1
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
2
|
Ye S, Wang P, Li Y, Wang W, Liu Q, Li Y. Halloysite nanotubes-loaded conductive polymer as substrate and label material for sensitive detection of amyloid-β protein by electrochemical immunosensor. Talanta 2023; 268:125345. [PMID: 39491948 DOI: 10.1016/j.talanta.2023.125345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Amyloid-beta protein (Aβ) is a unique biomarker for Alzheimer's disease (AD). The sandwich-type electrochemical immunosensor, one of the key tools for detecting biomarkers, relies on a high-performance signal amplification approach to enhance its sensitivity. Ni/PdH nanodendrites (Ni/PdH NDs) have increased catalytic activity due to their unique interaction with palladium hydride and their nickel-rich surface, tunable shape and high specific surface area. Modified halloysite nanotubes (mHNT)-loaded with polypyrrole (PPy@mHNT) possess excellent dispersion and a large surface area. This enables the formation of a conductive network to prevent the accumulation of Ni/PdH NDs. Additionally, it exposes more electrocatalytic active centers, effectively amplifying electrical signals. By utilizing Ni/PdH@PPy@mHNT as the labeling material, it shows a consistent and remarkable electrocatalytic activity in H2O2 reduction, leading to signal amplification. The acid-etched HNT coated with polyaniline (PANI@eHNT) exhibits an exceptionally low background signal and outstanding conductivity. This not only accelerates electron transfer on the electrode surface, but also ensures the stable incubation of biomolecules post-amino grafting. Utilizing NH2-PANI@eHNT as a substrate material can guarantee stable biomolecule incubation, offer a stable sensing platform and enhance immunosensor performance. The signal can be amplified and the immunosensor's sensitivity can be raised through the efficient cooperation of the aforementioned nanomaterials. Under optimum circumstances, the electrochemical immunosensor had the lowest detection limit of 5.53 fg mL-1 and a linear range of 50 fg mL-1 to 100 ng mL-1. Based on the outstanding performance previously mentioned, this immunosensor is anticipated to aid in the early detection of AD.
Collapse
Affiliation(s)
- Sujie Ye
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Yang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Wenzhong Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| |
Collapse
|
3
|
Jaradat H, Al-Hamry A, Ibbini M, Fourati N, Kanoun O. Novel Sensitive Electrochemical Immunosensor Development for the Selective Detection of HopQ H. pylori Bacteria Biomarker. BIOSENSORS 2023; 13:bios13050527. [PMID: 37232889 DOI: 10.3390/bios13050527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly contagious pathogenic bacterium that can cause gastrointestinal ulcers and may gradually lead to gastric cancer. H. pylori expresses the outer membrane HopQ protein at the earliest stages of infection. Therefore, HopQ is a highly reliable candidate as a biomarker for H. pylori detection in saliva samples. In this work, an H. pylori immunosensor is based on detecting HopQ as an H. pylori biomarker in saliva. The immunosensor was developed by surface modification of screen-printed carbon electrodes (SPCE) with MWCNT-COOH decorated with gold nanoparticles (AuNP) followed by HopQ capture antibody grafting on SPCE/MWCNT/AuNP surface using EDC/S-NHS chemistry. The sensor performance was investigated utilizing various methods, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). H. pylori detection performance in spiked saliva samples was evaluated by square wave voltammetry (SWV). The sensor is suitable for HopQ detection with excellent sensitivity and linearity in the 10 pg/mL-100 ng/mL range, with a 2.0 pg/mL limit of detection (LOD) and an 8.6 pg/mL limit of quantification (LOQ). The sensor was tested in saliva at 10 ng/mL, and recovery of 107.6% was obtained by SWV. From Hill's model, the dissociation constant Kd for HopQ/HopQ antibody interaction is estimated to be 4.60 × 10-10 mg/mL. The fabricated platform shows high selectivity, good stability, reproducibility, and cost-effectiveness for H. pylori early detection due to the proper choice of biomarker, the nanocomposite material utilization to boost the SPCE electrical performance, and the intrinsic selectivity of the antibody-antigen approach. Additionally, we provide insight into possible future aspects that researchers are recommended to focus on.
