1
|
Kong RM, Han X, Li P, Zhao Y, Kong W, Xiang MH, Xia L, Qu F. An ATMND/SGI based three-way junction ratiometric fluorescent probe for rapid and sensitive detection of bleomycin. Analyst 2024; 149:2097-2102. [PMID: 38421038 DOI: 10.1039/d3an02186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this work, we developed a rapid and sensitive label-free ratiometric fluorescent (FL) probe for the detection of bleomycin (BLM). The probe consists of a DNA sequence (D6) and two fluorophore groups, 2-amino-5,6,7-trimethyl-1,8-naphthalene (ATMND) and SYBR Green I (SGI). The D6 sequence could be folded into a three-way junction structure containing a C-C mismatch position in the junction pocket. The unique "Y" structure not only could entrap ATMND in the mismatch pocket with high affinity, leading to FL quenching at 408 nm, but also embed SGI in the grooves of the double-stranded portion, resulting in FL enhancement at 530 nm. In the presence of BLM-Fe(II), the "Y" structure of D6 was destroyed due to the specific cleavage of the BLM recognition site, the 5'-GT-3' site in D6. This caused the release of ATMND and SGI and thus the ratiometric signal change of FL enhancement by ATMND and FL quenching by SGI. Under optimal conditions, the ratiometric probe exhibited a linear correlation between the intensity ratio of F408/F530 and the concentration of BLM in the range of 0.5-1000 nM, with a detection limit of 0.2 nM. In addition, the probe was applied to detect BLM in human serum samples with satisfactory results, indicating its good clinical application potential.
Collapse
Affiliation(s)
- Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Xue Han
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Peihua Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Mei-Hao Xiang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Lian Xia
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| |
Collapse
|
2
|
Lin Y, Tao X, Gao S, Li N, Dai Z. Highly sensitive and stable fluorescent aptasensor based on an exonuclease III-assisted amplification strategy for ATP detection. Anal Biochem 2023:115210. [PMID: 37329966 DOI: 10.1016/j.ab.2023.115210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Fluctuations in intracellular adenosine triphosphate (ATP) concentration are closely associated with some cancer diseases. Thus, it is a worthwhile undertaking to predict sickness by monitoring changes in ATP levels. However, the detection limits of current fluorescent aptamer sensors for ATP detection are in the range of nmol L-1 to μmol L-1. It has become crucial to employ amplification strategies to increase the sensitivity of fluorescent aptamer sensors. In the current paper, a duplex hybrid aptamer probe was developed based on exonuclease III (Exo III)-catalyzed target recycling amplification for ATP detection. The target ATP forced the duplex probe configuration to change into a molecular beacon that can be hydrolyzed with Exo III to achieve the target ATP cycling to amplify the fluorescence signal. Significantly, many researchers ignore that FAM is a pH-sensitive fluorophore, leading to the fluorescence instability of FAM-modified probes in different pH buffers. The negatively charged ions on the surface of AuNPs were replaced by new ligands bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) to improve the drawback of FAM instability in alkaline solutions in this work. The aptamer probe was designed to eliminate the interference of other similar small molecules, showing specific selectivity and providing ultra-sensitive detection of ATP with detection limits (3σ) as low as 3.35 nM. Such detection limit exhibited about 4-500-fold better than that of the other amplification strategies for ATP detection. Thus, a relatively general high sensitivity detection system can be established according to the wide target adaptability of aptamers, which can form specific binding with different types of targets.
Collapse
Affiliation(s)
- Yushuang Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xuejiao Tao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Suhan Gao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Nan Li
- School of Chemistry, Tiangong University, Tianjin, 300387, China.
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
3
|
Wang L, Wang Y, Hu M, Xi S, Liu R, Cheng M, Dong Y. Potential Universal Engineering Component: Tetracycline Response Nanoswitch Based on Triple Helix-Graphene Oxide. MICROMACHINES 2022; 13:2119. [PMID: 36557420 PMCID: PMC9784820 DOI: 10.3390/mi13122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The overuse of antibiotics can lead to the emergence of drug resistance, preventing many common diseases from being effectively treated. Therefore, based on the special composite platform of P1/graphene oxide (GO) and DNA triple helix, a programmable DNA nanoswitch for the quantitative detection of tetracycline (TC) was designed. The introduction of GO as a quenching agent can effectively reduce the background fluorescence; stabilizing the trigger strand with a triplex structure minimizes errors. It is worth mentioning that the designed model has been verified and analyzed by both computer simulation and biological experiments. NUPACK predicts the combined mode and yield of each strand, while visual DSD flexibly predicts the changes in components over time during the reaction. The feasibility analysis preliminarily confirmed the realizability of the designed model, and the optimal reaction conditions were obtained through optimization, which laid the foundation for the subsequent quantitative detection of TC, while the selective experiments in different systems fully demonstrated that the model had excellent specificity.
Collapse
Affiliation(s)
- Luhui Wang
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yue Wang
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Mengyang Hu
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Sunfan Xi
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Rong Liu
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Meng Cheng
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yafei Dong
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
4
|
Zhao S, Jiang H, Gong C, Qi W, Hu L, Zhang Y. Highly sensitive detection of Tb 3+ and ATP based on a novel asymmetric anthracene derivative. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:306-311. [PMID: 34985467 DOI: 10.1039/d1ay01279g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel fluorescent sensor based on an asymmetric anthracene derivative (SSAPA) was designed and synthesized. Using this molecule, a rapid and sensitive assay for detecting Tb3+ and ATP in aqueous solutions was established. The SSAPA molecule had excellent aggregation-induced emission (AIE) performance and good aqueous dispersion ability. This molecule could coordinate with Tb3+ and the fluorescence quenched linearly with the increase in the concentration of Tb3+ from 0.005 to 1.2 μM. Since both Tb3+ and adenosine triphosphate (ATP) have strong binding ability, ATP can compete with Tb3+ from the SSAPA/Tb3+ complex leading to fluorescence recovery. In this way, a brand-new fluorescent "turn-on" assay for ATP in the range from 0.01 to 0.4 μM was developed using the Tb3+-based complex probe. The detection limits for Tb3+ and ATP both reached single-digit nanomole per millilitre (2.8 nM and 4.5 nM, respectively), which demonstrated that this method has high sensitivity. Besides, Tb3+ and ATP also could be well detected in other complex environments such as real water samples or serum samples. This study provides a feasible assay for detecting trace amounts of Tb3+ and ATP in aqueous solutions.
