1
|
Xu R, Su Y, Ji H, Jiang M, Zhang R, Ding L, Chen Y, Song D. Enhanced detection of 4-nitrophenol in drinking water: ECL sensor utilizing velvet-like graphitic carbon nitride and molecular imprinting. Food Chem 2024; 460:140599. [PMID: 39067383 DOI: 10.1016/j.foodchem.2024.140599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this work, a molecularly imprinted electrochemiluminescence (ECL) sensor was developed for selective detection of 4-nitrophenol (4-NP) in drinking water for the first time. By synthesizing velvet-like graphitic carbon nitride (V-g-C3N4) via one-step thermal polycondensation and integrating it with a molecularly imprinted polymer (MIP), the ECL sensor was fabricated. The MIP-modified V-g-C3N4 composites (MIP/V-g-C3N4) were synthesized using a sol-gel method with 4-NP as the template molecule. Under optimal conditions, the ECL sensor exhibited a wide detection range (5 × 10-10-1 × 10-5 mol/L) and a low detection limit (1.8 × 10-10 mol/L). In testing with actual drinking water samples, it displayed high accuracy (recoveries for intraday and inter-day: 93.50-106.2% and 97.00-107.3%, separately) and precision (RSDs for intraday and inter-day: 1.54-4.59% and 1.53-4.28%, respectively). The developed MIP-based ECL sensor demonstrated excellent selectivity, stability, and reproducibility, offering a promising and reliable approach for highly sensitive and selective determination of 4-NP in drinking water.
Collapse
Affiliation(s)
- Rui Xu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yu Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hongfei Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Man Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanhua Chen
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
2
|
Khanal S, Pillai M, Biswas D, Torequl Islam M, Verma R, Kuca K, Kumar D, Najmi A, Zoghebi K, Khalid A, Mohan S. A paradigm shift in the detection of bloodborne pathogens: conventional approaches to recent detection techniques. EXCLI JOURNAL 2024; 23:1245-1275. [PMID: 39574968 PMCID: PMC11579516 DOI: 10.17179/excli2024-7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 11/24/2024]
Abstract
Bloodborne pathogens (BBPs) pose formidable challenges in the realm of infectious diseases, representing significant risks to both human and animal health worldwide. The review paper provides a thorough examination of bloodborne pathogens, highlighting the serious worldwide threat they pose and the effects they have on animal and human health. It addresses the potential dangers of exposure that healthcare workers confront, which have affected 3 million people annually, and investigates the many pathways by which these viruses can spread. The limitations of traditional detection techniques like PCR and ELISA have been criticized, which has led to the investigation of new detection methods driven by advances in sensor technology. The objective is to increase the amount of knowledge that is available regarding bloodborne infections as well as effective strategies for their management and detection. This review provides a thorough overview of common bloodborne infections, including their patterns of transmission, and detection techniques.
Collapse
Affiliation(s)
- Sonali Khanal
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manjusha Pillai
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deblina Biswas
- Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava,70800, Ostrava-Poruba, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, P. O. Box 114, Jazan, 82511, Saudi Arabia
| | - Syam Mohan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Tan H, Wang Z, Fu R, Zhang X, Su Z. Nanomaterials revolutionize biosensing: 0D-3D designs for ultrasensitive detection of microorganisms and viruses. J Mater Chem B 2024; 12:7760-7786. [PMID: 39036967 DOI: 10.1039/d4tb01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Various diseases caused by harmful microorganisms and viruses have caused serious harm and huge economic losses to society. Thus, rapid detection of harmful microorganisms and viruses is necessary for disease prevention and treatment. Nanomaterials have unique properties that other materials do not possess, such as a small size effect and quantum size effect. Introducing nanomaterials into biosensors improves the performance of biosensors for faster and more accurate detection of microorganisms and viruses. This review aims to introduce the different kinds of biosensors and the latest advances in the application of nanomaterials in biosensors. In particular, this review focuses on describing the physicochemical properties of zero-, one-, two-, and three-dimensional nanostructures as well as nanoenzymes. Finally, this review discusses the applications of nanobiosensors in the detection of microorganisms and viruses and the future directions of nanobiosensors.