Collapse
Affiliation(s)
- Hussamaldeen Jaradat
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Ammar Al-Hamry
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Mohammed Ibbini
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Najla Fourati
- SATIE Laboratory, UMR CNRS 8029, Conservatoire National des Arts et Métiers, 75003 Paris, France
| | - Olfa Kanoun
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
4
|
Martinez-Sade E, Martinez-Rojas F, Ramos D, Aguirre MJ, Armijo F. Formation of a Conducting Polymer by Different Electrochemical Techniques and Their Effect on Obtaining an Immunosensor for Immunoglobulin G. Polymers (Basel) 2023; 15:polym15051168. [PMID: 36904408 PMCID: PMC10007133 DOI: 10.3390/polym15051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.
Collapse
Affiliation(s)
- Erika Martinez-Sade
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Francisco Martinez-Rojas
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Danilo Ramos
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Maria Jesus Aguirre
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Química de Los Materiales, Faculta de Química y Biología, Universidad de Santiago de Chile, USACH, Av. L.B. O’Higgins 3363, Santiago 9170022, Chile
| | - Francisco Armijo
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
5
|
Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces. Sci Rep 2022; 12:22444. [PMID: 36575248 PMCID: PMC9794789 DOI: 10.1038/s41598-022-26768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 100.63 EID50 mL-1, 100.48 EID50 mL-1, 100.37 EID50 mL-1 and 100.46 EID50 mL-1 ARV (S/N = 3) and quantification limits of 101.15 EID50 mL-1, and 101.00 EID50 mL-1, 100.89 EID50 mL-1 and 100.98 EID50 mL-1 ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0-105.82 EID50 mL-1 ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0-104.82 EID50 mL-1 ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0-103.82 EID50 mL-1 ARV) or EDC/NHS (0-103.82 EID50 mL-1 ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.
Collapse
|
6
|
pH-Regulated Strategy and Mechanism of Antibody Orientation on Magnetic Beads for Improving Capture Performance of Staphylococcus Species. Foods 2022; 11:foods11223599. [PMID: 36429188 PMCID: PMC9689862 DOI: 10.3390/foods11223599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Immunomagnetic beads (IMBs) have been widely used to capture and isolate target pathogens from complex food samples. The orientation of the antibody immobilized on the surface of magnetic beads (MBs) is closely related to the effective recognition with an antigen. We put forward an available strategy to orient the antibody on the surface of MBs by changing the charged amino group ratio of the reactive amino groups at optimal pH value. Quantum dots labeling antigen assay, antigen-binding fragment (Fab) accessibility assay and lysine mimicking were used for the first time to skillfully illustrate the antibody orientation mechanism. This revealed that the positively charged ε-NH2 group of lysine on the Fc relative to the uncharged amino terminus on Fab was preferentially adsorbed on the surface of MBs with a negatively charged group at pH 8.0, resulting in antigen binding sites of antibody fully exposed. This study contributes to the understanding of the antibody orientation on the surface of MBs and the potential application of IMBs in the separation and detection of pathogenic bacteria in food samples.
Collapse
|
7
|
Pusomjit P, Teengam P, Chuaypen N, Tangkijvanich P, Thepsuparungsikul N, Chailapakul O. Electrochemical immunoassay for detection of hepatitis C virus core antigen using electrode modified with Pt-decorated single-walled carbon nanotubes. Mikrochim Acta 2022; 189:339. [PMID: 35982360 DOI: 10.1007/s00604-022-05400-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Pt nanoparticles deposited on single-walled carbon nanotubes (PtSWCNTs), synthesized via the deposition precipitation (DP) method, were introduced as a substrate for immobilizing antibodies on an electrode surface and then enhancing the electrochemical sensitivity. A PtSWCNT-modified paper-based screen-printed graphene electrode was successfully developed to diagnose hepatitis C virus (HCV) infection. The hepatitis C virus core antigen (HCV-cAg) level was determined by differential pulse voltammetry (DPV) using [Fe(CN)6]3-/4- as a redox solution. In the presence of HCV-cAg, the DPV current response decreased with increasing HCV-cAg concentration. Under the optimal conditions, the change in current response provides a good linear correlation with the logarithm of HCV-cAg concentration in the range 0.05 to 1000 pg mL-1 (RSD < 5%), and the limit of detection was 0.015 pg mL-1 (or 0.71 fmol L-1). Furthermore, the proposed immunosensor has been utilized to quantify HCV-cAg in human serum samples with reliable results compared with standard immunoassays (% relative error < 10%). This sensor offers a simple, sensitive, selective, disposable, and inexpensive means for determination of HCV-cAg in human serum samples. The paper-based label-free immunosensor is versatile and feasible for clinical diagnosis.