Collapse
Affiliation(s)
- Song Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| | - Hongbo Jiang
- Chongqing Bashu Secondary School, Chongqing, 400013, P. R. China
| | - Chengbin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wenjing Qi
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| | - Yan Zhang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China.
| |
Collapse
|
5
|
Farshbaf S, Dey K, Mochida W, Kanakubo M, Nishiyabu R, Kubo Y, Anzenbacher P. Detection of phosphates in water utilizing a Eu 3+-mediated relay mechanism. NEW J CHEM 2022. [DOI: 10.1039/d1nj04578d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carboxyamidoquinolines form ensembles with Eu3+ that can be successfully leveraged in sensing of phosphates showing off–on fluorescence signaling.
Collapse
Affiliation(s)
- Sepideh Farshbaf
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Kaustav Dey
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Wakana Mochida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
6
|
Xu M, Peng Y, Liu H, Tian X, Yang H, Zhou Y. A label-free ratiometric method to detect Hg 2+ based on structural change of DNA. LUMINESCENCE 2021; 36:1985-1990. [PMID: 34435442 DOI: 10.1002/bio.4134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
In this work, a simple ratiometric method has been designed to detect Hg2+ based on the structural change between double-stranded DNA (dsDNA) and its G-quadruplex structure. When Hg2+ was added, the designed G-quadruplex structure could change into the corresponding dsDNA by forming the T-Hg2+ -T mismatch. This kind of variation resulted in a decrease in the fluorescence of the G-quadruplex/N-methyl mesoporphyrin IX (NMM) complex and an increase in the fluorescence from the dsDNA/SYBR Green I (SG I) pair. The secondary excitation wavelength of SG I was used to excite NMM and SG I simultaneously. The titration experiment indicated that the new method had a linear response within 0.7-2.5 μM Hg2+ with a limit of detection of 9.3 nM. Because using the T-Hg2+ -T mismatch to recognize Hg2+ was very specific, the selectivity of the new method was also satisfactory. The recoveries ranged from 92.8% to 110.2% suggested that this new method could achieve a potential application for Hg2+ detection in real environmental samples.
Collapse
Affiliation(s)
- Mingming Xu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yu Peng
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Huan Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Xinyu Tian
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Hualin Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China
| |
Collapse
|
7
|
Chen XX, Hou MJ, Mao GJ, Wang WX, Xu F, Li Y, Li CY. ATP-responsive near-infrared fluorescence MOF nanoprobe for the controlled release of anticancer drug. Mikrochim Acta 2021; 188:287. [PMID: 34350511 DOI: 10.1007/s00604-021-04953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023]
Abstract
A near-infrared (NIR) fluorescence nanoprobe named RhI-DOX@ZIF-90 has been synthesized by wrapping the guest molecule (RhI and DOX) into ZIF-90 framework. The nanoprobe itself is non-fluorescent and the drug (DOX) is inactive. Upon the addition of ATP, the structure of RhI-DOX@ZIF-90 is degraded. The fluorescence of RhI is recovered and DOX is released. The nanoprobe can detect ATP with high sensitivity and selectivity. There is good linear relationship between the nanoprobe and ATP concentration from 0.25 to 10 mM and the detection limit is 0.10 mM. The nanoprobe has the ability to monitor the change of ATP level in living cells and DOX is released inducing apoptosis of cancer cells. RhI-DOX@ZIF-90 is capable of targeting mitochondria, which provides a basis for improving the efficiency of drug delivery by mitochondrial administration. In particular, the nanoprobe is preferentially accumulated in the tumor sites and detect ATP in tumor mice by fluorescence imaging using near-infrared fluorescence. At the same time, DOX can be released accurately in tumor sites and have good anti-tumor efficiency. So, this nanoprobe is a reliable tool to realize early diagnosis of cancer and improve effect of anticancer drug.
Collapse
Affiliation(s)
- Xi-Xi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Mei-Jia Hou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.,College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
8
|
Hu C, Jiang K, Shao Z, Shi M, Meng HM. A DNAzyme-based label-free fluorescent probe for guanosine-5'-triphosphate detection. Analyst 2021; 145:6948-6954. [PMID: 32852000 DOI: 10.1039/d0an01334j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Guanosine-5'-triphosphate (GTP) plays a key role in many important biological processes of cells. It is not only a primer for DNA replication and one of the four essential nucleoside triphosphates for mRNA synthesis, but also an energy source for translation and other important cellular processes. It can be converted to adenine nucleoside triphosphate (ATP), and the intracellular GTP level is closely related to the specific pathological state, so it is crucial to establish a simple and accurate method for the detection of GTP. Deoxyribozymes have unique catalytic and structural properties. One of the deoxyribozymes which is named DK2 with self-phosphorylation ability can transfer a phosphate from GTP to the 5' end in the presence of manganese(ii), while lambda exonuclease (λexo) catalyzes the gradual hydrolysis of double-stranded DNA molecules phosphorylated at the 5'-end from 5' to 3', but cannot cleave the 5'-OH end. The fluorescent dye SYBR Green I (SG I) can bind to dsDNA and produce significant fluorescence, but it can only give out weak fluorescence when it is mixed with a single strand. Here, we present a novel unlabeled fluorescence assay for GTP based on the self-phosphorylation of deoxyribozyme DK2 and the specific hydrolysis of λexo. Owing to the advantages of simple operation, high sensitivity, good specificity, low cost and without fluorophore (quenching group) labeling, this method has great potential in biological applications.