Collapse
Affiliation(s)
- Haokun Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - ZhiChao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Rao Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
4
|
Zhang J, Yuan S, Beng S, Luo W, Wang X, Wang L, Peng C. Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres. Curr Protein Pept Sci 2024; 25:286-306. [PMID: 38178676 DOI: 10.2174/0113892037277894231208065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujuan Beng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
5
|
Khoshfetrat SM, Fasihi K, Moradnia F, Kamil Zaidan H, Sanchooli E. A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe 2O 4@UiO-66 nanozyme. Anal Chim Acta 2023; 1252:341073. [PMID: 36935160 DOI: 10.1016/j.aca.2023.341073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Finding the DNA of the human immune deficiency virus (HIV) with simple and sensitive detection is the main challenge in early diagnosis of AIDS. Herein, two-point separation strategies based on the colorimetric and fluorescence are introduced. The naked-eye qualitative and semiquantitative colorimetric, and also accuracy fluorescence quantification of HIV-1 DNA were applied using label-free NiFe2O4@UiO-66 nanozyme with both functions of peroxidase-mimetic like and emitting fluorescence. The DNA probe-conjugated nanozyme is employed to hybridize a sequence of HIV-1. NiFe2O4@UiO-66 nanozymes catalyze the decomposition of H2O2 to •OH which can produce a remarkable fluorescent product 2-hydroxyterephthalic acid (TAOH) by the oxidation of the bridging ligand of weakly fluorescent terephthalic acid (TA). The accessibility of H2O2 toward confined-NiFe2O4 MNPs was reduced by increasing the HIV-1 target DNA concentration, resulting in the fluorescence intensity of TAOH being decreased. Meanwhile, remaining the unreacted H2O2 was transferred an acidic colorimetric solution containing FeSO4 and gold nanorods (AuNRs). Increasing the amount of H2O2 available for longitudinal etching of AuNRs due to •OH-generating Fe+2-catalyzed H2O2 is reponsible for different colors from brownish to colorless depending on the HIV-1 target DNA concentration. The fluorescence intensity and obtained colors have offered the sensitive biosensing methods with a linear range from 0.05 to 300 and 1-200 pM, respectively with a detection limit as low as 1 fM. Our study revealed that the applied sensing assay provides a cost-effective and straightforward qualitative, semiquantitative, and sensitive quantitation visible monitoring without the necessity of high-end instruments for HIV-1 detection in a human blood plasma/serum samples.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran.
| | - Kamran Fasihi
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran
| | - Farzaneh Moradnia
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Esmael Sanchooli
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| |
Collapse
|
6
|
Sobhanie E, Salehnia F, Xu G, Hamidipanah Y, Arshian S, Firoozbakhtian A, Hosseini M, Ganjali MR, Hanif S. Recent trends and advancements in electrochemiluminescence biosensors for human virus detection. Trends Analyt Chem 2022; 157:116727. [PMID: 35815064 PMCID: PMC9254503 DOI: 10.1016/j.trac.2022.116727] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
Researchers are constantly looking to find new techniques of virus detection that are sensitive, cost-effective, and accurate. Additionally, they can be used as a point-of-care (POC) tool due to the fact that the populace is growing at a quick tempo, and epidemics are materializing greater often than ever. Electrochemiluminescence-based (ECL) biosensors for the detection of viruses have become one of the most quickly developing sensors in this field. Thus, we here focus on recent trends and developments of these sensors with regard to virus detection. Also, quantitative analysis of various viruses (e.g., Influenza virus, SARS-CoV-2, HIV, HPV, Hepatitis virus, and Zika virus) with a specific interest in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was introduced from the perspective of the biomarker and the biological receptor immobilized on the ECL-based sensors, such as nucleic acids-based, immunosensors, and other affinity ECL biosensors.
Collapse
Affiliation(s)
- Ebtesam Sobhanie
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Foad Salehnia
- Departament d'Enginyeria Electrònica, Escola Tècnica Superior d'Enginyeria, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007, Tarragona, Spain
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yalda Hamidipanah
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Shayesteh Arshian
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Islamabad, Pakistan
| |
Collapse
|
7
|
Electrochemical sensor for the simultaneous detection of CA72-4 and CA19-9 tumor markers using dual recognition via glycosyl imprinting and lectin-specific binding for accurate diagnosis of gastric cancer. Biosens Bioelectron 2022; 216:114672. [DOI: 10.1016/j.bios.2022.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 11/22/2022]
|
8
|
Chiarello M, Anfossi L, Cavalera S, Di Nardo F, Serra T, Sordello F, Baggiani C. Rabbit IgG-imprinted nanoMIPs by solid phase synthesis: the effect of cross-linkers on their affinity and selectivity. J Mater Chem B 2022; 10:6724-6731. [PMID: 35343553 DOI: 10.1039/d2tb00245k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid phase synthesis (SPS) of molecularly imprinted nanopolymers (nanoMIPs) represents an innovative method to prepare nanomaterials with tailor-made molecular recognition properties towards peptides and proteins. The synthesis of nanoMIPs by SPS usually involves a pre-polymerization formulation, where the cross-linker is invariably N,N'-methylen-bis-acrylamide (BIS). To date, the effect of cross-linkers on the binding properties of nanoMIPs prepared using cross-linkers other than BIS has never been reported. In this work, in order to investigate the effect of different cross-linkers in protein-imprinted nanoMIPs prepared by SPS, alongside BIS we considered other similar cross-linkers: N,N'-ethylene dimethacrylamide (EDAM), N,O-bis-methacryloylethanolamine (NOBE), ethylene glycol dimethacrilate (EDMA) and glycerol dimethacrylate (GDMA), replacing BIS with them in pre-polymerization mixtures. The synthetized nanoMIPs were homogeneous, with a polydispersity index of 0.24-0.30 and a mean diameter of 129-169 nm in water. The binding properties of the nanoMIPs were measured via equilibrium partition experiments with the template, rabbit IgG (RIgG), and the selectivity was evaluated with respect to bovine IgG (BIgG), bovine serum albumin (BSA) and hen egg lysozyme (LZM). The experimental results show that all the cross-linkers, with the exception of EDMA, endowed nanoMIPs with high binding affinities for the template (BIS: 16.0 × 106 mol-1 L, EDAM: 8.8 × 106 mol-1 L, NOBE: 15.8 × 106 mol-1 L, and GDMA: 12.8 × 106 mol-1 L), medium to high imprinting factors (BIS: 12.3, EDAM: 5.5, NOBE: 7.2, and GDMA: 11.6) and good selectivity towards other proteins but markedly dependent on the structure of the cross-linker, confirming the importance of the latter in the SPS of imprinted nanopolymers.