Collapse
Affiliation(s)
- Pannaporn Pusomjit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Nichanan Thepsuparungsikul
- Department of Chemistry, Faculty of Science, Silpakorn University, Amphoe Muang, 73000, Nakhon Pathom, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand. .,Center of Excellence On Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand.
| |
Collapse
|
8
|
Square wave voltammetric approach to leptin immunosensing and optimization of driving parameters with chemometrics. Biosens Bioelectron 2022; 216:114592. [PMID: 35969964 DOI: 10.1016/j.bios.2022.114592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/28/2022]
Abstract
Square wave voltammetry serves as an effective analytical means to evaluate antigen-antibody coupling at the solid-liquid interface. Herein, we describe 3-aminopropyltrimethoxysilane (APTMS) induced irreversible immobilization of anti-leptin to micellar gold nanoparticles (AuNPs). Antibodies (Abs) were orthogonally loaded on micellized AuNP assemblies via amino residual groups. The ratio of bound Ab molecules was determined by the Bradford assay. The AuNP/Ab layer modified electrodes with variable antibody surface coverage (∼400 ± 55-200 ± 30 Ab/NP) were analyzed in terms of change in backward, net current (Ip) components. The rate of antigen coupling was found to be consistent with the variation in antibody density as well as the binding affinity. The lowest detection limit was observed at the femtomolar level (0.25 fM/mL) over a wide range of antigen concentration (6.2 ng/mL to 0.12 fg/mL). The variables affecting the epitope-paratope interaction were further optimized using a chemometric approach and a response surface methodology (RSM).
Collapse
|
9
|
Wahed SB, Dunstan CR, Boughton PA, Ruys AJ, Faisal SN, Wahed TB, Salahuddin B, Cheng X, Zhou Y, Wang CH, Islam MS, Aziz S. Functional Ultra-High Molecular Weight Polyethylene Composites for Ligament Reconstructions and Their Targeted Applications in the Restoration of the Anterior Cruciate Ligament. Polymers (Basel) 2022; 14:polym14112189. [PMID: 35683861 PMCID: PMC9182730 DOI: 10.3390/polym14112189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of biomaterials as biomedical implants is a significant challenge. Ultra-high molecular weight polyethylene (UHMWPE) and composites of such kind have been extensively used in medical implants, notably in the bearings of the hip, knee, and other joint prostheses, owing to its biocompatibility and high wear resistance. For the Anterior Cruciate Ligament (ACL) graft, synthetic UHMWPE is an ideal candidate due to its biocompatibility and extremely high tensile strength. However, significant problems are observed in UHMWPE based implants, such as wear debris and oxidative degradation. To resolve the issue of wear and to enhance the life of UHMWPE as an implant, in recent years, this field has witnessed numerous innovative methodologies such as biofunctionalization or high temperature melting of UHMWPE to enhance its toughness and strength. The surface functionalization/modification/treatment of UHMWPE is very challenging as it requires optimizing many variables, such as surface tension and wettability, active functional groups on the surface, irradiation, and protein immobilization to successfully improve the mechanical properties of UHMWPE and reduce or eliminate the wear or osteolysis of the UHMWPE implant. Despite these difficulties, several surface roughening, functionalization, and irradiation processing technologies have been developed and applied in the recent past. The basic research and direct industrial applications of such material improvement technology are very significant, as evidenced by the significant number of published papers and patents. However, the available literature on research methodology and techniques related to material property enhancement and protection from wear of UHMWPE is disseminated, and there is a lack of a comprehensive source for the research community to access information on the subject matter. Here we provide an overview of recent developments and core challenges in the surface modification/functionalization/irradiation of UHMWPE and apply these findings to the case study of UHMWPE for ACL repair.