Collapse
Affiliation(s)
- Chengzhen Hu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | |
Collapse
|
9
|
Singh VR, Pandey SP, Singh PK. A polyelectrolyte based supramolecular assembly for ratiometric sensing of ATP with very high discrimination from pyrophosphate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Singh VR, Malegaonkar JN, Bhosale SV, Singh PK. An ATP responsive fluorescent supramolecular assembly based on a polyelectrolyte and an AIE active tetraphenylethylene derivative. Org Biomol Chem 2020; 18:8414-8423. [PMID: 33044482 DOI: 10.1039/d0ob01661f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aggregation induced emission (AIE) active probes have attracted enormous attention due to their wide-spread and ever increasing number of applications in the sensing of chemically and biologically important molecules. AIE probes undergo drastic modulation in their photophysical features from a monomeric to aggregated state. In the current work, we report the aggregation of tetra-anionic Su-TPE (AIE active probe) in the presence of a cationic polyelectrolyte, poly(allylaminehydrochloride) (PAH). A supramolecular assembly is formed by the electrostatic interaction between cationic PAH and anionic Su-TPE molecules, which leads to drastic modulations in the spectral features of anionic Su-TPE upon addition of cationic PAH. The Su-TPE-PAH aggregate assembly has been investigated using various photophysical techniques, such as, ground-state absorption, steady-state and time-resolved emission spectroscopic techniques along with 1H NMR measurements. The Su-TPE-PAH aggregate assembly is found to be responsive towards the ionic strength of the medium and temperature which results in drastic modulations of the spectral features of the emissive supramolecular aggregate assembly. Finally, the specific recognition of an important bioanalyte, ATP, has been achieved using the formed Su-TPE-PAH supramolecular aggregate assembly as a sensing platform which displays good selectivity and high sensitivity towards ATP. Importantly, the developed sensor platform could also function in the human serum matrix, hence, demonstrating the potential of the established sensor platform for real-life applications in near future.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Jotiram N Malegaonkar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500 007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, Uttar Pradesh, India
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500 007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, Uttar Pradesh, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
11
|
Kim D, Lim HJ, Ahn YG, Chua B, Son A. Development of non-equilibrium rapid replacement aptamer assay for ultra-fast detection of phthalic acid esters. Talanta 2020; 219:121216. [PMID: 32887117 DOI: 10.1016/j.talanta.2020.121216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022]
Abstract
In this paper, we developed a non-equilibrium rapid replacement aptamer (NERRA) assay that performed ultra-fast (in 30 s) quantitative detection of phthalic acid esters (PAEs) without waiting for the reaction to reach equilibrium. NERRA assay employed fluorescence PoPo3 dye intercalated in an ssDNA aptamer to selectively detect and quantify the PAEs in water. As the intercalated dye was replaced by the PAEs and quenched in the water, the rate of fluorescence change became proportional to PAEs concentration. The sensitivity of NERRA assay was first evaluated with a commercial spectrofluorometer. The selectivity for PAE mixture, individual PAEs, and non-phthalate compounds were also investigated. NERRA assay was also able to quantitatively detect the PAEs in a common plastic product (picnic mat), and the results were compared with those of gas chromatography mass spectrometry. Finally, a custom analyzer (8.5 cm × 8.5 cm × 16.5 cm) was built to demonstrate the portability of the NERRA assay. Using a commercial spectrofluorometer, NERRA assay was able to quantitatively detect a PAE mixture in 30 min with an LOQ of 0.1 μg/L. Using the portable custom analyzer, the detection time was shortened to 30 s with a tradeoff in the LOQ (1 μg/L). In both cases, the LOQs remain within the environmentally relevant PAE concentrations of 0.1-1472 μg/L.
Collapse
Affiliation(s)
- Dabin Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yun Gyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
| | - Beelee Chua
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
12
|
Li Y, Liu J. Highly Specific Recognition of Guanosine Using Engineered Base-Excised Aptamers. Chemistry 2020; 26:13644-13651. [PMID: 32700427 DOI: 10.1002/chem.202001835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+ -binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm. Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
13
|
Li C, Chen Z, Zhang Y, He J, Yuan R, Xu W. Guanine-Lighting-Up Fluorescence Biosensing of Silver Nanoclusters Populated in Functional DNA Constructs by a pH-Triggered Switch. Anal Chem 2020; 92:13369-13377. [PMID: 32900187 DOI: 10.1021/acs.analchem.0c02744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dark or weak-emissive DNA-harbored silver nanoclusters (AgNCs) can be remarkably lighted up when approaching to guanine bases. The resultant bright AgNCs acting as a fluorescent reporter are fascinating in biosensing. To explore the applicable guanine-enhanced emission of AgNCs for biosensing microRNA-155 (miR-155) as a model, here we designed a unique stem-loop hairpin beacon (HB) encoding with an miR-155-recognizable sequence and a AgNCs-nucleable template, as well as a hairpin helper tethering a partially locked guanine-rich (15-nt) tail (G15H), while two identical cytosine-rich segments were inserted in HB and G15H to merge for folding/unfolding of i-motif at changed pHs. Initially, the intact clusters populated in HB (HB/AgNCs) were almost nonfluorescent in a buffer (pH 7.0). Then, miR-155 was introduced to trigger a repeated hairpin assembly of HB and G15H by competitive strand displacement reactions at decreased pH 5.0 within 10 min, consequently generating numerous duplex DNA constructs (DDCs). With the resultant template of pH-responsive i-motifs incorporated in DDCs, their folding at pH 5.0 brought the proximity of unlocked G15 overhang to the clusters in a crowded environment, remarkably lighting up the red-emitting fluorescence of HB/AgNCs (λem = 628 ± 5 nm) for amplified signal readout. About 3.5-fold enhancement of quantum yield was achievable using different variants of i-motif length and G15 position. Simply by adding OH-, the configuration fluctuation of i-motifs was implemented for switchable fluorescence biosensing to variable miR-155. Based on a one-step amplification and signaling scheme, this subtle strategy was rapid, low-cost, and specific for miR-155 with high sensitivity down to 67 pM.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zehui Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuxuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Chang J, Lv W, Li Q, Li H, Li F. One-Step Synthesis of Methylene Blue-Encapsulated Zeolitic Imidazolate Framework for Dual-Signal Fluorescent and Homogeneous Electrochemical Biosensing. Anal Chem 2020; 92:8959-8964. [PMID: 32478502 DOI: 10.1021/acs.analchem.0c00952] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro diagnosis requires target biomarkers to be reliably detected at an ultralow level. A dual-signal strategy permits self-calibration to overcome the interferences of experimental and environmental factors, and thus is regarded as a promising approach. However, currently reported works mainly concentrated on the same forms of energy of output signals. Herein, we propose a one-step strategy for synthesis of methylene blue-encapsulated zeolitic imidazolate framework-90 (MB@ZIF-90) with high loading, unique dual-signal property, exceptional recognition capability, and good stability, and we further pioneer MB@ZIF-90 as a dual-signal biosensor for label-free, enzyme-free, and ultrasensitive detection of adenosine triphosphate (ATP) by integration of fluorescence and homogeneous electrochemical techniques. The recognition of MB@ZIF-90 by target ATP spurs the decomposition of ZIF-90, subsequently permitting MB to be released into a supernatant. As compared to the case where ATP does not exist, obviously increased intensities in fluorescence and differential pulse voltammetry current are observed and both signals are directly proportional to ATP concentrations. Thus, the MB@ZIF-90-based biosensor achieved dual-signal detection of ATP in an ultrasensitive manner and displayed a more reliable diagnosis result than previously reported ATP biosensors. This dual-signal strategy provides a new opportunity to develop high-performance biosensors for in vitro diagnosis and demonstrates great potential for future applications in bioinformatics and clinical medicine.