Collapse
Affiliation(s)
- Matteo Chiarello
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Laura Anfossi
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Simone Cavalera
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Fabio Di Nardo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Thea Serra
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Fabrizio Sordello
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| | - Claudio Baggiani
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 - Torino, Italy.
| |
Collapse
|
9
|
Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. Trends Analyt Chem 2022; 155:116686. [PMID: 35611316 PMCID: PMC9119280 DOI: 10.1016/j.trac.2022.116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Viral infections are responsible for the deaths of millions of people throughout the world. Since outbreak of highly contagious and mutant viruses such as contemporary sars-cov-2 pandemic, has challenged the conventional diagnostic methods, the entity of a thoroughly sensitive, specific, rapid and inexpensive detecting technique with minimum level of false-positivity or -negativity, is desperately needed more than any time in the past decades. Biosensors as minimized devices could detect viruses in simple formats. So far, various nucleic acid, immune- and protein-based biosensors were designed and tested for recognizing the genome, antigen, or protein level of viruses, respectively; however, nucleic acid-based sensing techniques, which is the foundation of constructing genosensors, are preferred not only because of their ultra-sensitivity and applicability in the early stages of infections but also for their ability to differentiate various strains of the same virus. To date, the review articles related to genosensors are just confined to particular pathogenic diseases; In this regard, the present review covers comprehensive information of the research progress of the electrochemical, optical, and surface plasmon resonance (SPR) genosensors that applied for human viruses' diseases detection and also provides a well description of viruses' clinical importance, the conventional diagnosis approaches of viruses and their disadvantages. This review would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Teixeira SPB, Reis RL, Peppas NA, Gomes ME, Domingues RMA. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. SCIENCE ADVANCES 2021; 7:eabi9884. [PMID: 34714673 PMCID: PMC8555893 DOI: 10.1126/sciadv.abi9884] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/07/2021] [Indexed: 05/27/2023]
Abstract
Molecular imprinting (MI) has been explored as an increasingly viable tool for molecular recognition in various fields. However, imprinting of biologically relevant molecules like proteins is severely hampered by several problems. Inspired by natural antibodies, the use of epitopes as imprinting templates has been explored to circumvent those limitations, offering lower costs and greater versatility. Here, we review the latest innovations in this technology, as well as different applications where MI polymers (MIPs) have been used to target biomolecules of interest. We discuss the several steps in MI, from the choice of epitope and functional monomers to the different production methods and possible applications. We also critically explore how MIP performance can be assessed by various parameters. Last, we present perspectives on future breakthroughs and advances, offering insights into how MI techniques can be expanded to new fields such as tissue engineering.
Collapse
Affiliation(s)
- Simão P. B. Teixeira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712-1801, USA
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
11
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
12
|
Marfà J, Pupin RR, Sotomayor M, Pividori MI. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal Bioanal Chem 2021; 413:6141-6157. [PMID: 34164705 DOI: 10.1007/s00216-021-03461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Magnetic particles, as well as molecularly imprinted polymers, have revolutionized separation and bioanalytical methodologies in the 1980s due to their wide range of applications. Today, biologically modified magnetic particles are used in many scientific and technological applications and are integrated in more than 50,000 diagnostic instruments for the detection of a huge range of analytes. However, the main drawback of this material is their stability and high cost. In this work, we review recent advances in the synthesis and characterization of hybrid molecularly imprinted polymers with magnetic properties, as a cheaper and robust alternative for the well-known biologically modified magnetic particles. The main advantages of these materials are, besides the magnetic properties, the possibility to be stored at room temperature without any loss in the activity. Among all the applications, this work reviews the direct detection of electroactive analytes based on the preconcentration by using magnetic-MIP integrated on magneto-actuated electrodes, including food safety, environmental monitoring, and clinical and pharmaceutical analysis. The main features of these electrochemical sensors, including their analytical performance, are summarized. This simple and rapid method will open the way to incorporate this material in different magneto-actuated devices with no need for extensive sample pretreatment and sophisticated instruments.
Collapse
Affiliation(s)
- J Marfà
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R R Pupin
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - Mpt Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - M I Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
13
|
Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters. Anal Bioanal Chem 2021; 413:4049-4061. [PMID: 34057557 DOI: 10.1007/s00216-021-03362-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
In the clinical diagnosis of tumors, a single-marker immunoassay may lead to false results. Thus there is a need for an effective and valid method for the simultaneous measurement of multiple tumor markers. In this work, an efficient fluorescence immunosensor for the simultaneous measurement of CA125 and CA15-3 tumor markers was fabricated by utilizing the high selectivity of magnetic molecularly imprinted polymers (MMIPs) and the high sensitivity of a fluorescence (FL) method. Ni nanoclusters (Ni NCs) and noble Cd nanoclusters (Cd NCs) were introduced as efficient and economic emitters, and magnetic graphene oxide (GO-Fe3O4) was applied as a support material for surface molecularly imprinted polymers. Under the most favorable experimental conditions, the fluorescence intensity of the Cd NCs and Ni NCs gradually increased with increasing concentration of CA125 and CA15-3 antigens at a range of 0.0005-40 U mL-1, respectively, with a limit of detection (LOD) of 50 μU mL-1. The developed method had excellent properties including a broad linear range, good reproducibility, and simple operation for the clinical diagnosis of CA 125 and CA 15-3 tumor markers. This molecularly imprinted fluorescence sensor has the potential to be an effective clinical tool for the timely screening of breast cancer in human serum samples and OVCAR-3 and MCF-7 cell lines, and can be applied in clinical diagnostics.