Collapse
Affiliation(s)
- Sonia B. Wahed
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
- Correspondence: (S.B.W.); (S.A.)
| | - Colin R. Dunstan
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Philip A. Boughton
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Andrew J. Ruys
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
| | - Shaikh N. Faisal
- ARC Centre of Excellence for Electromaterials Science & Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Tania B. Wahed
- Department of Pharmacy, Jahangirnagar University, Savar 1342, Bangladesh;
| | - Bidita Salahuddin
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xinying Cheng
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (C.R.D.); (P.A.B.); (A.J.R.); (X.C.)
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Yang Zhou
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Chun H. Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Mohammad S. Islam
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (Y.Z.); (C.H.W.); (M.S.I.)
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence: (S.B.W.); (S.A.)
| |
Collapse
|
10
|
Gao S, Guisán JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal Chim Acta 2022; 1189:338907. [PMID: 34815045 DOI: 10.1016/j.aca.2021.338907] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
12
|
Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 2020; 44:585-594. [PMID: 33161490 DOI: 10.1007/s00449-020-02472-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
Broad-spectrum antibodies can effectively recognize substances with similar structures and have broad application prospects in field rapid detection. In this study, broad-spectrum antibodies (Abs) against organophosphorus pesticides (OPs) were used as sensitive recognition elements, which could effectively recognize most OPs. Gold nanoparticles (AuNPs) have good biocompatibility. It combined with Abs to form a gold-labeled probe (AuNPs-Abs), which enhances the effective binding of antibodies to nanomaterials. Prussian blue (PB) was added to electrodeposition solution to enhance the conductivity, resulting in superior electrochemical performance. The AuNP-Abs-PB composite film was prepared by electrodeposition on the electrode surface to improve the anti-interference ability and stability of the immunosensor. Under the optimal experimental conditions, the immunosensor had a wide detection range (IC20-IC80: 1.82 × 10-3-3.29 × 104 ng/mL) and high sensitivity. Most importantly, it was simple to be prepared and could be used to detect multiple OPs.
Collapse
|
13
|
Chen H, Cui C, Ma X, Yang W, Zuo Y. Amperometric Biosensor for
Brucella
Testing through Molecular Orientation Technology in Combination with Signal Amplification Technology. ChemElectroChem 2020. [DOI: 10.1002/celc.202000569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongshuo Chen
- Shanxi Agricultural UniversityCollege of Engineering Taigu 030801 P.R. China
- North China University of Science and TechnologyCollege of Electrical Engineering Tangshan 063210 P.R.China
| | - Chuanjin Cui
- North China University of Science and TechnologyCollege of Electrical Engineering Tangshan 063210 P.R.China
| | - Xuegang Ma
- North China University of Science and TechnologyInstrumental Analysis Center Tangshan 063210 P.R.China
| | - Wei Yang
- Shanxi Agricultural UniversityCollege of Engineering Taigu 030801 P.R. China
| | - Yueming Zuo
- Shanxi Agricultural UniversityCollege of Engineering Taigu 030801 P.R. China
| |
Collapse
|
14
|
Yang H, Xu W, Liang X, Yang Y, Zhou Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Mikrochim Acta 2020; 187:206. [DOI: 10.1007/s00604-020-4172-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|
15
|
Martín-Gracia B, Martín-Barreiro A, Cuestas-Ayllón C, Grazú V, Line A, Llorente A, M. de la Fuente J, Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J Mater Chem B 2020; 8:6710-6738. [DOI: 10.1039/d0tb00861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selecting the appropriate nanoparticle, functionalization chemistry and sensing methodology can speed up the translation of liquid biopsies into the clinic.