Collapse
Affiliation(s)
- Jiafu Chang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
15
|
Li Y, Liu B, Huang Z, Liu J. Engineering base-excised aptamers for highly specific recognition of adenosine. Chem Sci 2020; 11:2735-2743. [PMID: 34084332 PMCID: PMC8157715 DOI: 10.1039/d0sc00086h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors. For practical reasons, it is important to distinguish adenosine from ATP, although this has yet to be achieved despite extensive efforts made on selection of new aptamers. We herein report a strategy of excising an adenine nucleotide from the backbone of a one-site adenosine aptamer, and the adenine-excised aptamer allowed highly specific binding of adenosine. Cognate analytes including AMP, ATP, guanosine, cytidine, uridine, and theophylline all failed to bind to the engineered aptamer according to the SYBR Green I (SGI) fluorescence spectroscopy and isothermal titration calorimetry (ITC) results. Our A-excised aptamer has two binding sites: the original aptamer binding site in the loop and the newly created one due to base excision from the DNA backbone. ITC demonstrated that the A-excised aptamer strand can bind to two adenosine molecules, with a Kd of 14.8 ± 2.1 μM at 10 °C and entropy-driven binding. Since the wild-type aptamer cannot discriminate adenosine from AMP and ATP, we attributed this improved specificity to the excised site. Further study showed that these two sites worked cooperatively. Finally, the A-excised aptamer was tested in diluted fetal bovine serum and showed a limit of detection of 46.7 μM adenosine. This work provides a facile, cost-effective, and non-SELEX method to engineer existing aptamers for new features and better applications. The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors.![]()
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
16
|
Singh VR, Singh PK. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution. J Mater Chem B 2020; 8:1182-1190. [PMID: 31957759 DOI: 10.1039/c9tb02403d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considering the biological relevance of adenosine triphosphate (ATP) as an "energy currency" in all organisms and significance of its detection in various diseased conditions, enormous efforts have been made to develop selective and sensitive fluorescent sensors for the detection of ATP. However, these developed sensor probes frequently involve technically challenging and time-consuming synthetic protocols for the production of sensor molecules and often suffer from poor solubility in aqueous medium. Another major disadvantage of these developed sensor systems is their single wavelength based operation which makes their performance susceptible to minute changes in experimental conditions. Herein, we report a fluorescence turn-on ratiometric sensor for the detection of ATP which operates by the dissociation of Thioflavin-T-sulphated-β-cyclodextrin supramolecular assembly by Zn2+ followed by ATP induced reassociation of the same. This modulation of the monomer/aggregate equilibrium of the supramolecular assembly followed by subsequent interactions with Zn2+ and ATP acts as an optimal scheme for the ratiometric detection of ATP. Overall this supramolecular ensemble based sensing platform provides a simple, sensitive, selective and label free detection approach for ATP in aqueous solution. Importantly, our sensor platform responds to ATP in the biologically complex media of serum samples suggesting its potential for possible applications in real-life scenarios.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| |
Collapse
|
17
|
Xue N, Wu S, Li Z, Miao X. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification. Anal Chim Acta 2019; 1104:117-124. [PMID: 32106942 DOI: 10.1016/j.aca.2019.12.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/28/2019] [Indexed: 11/18/2022]
Abstract
Abnormal concentration of adenosine triphosphate (ATP) is directly asscociate with several diseases. Thus, sensitive detection of ATP is essential to early diagnosis of disease. Herein, we described an ultrasensitive strategy for ATP detection by using positively charged gold nanorods ((+)AuNRs) as an efficient fluorescence quenching platform, coupled with exonuclease Ⅲ (Exo Ⅲ) assisted target recycling amplification. To construct the sensor, DNA template that contained ATP aptamer was used for the formation of Ag nanoclusters signal probe (DNA/AgNCs), the structure of it could change to duplex after the interaction of it with ATP. Such DNA template or duplex DNA product could electrostatically adsorb onto (+)AuNRs surface, resulting in the quenching of the fluorescence signal due to the vicinity of AgNCs to (+)AuNRs. With the addition of Exo Ⅲ, DNA duplex could be hydrolyzed and released from (+)AuNRs surface, leading to the recovery of a strong fluorescent signal, while ATP could be regenerated for next target recycling. Combing the good fluorescence quenching ability of (+)AuNRs and the Exo Ⅲ assisted signal amplification, a low detection limit of 26 pM was achieved for ATP detection. Notably, the proposed method can be successfully applied for detecting ATP in serum samples, indicating a potential application value in early cancer diagnosis.
Collapse
Affiliation(s)
- Ning Xue
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shujie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
18
|
Wei Y, Wang L, Zhang Y, Dong Y. An Enzyme- and Label-Free Fluorescence Aptasensor for Detection of Thrombin Based on Graphene Oxide and G-Quadruplex. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4424. [PMID: 31614837 PMCID: PMC6832557 DOI: 10.3390/s19204424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
An enzyme- and label-free aptamer-based assay is described for the determination of thrombin. A DNA strand (S) consisting of two parts was designed, where the first (Sa) is the thrombin-binding aptamer and the second (Se) is a G-quadruplex. In the absence of thrombin, Sa is readily adsorbed by graphene oxide (GO), which has a preference for ss-DNA rather than for ds-DNA. Upon the addition of the N-methyl-mesoporphyrin IX (NMM), its fluorescence (with excitation/emission at 399/610 nm) is quenched by GO. In contrast, in the presence of thrombin, the aptamer will bind thrombin, and thus, be separated from GO. As a result, fluorescence will be enhanced. The increase is linear in the 0.37 µM to 50 µM thrombin concentration range, and the detection limit is 0.37 nM. The method is highly selective over other proteins, cost-effective, and simple. In our perception, it represents a universal detection scheme that may be applied to other targets according to the proper choice of the aptamer sequence and formation of a suitable aptamer-target pair.
Collapse
Affiliation(s)
- Yani Wei
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
| | - Luhui Wang
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
| | - Yingying Zhang
- School of Computer Science, Shaanxi Normal University, Xi´an 710119, China.
| | - Yafei Dong
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
- School of Computer Science, Shaanxi Normal University, Xi´an 710119, China.
| |
Collapse
|
19
|
Li H, Song S, Wen M, Bao T, Wu Z, Xiong H, Zhang X, Wen W, Wang S. A novel label-free electrochemical impedance aptasensor for highly sensitive detection of human interferon-gamma based on target-induced exonuclease inhibition. Biosens Bioelectron 2019; 142:111532. [PMID: 31377576 DOI: 10.1016/j.bios.2019.111532] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/29/2023]
Abstract
In this paper, a novel label-free electrochemical impedance aptasensor for highly sensitive detection of IFN-γ based on target-induced exonuclease inhibition was constructed. For this purpose, we designed a DNA hairpin modified on the gold electrode whose loop was the aptamer of the IFN-γ, and the stem was 5'-thiol-modified. In the absence of IFN-γ, Exonuclease III (Exo III) and Exonuclease I (Exo I) digested the double-stranded and single-stranded strands of the hairpin DNA, respectively, causing smaller impedance value on the surface of the electrode. In the presence of IFN-γ, the function of Exo III was greatly inhibited by the binding of the aptamer with the target, and it stopped after cutting three bases of the hairpin DNA. Forming a major target-bound aptamer digestion product, it could not be digested by Exo I, so there was larger impedance on the electrode surface. The calibration curve for IFN-γ was linear in the range of 1 pM-50 nM with the detection limit (LOD) of 0.7 pM. The proposed aptasensor proved good selectivity and reproducibility, and low cost. In addition, the biosensor was able to detect IFN-γ in serum samples successfully, which is expected to provide an efficient method for TB diagnosis at early stages.