Collapse
|
14
|
Wang X, Chen G, Zhang P, Jia Q. Advances in epitope molecularly imprinted polymers for protein detection: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1660-1671. [PMID: 33861232 DOI: 10.1039/d1ay00067e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epitope molecularly imprinted polymers (EMIPs) are novel imprinted materials using short characteristic peptides as templates rather than entire proteins. To be specific, the amino acid sequence of the template peptide is the same as an exposed N- or C-terminus of a target protein, or its amino acid composition and sequence replicate a similar conformational arrangement as the same amino acid residues on the surface of the target protein. EMIPs have a good application prospect in protein research. Herein, we focus on classification of epitope imprinting techniques, methods of epitope immobilization on matrix materials including boronate affinity immobilization, covalent bonding immobilization, physical adsorption immobilization and metal ion chelation immobilization, and application of EMIPs in peptides, proteins, target imaging and target therapy fields. Finally, the main problems and future development are summarized.
Collapse
Affiliation(s)
- Xindi Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | |
Collapse
|
15
|
Jamalipour Soufi G, Iravani S, Varma RS. Molecularly imprinted polymers for the detection of viruses: challenges and opportunities. Analyst 2021; 146:3087-3100. [PMID: 33999044 DOI: 10.1039/d1an00149c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecularly imprinted polymers (MIPs) have numerous applications in the sensing field, the detection/recognition of virus, the structure determination of proteins, drug delivery, artificial/biomimetic antibodies, drug discovery, and cell culturing. There are lots of conventional methods routinely deployed for the analysis/detection of viral infections and pathogenic viruses, namely enzyme immunoassays, immunofluorescence microscopy, polymerase chain reaction (PCR) and virus isolation. However, they typically suffer from higher costs, low selectivity/specificity, false negative/positive results, time consuming procedures, and inherent labor intensiveness. MIPs offer promising potential for viral recognition/detection with high target selectivity, sensitivity, robustness, reusability, and reproducible fabrication. In terms of virus detection, selectivity and sensitivity are critical parameters determined by the template; additionally, the analytical detection and evaluation of viruses must have considerably low detection limits. The virus-imprinted polymer-based innovative strategies with enough specificity, convenience, validity, and reusability features for the detection/recognition of a wide variety of viruses, can provide attractive capabilities for reliable screening with minimal false negative/positive results that is so crucial for the prevention and control of epidemic and pandemic viral infections. However, in the process of imprinting viruses, critical factors such as size of the target, solubility, fragility, and compositional complexity should be analytically considered and systematically evaluated. In this review, recent advancements regarding the applications of MIPs and pertinent virus imprinting techniques for the detection of viruses, as well as their current significant challenges and future perspectives, are deliberated.
Collapse
|
16
|
Cheubong C, Takano E, Kitayama Y, Sunayama H, Minamoto K, Takeuchi R, Furutani S, Takeuchi T. Molecularly imprinted polymer nanogel-based fluorescence sensing of pork contamination in halal meat extracts. Biosens Bioelectron 2021; 172:112775. [DOI: 10.1016/j.bios.2020.112775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
|
17
|
Wang Y, Hu Y, He Q, Yan J, Xiong H, Wen N, Cai S, Peng D, Liu Y, Liu Z. Metal-organic frameworks for virus detection. Biosens Bioelectron 2020; 169:112604. [PMID: 32980805 PMCID: PMC7489328 DOI: 10.1016/j.bios.2020.112604] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Virus severely endangers human life and health, and the detection of viruses is essential for the prevention and treatment of associated diseases. Metal-organic framework (MOF), a novel hybrid porous material which is bridged by the metal clusters and organic linkers, has become a promising biosensor platform for virus detection due to its outstanding properties including high surface area, adjustable pore size, easy modification, etc. However, the MOF-based sensing platforms for virus detection are rarely summarized. This review systematically divided the detection platforms into nucleic acid and immunological (antigen and antibody) detection, and the underlying sensing mechanisms were interpreted. The nucleic acid sensing was discussed based on the properties of MOF (such as metal ion, functional group, geometry structure, size, porosity, stability, etc.), revealing the relationship between the sensing performance and properties of MOF. Moreover, antibodies sensing based on the fluorescence detection and antigens sensing based on molecular imprinting or electrochemical immunoassay were highlighted. Furthermore, the remaining challenges and future development of MOF for virus detection were further discussed and proposed. This review will provide valuable references for the construction of sophisticated sensing platform for the detection of viruses, especially the 2019 coronavirus.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yaqin Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Nachuan Wen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
18
|
Martínez-Periñán E, Gutiérrez-Sánchez C, García-Mendiola T, Lorenzo E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. BIOSENSORS-BASEL 2020; 10:bios10090118. [PMID: 32916838 PMCID: PMC7559215 DOI: 10.3390/bios10090118] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the benefits of the high selectivity of biological recognition elements and the high sensitivity of ECL analysis methods. Hence, it is a powerful analytical device for sensitive detection of different analytes of interest in medical prognosis and diagnosis, food control and environment. These wide range of applications are increased by the introduction of screen-printed electrodes (SPEs). Disposable SPE-based biosensors cover the need to perform in-situ measurements with portable devices quickly and accurately. In this review, we sum up the latest biosensing applications and current progress on ECL bioanalysis combined with disposable SPEs in the field of bio affinity ECL sensors including immunosensors, DNA analysis and catalytic ECL sensors. Furthermore, the integration of nanomaterials with particular physical and chemical properties in the ECL biosensing systems has improved tremendously their sensitivity and overall performance, being one of the most appropriates research fields for the development of highly sensitive ECL biosensor devices.
