films and formation of nanoparticle arrays and the enhancement factor reached ≈104, respectively. The proposed study has direct bearing on the environment and human health by detection of small amounts or residue of harmful pollutants using a relatively cheap and easy method to produce active SERS substrates.
Collapse
Affiliation(s)
- Petar A Atanasov
- Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Naoki Fukata
- International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Wipakorn Jevasuwan
- International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Thiyagu Subramani
- International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
12
|
Kailasa SK, Rohit JV. Tuning of gold nanoparticles analytical applications with nitro and hydroxy benzylindole-dithiocarbamates for simple and selective detection of terbufos and thiacloprid insecticides in environmental samples. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Li S, Liu C, Yin G, Luo J, Zhang Z, Xie Y. Supramolecular imprinted electrochemical sensor for the neonicotinoid insecticide imidacloprid based on double amplification by Pt-In catalytic nanoparticles and a Bromophenol blue doped molecularly imprinted film. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1962-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lee KL, You ML, Tsai CH, Lin EH, Hsieh SY, Ho MH, Hsu JC, Wei PK. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens Bioelectron 2016; 75:88-95. [DOI: 10.1016/j.bios.2015.08.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/24/2022]
|
15
|
Dai D, Wu H, Zhang W. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing. MATERIALS (BASEL, SWITZERLAND) 2015; 8:6772-6791. [PMID: 28793600 PMCID: PMC5455389 DOI: 10.3390/ma8105341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/06/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.
Collapse
Affiliation(s)
- Daoxin Dai
- Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, East Building No. 5, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Hao Wu
- Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, East Building No. 5, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
16
|
Development of an enzyme-linked immunosorbent assay for thiacloprid in soil and agro-products with phage-displayed peptide. Anal Biochem 2015; 481:27-32. [PMID: 25908560 DOI: 10.1016/j.ab.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022]
Abstract
A monoclonal antibody (3A5) that can recognize thiacloprid was produced, and a linear 8-residue peptide phage library was constructed. Six phage-displayed peptides were isolated from the linear 8-residue peptide phage library and a cyclic 8-residue peptide phage library. A phage enzyme-linked immunosorbent assay (ELISA) was developed to detect thiacloprid using a phage-displayed peptide. Under the optimal conditions, the half-maximal inhibition concentration (IC50) and the limit of detection (IC10) of the developed phage ELISA were 8.3 and 0.7 μg/L, respectively. Compared with the conventional ELISA, the sensitivity was improved more than 3-fold. The cross-reactivity (CR) was less than 0.08% for the tested structural analogues and was regarded as negligible. The recoveries of thiacloprid ranged from 80.3% to 116.3% in environmental and agricultural samples, which conformed to the requirements for residue detection. The amount of thiacloprid detected by phage ELISA in the samples was significantly correlated with that detected by high-performance liquid chromatography. The current study indicates that isolating phage-displayed peptides from phage display libraries is an alternative method for the development of a sensitive immunoassay and that the developed assay is a potentially useful tool for detecting thiacloprid in environmental and agricultural samples.
Collapse
|
17
|
Bai X, Lu B, Chen X, Zhang B, Tang J. Reversible detection of vancomycin using peptide-functionalized cantilever array sensor. Biosens Bioelectron 2014; 62:145-50. [DOI: 10.1016/j.bios.2014.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
18
|
Islam N, Shen F, Gurgel PV, Rojas OJ, Carbonell RG. Dynamic and equilibrium performance of sensors based on short peptide ligands for affinity adsorption of human IgG using surface plasmon resonance. Biosens Bioelectron 2014; 58:380-7. [DOI: 10.1016/j.bios.2014.02.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 11/28/2022]
|
19
|
Mechanistic study for immobilization of cysteine-labeled oligopeptides on UV-activated surfaces. Colloids Surf B Biointerfaces 2014; 122:166-174. [PMID: 25036779 DOI: 10.1016/j.colsurfb.2014.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 05/24/2014] [Indexed: 01/18/2023]
Abstract
In this study, we report immobilization of cysteine-labeled oligopeptides on UV activated surfaces decorated with N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP). Our result shows that cysteine group, regardless of its position in the oligopeptide, is essential for successful immobilization of oligopeptide on the UV-activated surface. A possible reaction mechanism is nucleophilic addition of thiolates to surface aldehyde groups generated during UV activation. By using this technique, we are able to incorporate anchoring points into oligopeptides through cysteine residues. Furthermore, immobilized oligopeptides on the UV-activated surface is very stable even under harsh washing conditions. Finally, we show that an HPQ-containing oligopeptide can be immobilized on the UV-activated surface, but the final surface density and its ability to bind streptavidin are affected by the position of cysteine and HPQ. An oligopeptide with a cysteine at the N-terminus and a HPQ motif at the C-terminus gives the highest binding signal in the streptavidin-binding assay. This result is potentially useful for the development of functional oligopeptide microarrays for detecting target protein molecules.
Collapse
|
20
|
Chang CY, Chen CH. Oligopeptide-decorated liquid crystal droplets for detecting proteases. Chem Commun (Camb) 2014; 50:12162-5. [DOI: 10.1039/c4cc04651j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared the oligopeptide-decorated liquid crystal (LC) droplets for detecting proteases through the transition of LC configuration inside the droplets.
Collapse
Affiliation(s)
- Chung-Yun Chang
- Department of Chemistry
- Tamkang University
- New Taipei City 25137, Taiwan
| | - Chih-Hsin Chen
- Department of Chemistry
- Tamkang University
- New Taipei City 25137, Taiwan
| |
Collapse
|
21
|
Ding X, Yang KL. Antibody-free Detection of Human Chorionic Gonadotropin by Use of Liquid Crystals. Anal Chem 2013; 85:10710-6. [DOI: 10.1021/ac400732n] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaokang Ding
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, 4 Engineering
Drive 4, Singapore 117585
| | - Kun-Lin Yang
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, 4 Engineering
Drive 4, Singapore 117585
| |
Collapse
|
22
|
Ahmed SR, Koh K, Park EY, Lee J. Toxic chemical monitoring of agricultural bioproducts using nanomaterials-based sensors. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ding X, Yang KL. Development of an oligopeptide functionalized surface plasmon resonance biosensor for online detection of glyphosate. Anal Chem 2013; 85:5727-33. [PMID: 23675691 DOI: 10.1021/ac400273g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a surface plasmon resonance (SPR) biosensor for online detection of glyphosate. The surface of the sensing element is decorated with an oligopeptide, TPFDLRPSSDTR, which is identified by using phage display library. This oligopeptide shows high binding specificity for glyphosate (KD = 8.6 μM), probably because of the presence of R and D in the oligopeptide. To detect glyphosate in buffer solution, an SPR gold sensor chip is modified by using the oligopeptide with a surface density of 0.6 1/nm(2). The sensitivity of this oligopeptide-functionalized SPR biosensor is 1.02 RU/μM whereas the limit of detection (LOD) is 0.58 μM. This oligopeptide functionalized SPR biosensor also shows good specificity against other analytes such as glycine, thiacloprid, and imidacloprid.
Collapse
Affiliation(s)
- Xiaokang Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576
| | | |
Collapse
|