Collapse
Affiliation(s)
- Huan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shihao Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Meiqi Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Huayu Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
20
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
21
|
Zhang Z, Liu J. An engineered one-site aptamer with higher sensitivity for label-free detection of adenosine on graphene oxide. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 27-nucleotide DNA aptamer for adenosine and ATP, originally selected by the Szostak lab in 1995, has been a very popular model system for biosensor development. This unique aptamer has two target binding sites, and we recently showed that it is possible to remove either site while the other one still retains binding. From an analytical perspective, tuning the number of binding sites has important implications in modulating sensitivity of the resulting biosensors. In this work, we report that the engineered one-site aptamer showed excellent signaling properties with a 2.6-fold stronger signal intensity and also a 4.2-fold increased detection limit compared with the wild-type two-site aptamer. The aptamer has a hairpin structure, and the length of the hairpin stem was systematically varied for the one-site aptamers. Isothermal titration calorimetry and a label-free fluorescence signaling method with graphene oxide and SYBR Green I were respectively used to evaluate binding and sensor performance. Although longer stemmed aptamers produced better adenosine binding affinity, the signaling was quite independent of the stem length as long as more than three base pairs were left. This was explained by the higher affinity of binding to GO by the longer aptamers, cancelling out the higher affinity for adenosine binding. This work further confirms the analytical applications of such one-site adenosine aptamers, which are potentially useful for improved ATP imaging and for developing new biosensors.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
22
|
Cheng W, Pan J, Yang J, Zheng Z, Lu F, Chen Y, Gao W. A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO 2 and visible-light photoelectrochemical activity. Mikrochim Acta 2018; 185:263. [PMID: 29687401 DOI: 10.1007/s00604-018-2800-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
Abstract
A photoelectrochemical (PEC) aptasensor for the highly sensitive and specific detection of thrombin is described. This aptasensor is based on an indium tin oxide (ITO) support that is covered with carbon quantum dot (CQD)-sensitized TiO2 and acts as a photoactive matrix. The ITO/TiO2/CQD electrode was prepared by impregnation assembly. It displays an enhanced and steady photocurrent response under irradiation by visible light. A carboxyl-functionalized thrombin-binding aptamer was covalently immobilized on the modified ITO to obtain a PEC aptasensor whose photocurrent decreases with increasing concentration of thrombin. Under 420 nm irradiation at a bias voltage of 0 V, the aptasensor has a linear response in the 1.0 to 250 pM thrombin concentration range, with a 0.83 pM detection limit. Conceivably, this approach can be extended to numerous other PEC aptasensors for the detection of targets for which appropriate aptamers are available. Graphical abstract Schematic of a PEC aptasensor for thrombin. It is based on the use of CQD as the sensitizer, TiO2/CQDs as the photoactive matrix, and the thrombin aptamer as the recognition element.
Collapse
Affiliation(s)
- Wenjie Cheng
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, People's Republic of China
| | - Jiahong Pan
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, People's Republic of China
| | - Jianying Yang
- National Detergents and Cosmetics Products Quality Supervision and Inspection Center (Guangdong), Shantou, Guangdong, 515041, People's Republic of China
| | - Zengyao Zheng
- National Detergents and Cosmetics Products Quality Supervision and Inspection Center (Guangdong), Shantou, Guangdong, 515041, People's Republic of China
| | - Fushen Lu
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, People's Republic of China
| | - Yaowen Chen
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, People's Republic of China
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, People's Republic of China.
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, People's Republic of China.
| |
Collapse
|
23
|
|
24
|
Huang B, Geng Z, Yan S, Li Z, Cai J, Wang Z. Water-Soluble Conjugated Polymer as a Fluorescent Probe for Monitoring Adenosine Triphosphate Level Fluctuation in Cell Membranes during Cell Apoptosis and in Vivo. Anal Chem 2017; 89:8816-8821. [PMID: 28752761 DOI: 10.1021/acs.analchem.7b01212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adenosine triphosphate (ATP) is used as the energy source in cells and plays crucial roles in various cellular events. The cellular membrane is the protective barrier for the cytoplasm of living cells and involved in many essential biological processes. Many fluorescent probes for ATP have been successfully developed, but few of these probes were appropriate for visualizing ATP level fluctuation in cell membranes during the apoptotic cell death process. Herein, we report the synthesis of a new water-soluble cationic polythiophene derivative that can be utilized as a fluorescent sensor for detecting ATP in cell membranes. Poly((3-((4-methylthiophen-3-yl)oxy)propyl)triphenylphosphonium chloride) (PMTPP) exhibits high sensitivity and good selectivity to ATP, and the detection limit is 27 nM. The polymer shows low toxicity to live cells and excellent photostability in cell membranes. PMTPP was practically utilized for real-time monitoring of ATP levels in the cell membrane through fluorescence microscopy. We have demonstrated that the ATP levels in cell membranes increased during the apoptotic cell death process. The probe was also capable of imaging ATP levels in living mice.
Collapse
Affiliation(s)
- Binghuan Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zan Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Jun Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| |
Collapse
|
25
|
Ji D, Wang H, Ge J, Zhang L, Li J, Bai D, Chen J, Li Z. Label-free and rapid detection of ATP based on structure switching of aptamers. Anal Biochem 2017; 526:22-28. [PMID: 28315316 DOI: 10.1016/j.ab.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
In this work, an aptamer-based fluorescent strategy for label-free detection of ATP was developed by using Thioflavin T (ThT) as a fluorescence indicator, which can specifically bind with G-quadruplex DNAs to generate enhanced fluorescence intensity. In the absence of ATP, the folded structure of ATP aptamer allows the intercalation of ThT to produce strong fluorescence signal. However, upon ATP binding to the aptamer where ThT intercalated, the conformational change or distortion of the aptamer is large enough to cause much less intercalation of ThT and consequently drastic suppression of the fluorescence intensity. As such, the concentration of ATP could be identified very easily by observing fluorescence changes of this sensing system. This label-free assay could be accomplished very easily and quickly with a "mix-and-detect" detection method and exhibits high sensitivity to ATP with a detection limit of 33 nM in a wide range of 0.1-1000 μM. Furthermore, this proposed method is capable of detecting ATP in human serum and cell extracts. This method offers several advantages such as simplicity, rapidity, low cost, good stability and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
Affiliation(s)
- Danyang Ji
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongqi Wang
- Institute of Quality Standard and Testing Technology for Agroproducts, Henan Academy of Agricultural Science, Zhengzhou 450002, PR China
| | - Jia Ge
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Dongmei Bai
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Juan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhaohui Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
26
|
Qi W, Liu Z, Zhang W, Halawa MI, Xu G. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV). SENSORS (BASEL, SWITZERLAND) 2016; 16:s16101674. [PMID: 27754349 PMCID: PMC5087462 DOI: 10.3390/s16101674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Zr(IV) can form phosphate and Zr(IV) (-PO₃2--Zr4+-) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.