Collapse
Affiliation(s)
- Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-4488
| |
Collapse
|
19
|
Cheubong C, Yoshida A, Mizukawa Y, Hayakawa N, Takai M, Morishita T, Kitayama Y, Sunayama H, Takeuchi T. Molecularly Imprinted Nanogels Capable of Porcine Serum Albumin Detection in Raw Meat Extract for Halal Food Control. Anal Chem 2020; 92:6401-6407. [PMID: 32282196 DOI: 10.1021/acs.analchem.9b05499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate, simple, and valuable analytical methods for detection of food contamination are rapidly expanding to evaluate the validity of food product quality because of ethnic considerations and food safety. Herein molecularly imprinted nanogels (MIP-NGs), capable of porcine serum albumin (PSA) recognition, were prepared as artificial molecular recognition elements. The MIP-NGs were immobilized on a quartz crystal microbalance (QCM) sensor for detection of pork contamination in real beef extract samples. The MIP-NGs-based QCM sensor showed high affinity and excellent selectivity toward PSA compared to reference serum albumins from five different animals. The high PSA specificity of MIP-NGs led to the detection of pork contamination with a detection limit of 1% (v/v) in real beef extract samples. We believe the artificial molecular recognition materials prepared by molecular imprinting are a promising candidate for halal food control.
Collapse
Affiliation(s)
- Chehasan Cheubong
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | - Aoi Yoshida
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuki Mizukawa
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Natsuki Hayakawa
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Minako Takai
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takahiro Morishita
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yukiya Kitayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Medical Device Fabrication Engineering Center, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Medical Device Fabrication Engineering Center, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
20
|
Yang Y, Yan W, Guo C, Zhang J, Yu L, Zhang G, Wang X, Fang G, Sun D. Magnetic molecularly imprinted electrochemical sensors: A review. Anal Chim Acta 2020; 1106:1-21. [PMID: 32145837 DOI: 10.1016/j.aca.2020.01.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
The preparation and practical applications of molecularly imprinted electrochemical sensors (MIECSs) remain challenging due to issues involving electrode surface renewal modes, low adsorption capacities, and sample preparation speeds. To solve these issues, magnetic molecularly imprinted electrochemical sensors (MMIECSs) have been extensively explored by various groups. Recently, MMIECSs fabricated based on diverse strategies have yielded insight into the development of MIECSs, and they have provided effective paths for sample preparation, immobilization and renewal of molecularly imprinted polymers (MIPs) on the electrode surface, leading to promising performances of MIECSs. This review comprehensively describes the research advances for various types of MMIECSs and their applications in the fields of food safety, environmental monitoring, and clinical and pharmaceutical analysis. Based on our understanding of MMIECSs, the literature in this field is thoroughly explored and classified in this review. The challenges existing in this research area and some potential strategies for the rational design of high-performance MMIECS are also outlined.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Wenyan Yan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci, 030619, China.
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
21
|
Luo L, Zhang F, Chen C, Cai C. Molecular imprinting resonance light scattering nanoprobes based on pH-responsive metal-organic framework for determination of hepatitis A virus. Mikrochim Acta 2020; 187:140. [PMID: 31955258 DOI: 10.1007/s00604-020-4122-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/12/2020] [Indexed: 12/19/2022]
Abstract
Molecularly imprinted polymer (HM@MIP) nanoprobes were designed form the pH-responsive polymer (dimethylaminoethyl methacrylate (DMA)) and MIL-101. This probe was applied to the selective determination of hepatitis A virus (HAV) through Resonance light scattering (RLS) technique. DMA adjusts pH of the system to facilitate the capture and release of virus by HM@MIPs as anticipated. And it results in the enhancement or weaken of RLS intensity. According to RLS intensity at 470 nm, a linear concentration of 0.02-2.0 nmol·L-1 and a limit of detection of 0.1 pmol·L-1 were obtained within 20 min. The excellent recoveries ranges from 88% to 107%, and it indicates the prominent ability of the HM@MIPs to determination HAV in human serum and their potential ability to determination virus in real applications. Graphical abstractPrinciple of preparation of the HM@MIPs and detection of virus.