Collapse
Affiliation(s)
- Beatriz Martín-Gracia
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Alba Martín-Barreiro
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | | | - Valeria Grazú
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Aija Line
- Latvian Biomedical Research and Study Centre
- Riga
- Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology
- Institute for Cancer Research
- Oslo University Hospital
- Oslo
- Norway
| | - Jesús M. de la Fuente
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - María Moros
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| |
Collapse
|
16
|
Park JS, Kim ST, Kim SY, Jo MG, Choi MJ, Kim MO. A novel kit for early diagnosis of Alzheimer's disease using a fluorescent nanoparticle imaging. Sci Rep 2019; 9:13184. [PMID: 31515517 PMCID: PMC6742761 DOI: 10.1038/s41598-019-49711-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and chronic illness with long preclinical phases and a long clinical duration. Until recently, a lack of potential therapeutic agents against AD was the primary focus of research, which resulted in less effort directed towards developing useful diagnostic approaches. In this study, we developed a WO2002/088706 kit that is composed of fluorescent nanoparticles for the early detection of AD. We provided a fluorescent nanoparticle for detecting markers and a kit for the early diagnosis of AD. The kit consists of a probe molecule comprising an oligonucleotide capable of detecting one or more AD-specific microRNAs (miRNAs) and biomarkers related to AD. Through screening, we selected miR-106b, miR-146b, miR-181a, miR-200a, miR-34a, miR-124b, miR-153, miR-155, Aβ1-42 monomer (mAβ), Aβ1-42 oligomer (oAβ), UCHL1, NLRP3, Tau, STAT3, SORL1, Clusterin, APOE3, APOE4, Nogo-A, IL-13, and Visfatin to serve as AD- and inflammation-related markers. For detection of kit-binding properties, we checked the expression levels of amyloid beta (Aβ), tau protein, and inflammatory mediators in APP/PS/ApoE knockdown (KD) mice and a control group using co-localisation analysis conducted with a confocal microscope. Using a similar approach, we checked the expression levels of miRNAs in HT22 cells. Finally, we used the plasma from AD patients to confirm that our fluorescent nanoparticles and the WO2002/088706 kit will provide a possible early diagnosis to serve as an AD detector that can be further improved for future studies on targeting AD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University (GNU), Jinju, 52802, Republic of Korea
| | - Sang Tae Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Sang Yun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Min Gi Jo
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University (GNU), Jinju, 52802, Republic of Korea
| | - Myeong Jun Choi
- Research and Development Center, Phytos Inc, Anyang mega valley 609, 268, Anyang, Gyeonggi-do, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University (GNU), Jinju, 52802, Republic of Korea.
| |
Collapse
|
17
|
Lou D, Ji L, Fan L, Ji Y, Gu N, Zhang Y. Antibody-Oriented Strategy and Mechanism for the Preparation of Fluorescent Nanoprobes for Fast and Sensitive Immunodetection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4860-4867. [PMID: 30821462 DOI: 10.1021/acs.langmuir.9b00150] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoprobes have been widely used in biomedical engineering. However, antibodies are generally conjugated onto nanoparticles disorderly, which reduces their antigen recognition ability. The existing antibody orientation approaches are usually complex. Here, we developed and demonstrated a simple antibody-oriented strategy for the lateral flow immunoassay of cardiac troponin I by conjugating antibodies onto polystyrene nanospheres at the optimal pH. The binding amount and orientation of antibodies as well as the detection sensitivity were significantly improved. Although pH regulation is commonly used to optimize antibody conjugation, this paper illustrates the mechanism of its antibody orientation enhancement ability for the first time and reveals the important influences of the density, the charge distribution and hydrophilicity of the antibody, the control of the velocities of physical adsorption and chemical coupling, and other factors on antibody orientation. It is of great significance to understand and regulate antibody conjugation on the surface of micro- or nanospheres to construct high-performance probes for in vitro diagnosis applications.
Collapse
Affiliation(s)
- Doudou Lou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , China
| | - Lu Ji
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , China
| | - Lin Fan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , China
| | - Yongxin Ji
- Nanjing Nanoeast Biotech Co., LTD , Nanjing 211100 , China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , Southeast University , Nanjing 210096 , China
| |
Collapse
|
18
|
Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ. Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. NANOSCALE 2019; 11:1475-1504. [PMID: 30620019 DOI: 10.1039/c8nr08738e] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal-free carbonaceous nanomaterials have witnessed a renaissance of interest due to the surge in the realm of nanotechnology. Among myriads of carbon-based nanostructures with versatile dimensionality, one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) carbon dots (CDs) have grown into a research frontier in the past few decades. With extraordinary mechanical, thermal, electrical and optical properties, CNTs are utilized in transparent displays, quantum wires, field emission transistors, aerospace materials, etc. Although CNTs possess diverse characteristics, their most attractive property is their unique photoluminescence. On the other hand, another growing family of carbonaceous nanomaterials, which is CDs, has drawn much research attention due to its cost-effectiveness, low toxicity, environmental friendliness, fluorescence, luminescence and simplicity to be synthesized and functionalized with surface passivation. Benefiting from these unprecedented properties, CDs have been widely employed in biosensing, bioimaging, nanomedicine, and catalysis. Herein, we have systematically presented the fascinating properties, preparation methods and multitudinous applications of CNTs and CDs (including graphene quantum dots). We will discuss how CNTs and CDs have emerged as auspicious nanomaterials for potential applications, especially in electronics, sensors, bioimaging, wearable devices, batteries, supercapacitors, catalysis and light-emitting diodes (LEDs). Last but not least, this review is concluded with a summary, outlook and invigorating perspectives for future research horizons in this emerging platform of carbonaceous nanomaterials.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, 102249, China.