Collapse
Affiliation(s)
- Wenjing Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Zhongyuan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
27
|
Meng F, Xu H, Yao X, Qin X, Jiang T, Gao S, Zhang Y, Yang D, Liu X. Mercury detection based on label-free and isothermal enzyme-free amplified fluorescence platform. Talanta 2016; 162:368-373. [PMID: 27837842 DOI: 10.1016/j.talanta.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 10/02/2016] [Indexed: 11/29/2022]
Abstract
A novel and convenient biosensor for Mercury (II) detection was developed based on toehold-mediated strand displacement isothermal enzyme-free amplification (EFA) technology and label-free fluorescence platform using Sybr Green Ι (SG) and graphene oxide (GO). The method is highly sensitive and selective, and the logarithmically related Hg2+ linearity range is from 0.1 to 50nM with a detection limit 0.091nM. Moreover, our strategy is simple, enzyme-free, and inexpensive and can be applied to detect spiked Hg2+ in environmental water samples with good recovery and accuracy, which demonstrates that the biosensor has a good potential in the environment surveys in the future.
Collapse
Affiliation(s)
- Fanbin Meng
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xue Yao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xuan Qin
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Shanmin Gao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yahui Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Di Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xia Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
28
|
Wang J, Song J, Wang X, Wu S, Zhao Y, Luo P, Meng C. An ATMND/SGI based label-free and fluorescence ratiometric aptasensor for rapid and highly sensitive detection of cocaine in biofluids. Talanta 2016; 161:437-442. [PMID: 27769429 DOI: 10.1016/j.talanta.2016.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/30/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022]
Abstract
A label-free ratiometric fluorescence aptasensor has been developed for the rapid and sensitive detection of cocaine in complex biofluids. The fluorescent aptasensor is composed of a non-labeled GC-38 cocaine aptamer which serves as a basic sensing unit and two fluorophores, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and SYBR Green I (SGI) which serves as a signal reporter and a build-in reference, respectively. The detection principle is based on a specific cocaine mediated ATMND displacement reaction and the corresponding change in the fluorescence ratio of ATMND to SGI. Due to the high affinity of the non-labeled aptamer, the good precision originated from the ratiometric method, and the good fluorescence quantum yield of the fluorophore, the aptasensor shows good analytical performance with respect to cocaine detection. Under optimal conditions, the aptasensor shows a linear range of 0.10-10μM and a low limit of detection of 56nM, with a fast response of 20s. The low limit of detection is comparable to most of the fluorescent aptasensors with signal amplification strategies and much lower than all of the unamplified cocaine aptasensors. Practical sample analysis in a series of complex biofluids, including urine, saliva and serum, also indicates the good precision, stability, and high sensitivity of the aptasensor, which may have great potential for the point-of-care screening of cocaine in complex biofluids.
Collapse
Affiliation(s)
- Jiamian Wang
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| | - Jie Song
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| | - Xiuyun Wang
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| | - Shuo Wu
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Yanqiu Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| | - Pinchen Luo
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| |
Collapse
|
29
|
Shi K, Dou B, Yang J, Yuan R, Xiang Y. Target-triggered catalytic hairpin assembly and TdT-catalyzed DNA polymerization for amplified electronic detection of thrombin in human serums. Biosens Bioelectron 2016; 87:495-500. [PMID: 27592241 DOI: 10.1016/j.bios.2016.08.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 01/18/2023]
Abstract
Specific and sensitive detection of protein biomarkers is of great importance in biomedical and bioanalytical applications. In this work, a dual amplified signal enhancement approach based on the integration of catalytic hairpin assembly (CHA) and terminal deoxynucleotidyl transferase (TdT)-mediated in situ DNA polymerization has been developed for highly sensitive and label-free electrochemical detection of thrombin in human serums. The presence of the target thrombin leads to the unfolding and capture of a significant number of hairpin signal probes with free 3'-OH termini on the sensor electrode. Subsequently, TdT can catalyze the elongation of the signal probes and formation of many G-quadruplex sequence replicates with the presence of dGTP and dATP at a molar ratio of 6:4. These G-quadruplex sequences bind hemin and generate drastically amplified current response for sensitive detection of thrombin in a completely label-free fashion. The sensor shows a linear range of 0.5pM-10.0nM and a detection limit of 0.12pM for thrombin. Moreover, the developed sensor can selectively discriminate the target thrombin against other non-target proteins and can be employed to monitor thrombin in human serum samples.
Collapse
Affiliation(s)
- Kai Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
30
|
Ng S, Lim HS, Ma Q, Gao Z. Optical Aptasensors for Adenosine Triphosphate. Theranostics 2016; 6:1683-702. [PMID: 27446501 PMCID: PMC4955066 DOI: 10.7150/thno.15850] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022] Open
Abstract
Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Gao
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
31
|
|
32
|
An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range. Biosens Bioelectron 2016; 63:311-316. [PMID: 25113049 DOI: 10.1016/j.bios.2014.07.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/17/2022]
Abstract
A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.
Collapse
|
33
|
Cao JX, Wang YS, Xue JH, Huang YQ, Li MH, Chen SH, Zhou B, Tang X, Wang XF, Zhu YF. Exonuclease III-assisted substrate fragment recycling amplification strategy for ultrasensitive detection of uranyl by a multipurpose DNAzyme. RSC Adv 2016. [DOI: 10.1039/c6ra20625e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Substrate fragment cleaved by UO22+ hybridizes with SSP6 to form dsDNA, triggering substrate fragment recycling amplification by Exo III.