Collapse
Affiliation(s)
- Lianghui Luo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Zhang
- School of chemistry and materials science, Hunan Agricultural University, Changsha, 410128, China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
22
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Wang D, Zhou J, Guo L, Qiu B, Lin Z. A surface-enhanced electrochemiluminescence sensor based on Au-SiO2 core–shell nanocomposites doped with Ru(bpy)32+ for the ultrasensitive detection of prostate-specific antigen in human serum. Analyst 2020; 145:132-138. [DOI: 10.1039/c9an01935a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study reports a surface-enhanced electrochemiluminescence (SEECL) sensor for the ultrasensitive detection of prostate-specific antigen (PSA) in human serum.
Collapse
Affiliation(s)
- Daifang Wang
- Fujian Vocational College of Bioengineering
- Fuzhou
- China
| | - Jin Zhou
- Fujian Vocational College of Bioengineering
- Fuzhou
- China
| | - Longhua Guo
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
24
|
Zhang H. Molecularly Imprinted Nanoparticles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806328. [PMID: 31090976 DOI: 10.1002/adma.201806328] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy removal of templates, rapid binding kinetics, good dispersion and handling ability, undemanding functionalization and surface modification, and their high compatibility with various nanodevices and in vivo biomedical applications. Recent years have witnessed significant progress made in the preparation of advanced functional nanoMIPs, which has eventually led to the rapid expansion of the MIP applications from the traditional separation and catalysis fields to the burgeoning biomedical areas. Here, a comprehensive overview of key recent advances made in the preparation of nanoMIPs and their important biomedical applications (including immunoassays, drug delivery, bioimaging, and biomimetic nanomedicine) is presented. The pros and cons of each synthetic strategy for nanoMIPs and their biomedical applications are discussed and the present challenges and future perspectives of the biomedical applications of nanoMIPs are also highlighted.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
25
|
Xing R, Wen Y, Dong Y, Wang Y, Zhang Q, Liu Z. Dual Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for the Specific and Sensitive Detection of Protein Biomarkers. Anal Chem 2019; 91:9993-10000. [DOI: 10.1021/acs.analchem.9b01826] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yueru Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Silva CF, Borges KB, Nascimento CS. Computational study on acetamiprid-molecular imprinted polymer. J Mol Model 2019; 25:104. [PMID: 30923961 DOI: 10.1007/s00894-019-3990-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
Abstract
In the present work we investigate, through DFT calculations, the mechanism of formation of a molecular imprinted polymer for the acetamiprid (ACT) insecticide, using four different functional monomers, four molar ratios attempts, and considering eight distinct solvents. As the main result we obtain the following theoretical protocol for the MIP synthesis: methacrylic acid (MMA) as functional monomer, 1:4 M ratio, i.e., one ACT to four MMAs, and chloroform as solvent. This DFT calculated condition shows more favorable energies for the formed complexes. We consider this work quite relevant since it can be used by experimentalists in order to reach an efficient MIP synthesis for ACT, avoiding wasted time and laboratory resources. Graphical abstract Best MIP Synthesis Protocol for Acetamiprid.
Collapse
Affiliation(s)
- Camilla F Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais, 36301-160, Brazil
| | - Keyller B Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais, 36301-160, Brazil
| | - Clebio S Nascimento
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais, 36301-160, Brazil.
| |
Collapse
|
28
|
Pereira TF, da Silva AT, Borges KB, Nascimento CS. Carvedilol-Imprinted Polymer: Rational design and selectivity studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Choi JR, Yong KW, Choi JY, Cowie AC. Progress in Molecularly Imprinted Polymers for Biomedical Applications. Comb Chem High Throughput Screen 2019; 22:78-88. [PMID: 30914017 DOI: 10.2174/1386207322666190325115526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Molecularly Imprinted Polymers (MIPs), a type of biomimetic materials have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favorable specificity and selectivity for target analytes, and long shelf life. These materials are able to mimic natural recognition entities, including biological receptors and antibodies, providing a versatile platform to achieve the desirable functionality for various biomedical applications. OBJECTIVE In this review article, we introduce the most recent development of MIPs to date. We first highlight the advantages of using MIPs for a broad range of biomedical applications. We then review their various methods of synthesis along with their latest progress in biomedical applications, including biosensing, drug delivery, cell imaging and drug discovery. Lastly, the existing challenges and future perspectives of MIPs for biomedical applications are briefly discussed. CONCLUSION We envision that MIPs may be used as potential materials for diverse biomedical applications in the near future.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kar Wey Yong
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alistair C Cowie
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
30
|
Boysen RI. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J Sep Sci 2018; 42:51-71. [PMID: 30411488 DOI: 10.1002/jssc.201800945] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
This review documents recent advances in the design, synthesis, characterization, and application of molecularly imprinted polymers in the form of monoliths and particles/beads for the use in the separation and analysis of proteins with solid-phase extraction or liquid chromatography. The merits of three-dimensional molecular imprinting, whereby the molecular template is randomly embedded in the polymer, and two-dimensional imprinting, in which the template is confined to the surface, are described. Target protein binding can be achieved by either using the entire protein as a template or by using a protein substructure as template, that is, a peptide, as in the "epitope" approach. The intended approach and strategy then determine the choice of polymerization method. A synopsis has been provided on methods used for the physical, chemical, and functional characterizations and associated performance evaluations of molecularly imprinted and nonimprinted control polymers, involving a diverse range of analytical techniques commonly used for low and high molecular mass analytes. Examples of recent applications demonstrate that, due to the versatility of imprinting methods, molecularly imprinted monoliths or particles/beads can be adapted to protein extraction/depletion and separation procedures relevant to, for example, protein biomarker detection and quantification in biomedical diagnostics and targeted proteomics.