| | | | | | | | | | | |
Collapse
|
19
|
Xiang Y, Zhang Y, Sun X, Chai Y, Xu X, Hu Y. Rapid Self-Assembly of Au Nanoparticles on Rigid Mesoporous Yeast-Based Microspheres for Sensitive Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43450-43461. [PMID: 30457828 DOI: 10.1021/acsami.8b16333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple, rapid, inexpensive, eco-friendly, and high-throughput biological strategy for the preparation of functional microspheres on a yeast-cell platform was introduced. Microspheres prepared through the treatment of yeast cells with formaldehyde and decoating buffer exhibited excellent characteristics, such as superior mechanical strength, high sulfhydryl group content, and mesoporous structure. Au nanoparticles (NPs) easily and rapidly self-assembled onto the surfaces of the yeast-based microspheres within 5 min to form rigid yeast@Au microspheres with high monodispersity and uniformity. The rapid formation of yeast@Au microspheres mainly involved the enhancement of sulfhydryl groups and mesoporosity. The yeast@Au microspheres were successfully used in a flow cytometry immunoassay to detect Pseudorabies viral infection events. Signal-to-noise ratio was enhanced by approximately 49.4-fold. The presence of Au NPs on the yeast-based microspheres greatly improved sensitivity by decreasing noise through reducing nonspecific adsorption, highly enhancing the fluorescence signal caused by the surface plasmon resonance effect, and increasing the coupling efficiency of the capture protein. The presented method was used to analyze 81 clinical swine serum specimens. The results obtained by this developed method were compared to those of commercial diagnostic kits. The sensitivity, specificity, and efficiency of the developed method were 92.31, 88.24, and 88.89%, respectively. The excellent characteristics of the yeast@Au microspheres illustrate its great potential for high-throughput immunoassay applications in the fields of disease diagnosis, environmental analysis, and food safety.
Collapse
Affiliation(s)
| | | | | | | | - Xiangdong Xu
- School of Public Health , Hebei Medical University , Shijiazhuang 050017 , China
| | | |
Collapse
|
20
|
A simple and universal enzyme-free approach for the detection of multiple microRNAs using a single nanostructured enhancer of surface plasmon resonance imaging. Anal Bioanal Chem 2018; 411:1873-1885. [PMID: 30155701 DOI: 10.1007/s00216-018-1331-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/22/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Here we describe a simple approach for the simultaneous detection of multiple microRNAs (miRNAs) using a single nanostructured reagent as surface plasmon resonance imaging (SPRi) enhancer and without using enzymatic reactions, sequence specific enhancers or multiple enhancing steps as normally reported in similar studies. The strategy involves the preparation and optimisation of neutravidin-coated gold nanospheres (nGNSs) functionalised with a previously biotinylated antibody (Ab) against DNA/RNA hybrids. The Ab guarantees the recognition of any miRNA sequence adsorbed on a surface properly functionalised with different DNA probes; at the same time, gold nanoparticles permit to detect this interaction, thus producing enough SPRi signal even at a low ligand concentration. After a careful optimisation of the nanoenhancer and after its characterisation, the final assay allowed the simultaneous detection of four miRNAs with a limit of detection (LOD) of up to 0.5 pM (equal to 275 attomoles in 500 μL) by performing a single enhancing injection. The proposed strategy shows good signal specificity and permits to discriminate wild-type, single- and triple-mutated sequences much better than non-enhanced SPRi. Finally, the method works properly in complex samples (total RNA extracted from blood) as demonstrated by the detection of four miRNAs potentially related to multiple sclerosis used as case study. This proof-of-concept study confirms that the approach provides the possibility to detect a theoretically unlimited number of miRNAs using a simple protocol and an easily prepared enhancing reagent, and may further facilitate the development of affordable multiplexing miRNA screening for clinical purposes.