Collapse
Affiliation(s)
- Jin-Xiu Cao
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
- The Fifth Affiliated Hospital
| | - Yong-Sheng Wang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Jin-Hua Xue
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Yan-Qin Huang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Ming-Hui Li
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Si-Han Chen
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Bin Zhou
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Xian Tang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Xiao-Feng Wang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Yu-Feng Zhu
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| |
Collapse
|
34
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
35
|
Application Progress of Exonuclease-Assisted Signal Amplification Strategies in Biochemical Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60874-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Li MH, Wang YS, Cao JX, Chen SH, Tang X, Wang XF, Zhu YF, Huang YQ. Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification. Biosens Bioelectron 2015; 72:294-9. [DOI: 10.1016/j.bios.2015.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 11/15/2022]
|
37
|
Zhan Z, Cai J, Wang Q, Su Y, Zhang L, Lv Y. Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP. LUMINESCENCE 2015; 31:626-32. [PMID: 26359586 DOI: 10.1002/bio.3002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 11/11/2022]
Abstract
Fluorescent carbon nanoparticles (CPs), a fascinating class of recently discovered nanocarbons, have been widely known as some of the most promising sensing probes in biological or chemical analysis. In this study, we demonstrate a green synthetic methodology for generating water-soluble CPs with a quantum yield of approximately 24% via a simple heating process using yum mucilage as a carbon source. The prepared carbon nanoparticles with an ~10 nm size possessed excellent fluorescence properties, and the fluorescence of the CPs was strongly quenched by Fe(3+), and recovered by adenosine triphosphate (ATP), thus, an 'off' and 'on' system can be easily established. This 'CPs-Fe(3+)-ATP' strategy was sensitive and selective at detecting ATP with the linear range of 0.5 µmol L(-1) to 50 µmol L(-1) and with a detection limit of 0.48 µmol L(-1).
Collapse
Affiliation(s)
- Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jiao Cai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qi Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.,Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi, 030008, China
| | - Yingying Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
38
|
Yang J, Donolato M, Pinto A, Bosco FG, Hwu ET, Chen CH, Alstrøm TS, Lee GH, Schäfer T, Vavassori P, Boisen A, Lin Q, Hansen MF. Blu-ray based optomagnetic aptasensor for detection of small molecules. Biosens Bioelectron 2015; 75:396-403. [PMID: 26342583 DOI: 10.1016/j.bios.2015.08.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
This paper describes an aptamer-based optomagnetic biosensor for detection of a small molecule based on target binding-induced inhibition of magnetic nanoparticle (MNP) clustering. For the detection of a target small molecule, two mutually exclusive binding reactions (aptamer-target binding and aptamer-DNA linker hybridization) are designed. An aptamer specific to the target and a DNA linker complementary to a part of the aptamer sequence are immobilized onto separate MNPs. Hybridization of the DNA linker and the aptamer induces formation of MNP clusters. The target-to-aptamer binding on MNPs prior to the addition of linker-functionalized MNPs significantly hinders the hybridization reaction, thus reducing the degree of MNP clustering. The clustering state, which is thus related to the target concentration, is then quantitatively determined by an optomagnetic readout technique that provides the hydrodynamic size distribution of MNPs and their clusters. A commercial Blu-ray optical pickup unit is used for optical signal acquisition, which enables the establishment of a low-cost and miniaturized biosensing platform. Experimental results show that the degree of MNP clustering correlates well with the concentration of a target small molecule, adenosine triphosphate (ATP) in this work, in the range between 10µM and 10mM. This successful proof-of-concept indicates that our optomagnetic aptasensor can be further developed as a low-cost biosensing platform for detection of small molecule biomarkers in an out-of-lab setting.
Collapse
Affiliation(s)
- Jaeyoung Yang
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark; Department of Mechanical Engineering, Columbia University, New York, NY 10027, United States
| | - Marco Donolato
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Alessandro Pinto
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Filippo Giacomo Bosco
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - En-Te Hwu
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ching-Hsiu Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Tommy Sonne Alstrøm
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Thomas Schäfer
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Paolo Vavassori
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; CIC nanoGUNE Consolider, 20018 Donostia-San Sebastián, Spain
| | - Anja Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, United States.
| | - Mikkel Fougt Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
39
|
Wang P, Zhang T, Yang T, Jin N, Zhao Y, Fan A. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate. Analyst 2015; 139:3796-803. [PMID: 24899364 DOI: 10.1039/c4an00458b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.
Collapse
Affiliation(s)
- Ping Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
Guo Y, Sun X, Yang G, Liu J. Ultrasensitive detection of ATP based on ATP regeneration amplification and its application in cell homogenate and human serum. Chem Commun (Camb) 2015; 50:7659-62. [PMID: 24898261 DOI: 10.1039/c4cc01458h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A conformation-switching aptamer molecule that could be circularized without ligation DNA was designed. Pyrophosphate (PPi) was converted to ATP, resulting in higher signals for ATP detection. Meanwhile, the method has significant implications for real applications.
Collapse
Affiliation(s)
- Yingshu Guo
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | | | | | | |
Collapse
|
41
|
Wei Y, Zhou W, Liu J, Chai Y, Xiang Y, Yuan R. Label-free and homogeneous aptamer proximity binding assay for fluorescent detection of protein biomarkers in human serum. Talanta 2015; 141:230-4. [PMID: 25966407 DOI: 10.1016/j.talanta.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022]
Abstract
By using the aptamer proximity binding assay strategy, the development of a label-free and homogeneous approach for fluorescent detection of human platelet-derived growth factor BB (PDGF-BB) is described. Two G-quadruplex forming sequence-linked aptamers bind to the PDGF-BB proteins, which leads to the increase in local concentration of the aptamers and promotes the formation of the G-quadruplex structures. Subsequently, the fluorescent dye, N-methylmesoporphyrin IX, binds to these G-quadruplex structures and generates enhanced fluorescence emission signal for sensitive detection of PDGF-BB. The association of the aptamers to the PDGF-BB proteins is characterized by using native polyacrylamide gel electrophoresis. The experimental conditions are optimized to reach an estimated detection limit of 3.2nM for PDGF-BB. The developed method is also selective and can be applied for monitoring PDGF-BB in human serum samples. With the advantages of label-free and homogeneous detection, the demonstrated approach can be potentially employed to detect other biomarkers in a relatively simple way.
Collapse
Affiliation(s)
- Yulian Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jun Liu
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
42
|
Du L, Zhang Y, Du Y, Yang D, Gao F, Tang D. A novel label-free aptasensor based on target-induced structure switching of aptamer-functionalized mesoporous silica nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra18918g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A strategy for high-performance liquid chromatography detection of adenosine triphosphate was developed based on mesoporous silica nanoparticles functionalized with an aptamer as a cap.
Collapse
Affiliation(s)
- Lili Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- 221004 Xuzhou
- China
| | - Yu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- 221004 Xuzhou
- China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- 221004 Xuzhou
- China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- 221004 Xuzhou
- China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- 221004 Xuzhou
- China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- 221004 Xuzhou
- China
| |
Collapse
|
43
|
Bao T, Shu H, Wen W, Zhang X, Wang S. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy. Anal Chim Acta 2014; 862:64-9. [PMID: 25682429 DOI: 10.1016/j.aca.2014.12.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 12/19/2022]
Abstract
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3'-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs-aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1-20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.