Collapse
|
31
|
Silva CF, Borges KB, do Nascimento CS. Rational design of a molecularly imprinted polymer for dinotefuran: theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent. Analyst 2018; 143:141-149. [PMID: 29120471 DOI: 10.1039/c7an01324h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), testing distinct functional monomers (FM) in various solvents through density functional theory calculations. The results revealed that the best conditions for MIP synthesis were established with methacrylic acid (MAA) as FM in a 1 : 4 stoichiometry and with chloroform as the solvent. This protocol showed the most favourable stabilization energies for the pre-polymerization complexes. Furthermore, the formation of the FM/template complex is enthalpy driven and the occurrence of hydrogen bonds between the DNF and MAA plays a major role in the complex stability. To confirm the theoretical results, MIP was experimentally synthesized considering the best conditions found at the molecular level and characterized by scanning electron microscopy and thermogravimetric analysis. After that, the synthesized material was efficiently employed in microextraction by packed sorbent combined with high-performance liquid chromatography in a preliminary study of the recovery of DNF from water and artificial saliva samples.
Collapse
Affiliation(s)
- Camilla Fonseca Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil.
| | | | | |
Collapse
|
32
|
Li J, Yang B, Pan H, Xu G. Molecularly imprinted sensor based on Russian Matryoshka structured molecules for enhanced specific identification and double amplification in ultra-trace Tb 3+ determination. Biosens Bioelectron 2018; 109:224-229. [PMID: 29567567 DOI: 10.1016/j.bios.2018.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 02/09/2023]
Abstract
The selective and sensitive detection of rare earth elements is thought to be difficult because the concentration of those elements in the sample is commonly at a low level and they normally have severe mutual interference which is caused by homologous chemical properties. In this study, a novel molecularly imprinted polymer (MIP) sensor was fabricated for highly sensitive and selective determination of ultra-trace Tb3+. The Tb3+-ethylenediaminetetraacetic acid complex (Tb-EDTA) as the template molecule was incorporated into mono-6-mercapto-β-cyclodextrin (mono-6-SH-β-CD) to form a Russian Matryoshka (RM)-structured molecule (CD/Tb-EDTA). Titanium isopropoxide was utilized in vapor sol-gel polymerization to construct MIP membrane. Moreover, the selectivity of the RM MIP sensor was remarkably enhanced by the "triple-selectivity" recognition of EDTA-to-Tb3+, β-CD-to-(Tb-EDTA), and 3D cavity-to-(CD/Tb-EDTA), while the sensitivity of the MIP sensor was significantly improved by ECL signal enhancement based on double amplification, in other words, the electrochemiluminescence resonance energy transfer (ECL-RET) between the ECL donor of CD/Tb-EDTA and the ECL acceptor of Ru(bpy)32+, and the ECL enhancement by the co-reactant of CD/Tb-EDTA on Ru(bpy)3Cl2. When the imprinted cavities were occupied by Tb-EDTA during rebinding, the host-guest inclusion structured complex was formed and the ECL intensities produced by the Ru(bpy)3Cl2 ECL system increased with increasing concentration of Tb-EDTA. The proposed sensor was used for quantitative analysis of Tb3+ with concentrations ranging from 8.00 × 10-13 mol/L to 4.00 × 10-9 mol/L and successfully applied to detect Tb3+ in seawater samples. The detection limit of the sensor was found to be 3.90 × 10-13 mol/L (DL = 3δb/K), which is lower than previously reported values. Thus, the fabricated sensor is feasible for practical applications.