Collapse
|
21
|
Centi S, Ratto F, Tatini F, Lai S, Pini R. Ready-to-use protein G-conjugated gold nanorods for biosensing and biomedical applications. J Nanobiotechnology 2018; 16:5. [PMID: 29351815 PMCID: PMC5775603 DOI: 10.1186/s12951-017-0329-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gold nanorods (GNRs) display unique capacity to absorb and scatter near infrared light, which arises from their peculiar composition of surface plasmon resonances. For this reason, GNRs have become an innovative material of great hope in nanomedicine, in particular for imaging and therapy of cancer, as well as in photonic sensing of biological agents and toxic compounds for e.g. biomedical diagnostics, forensic analysis and environmental monitoring. As the use of GNRs is becoming more and more popular, in all these contexts, there is emerging a latent need for simple and versatile protocols for their modification with targeting units that may convey high specificity for any analyte of interest of an end-user. RESULTS We introduce protein G-coated GNRs as a versatile solution for the oriented immobilization of antibodies in a single step of mixing. We assess this strategy against more standard covalent binding of antibodies, in terms of biocompatibility and efficiency of molecular recognition in buffer, serum and plasma, in the context of the development of a direct immunoenzymatic assay. In both cases, we estimate an average of around 30 events of molecular recognition per particle. In addition, we disclose a convenient protocol to store these particles for months in a freezer, without any detrimental effect. CONCLUSIONS The biocompatibility and efficiency of molecular recognition is similar in either case of GNRs that are modified with antibodies by covalent binding or oriented immobilization through protein G. However, protein G-coated GNRs are most attractive for an end-user, owing to their unique versatility and ease of bioconjugation with antibodies of her/his choice.
Collapse
Affiliation(s)
- S. Centi
- Institute of Applied Physics, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - F. Ratto
- Institute of Applied Physics, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - F. Tatini
- Institute of Applied Physics, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - S. Lai
- Institute of Applied Physics, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - R. Pini
- Institute of Applied Physics, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosens Bioelectron 2017; 89:810-821. [DOI: 10.1016/j.bios.2016.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
|
23
|
Immobilization strategy for enhancing sensitivity of immunosensors: L -Asparagine–AuNPs as a promising alternative of EDC–NHS activated citrate–AuNPs for antibody immobilization. Biosens Bioelectron 2016; 78:396-403. [DOI: 10.1016/j.bios.2015.11.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/23/2022]
|
24
|
Sánchez-Tirado E, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Carbon nanotubes functionalized by click chemistry as scaffolds for the preparation of electrochemical immunosensors. Application to the determination of TGF-beta 1 cytokine. Analyst 2016; 141:5730-5737. [DOI: 10.1039/c6an00941g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first electrochemical immunosensor for TGF-β1 cytokine in human serum based on carbon nanotubes functionalized by click chemistry is reported.