Collapse
Affiliation(s)
- Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Huawei Shu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
44
|
Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC. Aptamers facilitating amplified detection of biomolecules. Anal Chem 2014; 87:274-92. [PMID: 25313902 DOI: 10.1021/ac5037236] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Feng Li
- Department of Laboratory Medicine and Pathology, ‡Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | | | | | |
Collapse
|
45
|
Xu Y, Zhou W, Zhou M, Xiang Y, Yuan R, Chai Y. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosens Bioelectron 2014; 64:306-10. [PMID: 25240130 DOI: 10.1016/j.bios.2014.09.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs.
Collapse
Affiliation(s)
- Yunying Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ming Zhou
- (b)Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
46
|
Lin C, Chen Y, Cai Z, Zhu Z, Jiang Y, Yang CJ, Chen X. A label-free fluorescence strategy for sensitive detection of ATP based on the ligation-triggered super-sandwich. Biosens Bioelectron 2014; 63:562-565. [PMID: 25168764 DOI: 10.1016/j.bios.2014.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023]
Abstract
In this study, a label-free fluorescence strategy for sensitive detection of ATP based on the ligation-triggered super-sandwich is reported. We designed a double-stranded DNA (ds-DNA) probe as the substrate of ATP-dependent ligation. SYBR Green I (SG I), a double-duplex DNA specific dye, was employed as the readout signal. In the absence of ATP, the ligation would not occur and the ds-DNA remained intact. Further, a weak fluorescence could be observed due to the intercalation of SG I into the grooves of the ds-DNA probe. In the presence of ATP, T4 DNA ligase would catalyse the ligation between 3'-OH and 5'-PO4 ends between ds-DNA probes. As a result, more binding sites of the SG I were generated and a fluorescence enhancement was obtained. This method showed a good sensitivity with a detection limit of 200 pM and could perfectly discriminate ATP from its analogs.
Collapse
Affiliation(s)
- Chunshui Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiying Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhixiong Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaqi Jiang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong James Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
47
|
McKeague M, Velu R, Hill K, Bardóczy V, Mészáros T, DeRosa MC. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins (Basel) 2014; 6:2435-52. [PMID: 25153252 PMCID: PMC4147592 DOI: 10.3390/toxins6082435] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid aptamers are emerging as useful molecular recognition tools for food safety monitoring. However, practical and technical challenges limit the number and diversity of available aptamer probes that can be incorporated into novel sensing schemes. This work describes the selection of novel DNA aptamers that bind to the important food contaminant ochratoxin A (OTA). Following 15 rounds of in vitro selection, sequences were analyzed for OTA binding. Two of the isolated aptamers demonstrated high affinity binding and selectivity to this mycotoxin compared to similar food adulterants. These sequences, as well as a truncated aptamer (minimal sequence required for binding), were incorporated into a SYBR® Green I fluorescence-based OTA biosensing scheme. This label-free detection platform is capable of rapid, selective, and sensitive OTA quantification with a limit of detection of 9 nM and linear quantification up to 100 nM.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, USA.
| | - Ranganathan Velu
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Kayla Hill
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Viola Bardóczy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary.
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tûzoltó u. 37-47, H-1094 Budapest, Hungary.
| | - Maria C DeRosa
- Chemistry Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
48
|
Gong X, Li J, Zhou W, Xiang Y, Yuan R, Chai Y. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes. Anal Chim Acta 2014; 828:80-4. [PMID: 24845818 DOI: 10.1016/j.aca.2014.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins.
Collapse
Affiliation(s)
- Xue Gong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jinfu Li
- Beijing Atom HighTech (HTA) Co., Ltd., P.O. Box 275 Ext. 104, Beijing 102413, PR China
| | - Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
49
|
Yang M, Chen Y, Xiang Y, Yuan R, Chai Y. Target-induced structure switching of DNA for label-free and ultrasensitive electrochemiluminescent detection of proteins. Chem Commun (Camb) 2014; 50:3211-3. [DOI: 10.1039/c4cc00694a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly sensitive and label-free detection of thrombin is achieved via a target-induced DNA structure switching strategy and Exo III-assisted recycling amplification.
Collapse
Affiliation(s)
- Mengli Yang
- Key Laboratory on Luminescence and Real-Time Analysis
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, P. R. China
| | - Ying Chen
- Key Laboratory on Luminescence and Real-Time Analysis
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, P. R. China
| | - Yun Xiang
- Key Laboratory on Luminescence and Real-Time Analysis
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory on Luminescence and Real-Time Analysis
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory on Luminescence and Real-Time Analysis
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, P. R. China
| |
Collapse
|
50
|
Liu B, Zhang B, Chen G, Yang H, Tang D. Metal sulfide-functionalized DNA concatamer for ultrasensitive electronic monitoring of ATP using a programmable capillary-based aptasensor. Biosens Bioelectron 2013; 53:390-8. [PMID: 24201002 DOI: 10.1016/j.bios.2013.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 12/16/2022]
Abstract
A new flow-through electrochemical aptasensor was designed for ultrasensitive monitoring of adenosine triphosphate (ATP) by coupling microvalve-programmable capillary column with CdS-functionalized DNA concatamer for signal amplification. Initially, a layer of primary DNA-conjugated polyacrylamide hydrogel was covalently linked onto the internal surface of capillary column, and then an automated sequenctial injection format with a syringe pump was employed for development of the programmable capillary-based aptasensor. In the presence of target DNA aptamer, the immobilized primary DNA hybridized with partial bases of the aptamer. The excess aptamer fregment could trigger the formation of DNA concatamer between auxiliary DNA1 and CdS-labeled auxiliary DNA2. Upon target ATP introduction, a specific ATP-aptamer reaction was excuated, thereby resulting in the release of CdS-functionalized DNA concatamer from the capillary. Subsenquent anodic stripping voltammetric detection of cadmium released under acidic conditions from the released CdS nanoparticles could be conducted in a homemade detection cell. Under optimal conditions, the dynamic concentration range spanned from 0.1 pM to 10nM ATP with a detection limit of 0.06 pM ATP. The electrochemical aptasensor showed good reproducibility, selectivity, and stability. In addition, the methodology was evaluated for the analysis of ATP spiked serum samples, and the recoveries was 81-140%.
Collapse
Affiliation(s)
- Bingqian Liu
- Key Laboratory of Analysis and Detection for Food Safety, Ministry of Education & Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | | | | | | | | |
Collapse
|