Collapse
Affiliation(s)
- E. Sánchez-Tirado
- Department of Analytical Chemistry
- Faculty of Chemistry
- University Complutense of Madrid
- 28040-Madrid
- Spain
| | - A. González-Cortés
- Department of Analytical Chemistry
- Faculty of Chemistry
- University Complutense of Madrid
- 28040-Madrid
- Spain
| | - P. Yáñez-Sedeño
- Department of Analytical Chemistry
- Faculty of Chemistry
- University Complutense of Madrid
- 28040-Madrid
- Spain
| | - J. M. Pingarrón
- Department of Analytical Chemistry
- Faculty of Chemistry
- University Complutense of Madrid
- 28040-Madrid
- Spain
| |
Collapse
|
25
|
Prieto-Simón B, Bandaru N, Saint C, Voelcker N. Tailored carbon nanotube immunosensors for the detection of microbial contamination. Biosens Bioelectron 2015; 67:642-8. [DOI: 10.1016/j.bios.2014.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
26
|
Wang Z, Dai Z. Carbon nanomaterial-based electrochemical biosensors: an overview. NANOSCALE 2015; 7:6420-31. [PMID: 25805626 DOI: 10.1039/c5nr00585j] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Carbon materials on the nanoscale exhibit diverse outstanding properties, rendering them extremely suitable for the fabrication of electrochemical biosensors. Over the past two decades, advances in this area have continuously emerged. In this review, we attempt to survey the recent developments of electrochemical biosensors based on six types of carbon nanomaterials (CNs), i.e., graphene, carbon nanotubes, carbon dots, carbon nanofibers, nanodiamonds and buckminsterfullerene. For each material, representative samples are introduced to expound the different roles of the CNs in electrochemical bioanalytical strategies. In addition, remaining challenges and perspectives for future developments are also briefly discussed.
Collapse
Affiliation(s)
- Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | | |
Collapse
|
27
|
Characterisation of electrochemical immunosensor for detection of viable not-culturable forms of Legionellla pneumophila in water samples. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractLegionella pneumophila may cause a fatal pneumonia in humans known as Legionnaires’ disease (LD). The strategies of L. pneumophila to adapt to and resist stressful environmental conditions include the ability to enter into a VBNC (viable but not culturable) state. The detection of L. pneumophila in environmental samples benefits from the use of standardised methods: for detection and enumeration following membrane filtration (AFNOR T90-431, ISO 11731) and detection and quantification by polymerase chain reaction PCR (AFNOR T90-471, ISO 12869). Culture is hampered by its inability to detect VBNC forms and PCR is unable to discriminate between live and dead bacteria. The present immunosensor was obtained by the immobilisation of a monoclonal anti-L. pneumophila antibody (MAb) on an indium-tin oxide (ITO) electrode by the self-assembled monolayers (SAMs) method using an aminosilane. The immunosensor was characterised by wettability (contact angle measurement), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), and electrochemical impedance spectroscopy (EIS). A limit of detection of 10 bacteria per mL was observed on artificial samples.
Collapse
|
28
|
Electrochemical magnetoimmunosensor for the ultrasensitive determination of interleukin-6 in saliva and urine using poly-HRP streptavidin conjugates as labels for signal amplification. Anal Bioanal Chem 2014; 406:6363-71. [DOI: 10.1007/s00216-014-8055-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/24/2014] [Accepted: 07/21/2014] [Indexed: 12/26/2022]
|
29
|
Tsai CW, Jheng SL, Chen WY, Ruaan RC. Strategy of Fc-Recognizable Peptide Ligand Design for Oriented Immobilization of Antibody. Anal Chem 2014; 86:2931-8. [DOI: 10.1021/ac4029467] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ching-Wei Tsai
- Department
of Chemical and Materials Engineering, National Central University, Chung-Li City, Taoyuan 32001, Taiwan
| | - Siang-Long Jheng
- Department
of Chemical and Materials Engineering, National Central University, Chung-Li City, Taoyuan 32001, Taiwan
| | - Wen-Yih Chen
- Department
of Chemical and Materials Engineering, National Central University, Chung-Li City, Taoyuan 32001, Taiwan
- Institute
of Biomedical Engineering, National Central University, Chung-Li City, Taoyuan 32001, Taiwan
| | - Ruoh-Chyu Ruaan
- Department
of Chemical and Materials Engineering, National Central University, Chung-Li City, Taoyuan 32001, Taiwan
- Institute
of Biomedical Engineering, National Central University, Chung-Li City, Taoyuan 32001, Taiwan
| |
Collapse
|
30
|
Garcinuño B, Ojeda I, Moreno-Guzmán M, González-Cortés A, Yáñez-Sedeño P, Pingarrón J. Amperometric immunosensor for the determination of ceruloplasmin in human serum and urine based on covalent binding to carbon nanotubes-modified screen-printed electrodes. Talanta 2014; 118:61-7. [DOI: 10.1016/j.talanta.2013.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
|
31
|
A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T. Talanta 2013; 117:431-7. [DOI: 10.1016/j.talanta.2013.08.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022]
|
32
|
Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.211] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|