Collapse
Affiliation(s)
- Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Bin Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
33
|
Zhang W, Xiong H, Chen M, Zhang X, Wang S. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO 2 for ultrasensitive detection of fumonisin B 1. Biosens Bioelectron 2017; 96:55-61. [DOI: 10.1016/j.bios.2017.04.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/10/2023]
|
34
|
Applications of Magnetic Molecularly Imprinted Polymers (MMIPs) in the Separation and Purification Fields. Chromatographia 2017. [DOI: 10.1007/s10337-017-3407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Magnetic microspheres-based cytometric bead array assay for highly sensitive detection of ochratoxin A. Biosens Bioelectron 2017; 94:420-428. [DOI: 10.1016/j.bios.2017.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/12/2017] [Indexed: 01/23/2023]
|
36
|
Molecularly imprinted polymer for human viral pathogen detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1341-1348. [DOI: 10.1016/j.msec.2017.03.209] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
|
37
|
Benoit L, Choi JP. Electrogenerated Chemiluminescence of Semiconductor Nanoparticles and Their Applications in Biosensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lora Benoit
- Department of Chemistry; California State University, Fresno; 2555 San Ramon Avenue M/S SB70 Fresno CA 93740 USA
| | - Jai-Pil Choi
- Department of Chemistry; California State University, Fresno; 2555 San Ramon Avenue M/S SB70 Fresno CA 93740 USA
| |
Collapse
|
38
|
Selective solid phase extraction of chloroacetamide herbicides from environmental water samples by amphiphilic magnetic molecularly imprinted polymers. Talanta 2017; 170:111-118. [PMID: 28501146 DOI: 10.1016/j.talanta.2017.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 02/04/2023]
Abstract
In this study, a novel amphiphilic magnetic molecularly imprinted polymers (MMIPs) have been prepared by using Fe3O4 microspheres as the magnetic core, 4-vinyl pyridine (4-VP) and alkenyl glycosides glucose (AGG) as functional co-monomers. Fe3O4 microspheres were directly encapsulated by the polymer without any surface modification in the distillation-precipitation polymerization. The morphology and composition of MMIPs were characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Binding property and magnetic separation ability were systematically investigated through the equilibrium binding experiments. The feasibility of magnetic molecular imprinted solid phase extraction (MMISPE) was investigated for the selective enrichment of chloroacetamide herbicides from environmental water samples. The developed MMISPE-HPLC method exhibited good linearity (0.1-200μgL-1), low limit of detection (0.03-0.06μgL-1), and good precision (RSD<7%) under the optimized conditions. The introduced MMISPE-HPLC method was successfully used to analyze chloroacetamide herbicides in environmental water samples. Spiked chloroacetamide herbicides recoveries in three water samples ranged from 82.1% to 102.9%. These results indicated that amphiphilic MMIPs were the promising sorbents for the selective enrichment of chloroacetamide herbicides at trace levels from real environmental water samples.
Collapse
|
39
|
Bio-inspired virus imprinted polymer for prevention of viral infections. Acta Biomater 2017; 51:175-183. [PMID: 28069508 DOI: 10.1016/j.actbio.2017.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 11/20/2022]
Abstract
A novel virus-imprinted polymer for prevention of viral infection was prepared by anchoring molecularly imprinted polymer (MIP) on the surface of poly-dopamine (PDA)-coated silica particles. The imprinting reaction was carried out via self-polymerization of dopamine in the presence of a virus template. Plaque forming assay indicated that the MIP exhibited selective anti-viral infection properties for the template virus in complex media containing different interfering substances, and even other types of viruses. Remarkable dose-dependent and time-dependent inhibition of virus infection was observed due to the MIP's selective binding to the template virus. When the MIP was incubated with the virus and host cells together, rapid and selective adsorption of template viruses by the MIP prevented the viruses to infect the host cells in a period of 12h. The MIP was biocompatible and non-toxic, and had excellent stability and reusability. Furthermore, the MIPs prepared using different viruses as templates showed similar anti-viral infection properties. The MIP synthesized using dopamine as monomer and crude virus as template provided an attractive possibility for clinical applications in the field of antiviral therapy. STATEMENT OF SIGNIFICANCE This is the first report to prepare artificial antibody (molecularly imprinted polymer, MIP) that can selectively prevent virus infection using dopamine self-polymerization system. Only MIP anchoring on the surface of poly-dopamine coated silica particles and polymerized using ammonium persulfate as radical initiator showed dose-dependent and time-dependent inhibition of template virus infection in complex media containing interferences and even other viruses. Viruses bond to MIP lost infectious capability. When incubated with virus and host cells, MIP rebond viruses rapidly and selectively to prevent viruses infecting host cells for 12h. The achieved MIPs were biocompatibility, non-toxicity with excellent stability and reusability, and can be used to different viruses. The bio-mimic MIPs provided an attractive prospect for clinical applications in antiviral therapy.
Collapse
|
40
|
Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017; 116:95-111. [PMID: 27876681 PMCID: PMC5374010 DOI: 10.1016/j.ymeth.2016.11.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay.
Collapse
Affiliation(s)
- Min Shen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| | - James Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 060
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| | - Chandra K Dixit
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|
41
|
Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosens Bioelectron 2017; 89:810-821. [DOI: 10.1016/j.bios.2016.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
|
42
|
Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci 2016; 40:314-335. [PMID: 27619154 DOI: 10.1002/jssc.201600849] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 07/31/2016] [Accepted: 08/29/2016] [Indexed: 01/25/2023]
Abstract
This review describes recent advances associated with the development of surface imprinting methods for the synthesis of polymeric membranes and thin films, which possess the capability to selectively and specifically recognize biomacromolecules, such as proteins and single- and double-stranded DNA, employing "epitope" or "whole molecule" approaches. Synthetic procedures to create different molecularly imprinted polymer membranes or thin films are discussed, including grafting/in situ polymerization, drop-, dip-, or spin-coating procedures, electropolymerization as well as micro-contact or stamp lithography imprinting methods. Highly sensitive techniques for surface characterization and analyte detection are described, encompassing luminescence and fluorescence spectroscopy, X-ray photoelectron spectroscopy, FTIR spectroscopy, surface-enhanced Raman spectroscopy, atomic force microscopy, quartz crystal microbalance analysis, cyclic voltammetry, and surface plasmon resonance. These developments are providing new avenues to produce bioelectronic sensors and new ways to explore through advanced separation science procedures complex phenomena associated with the origins of biorecognition in nature.
Collapse
Affiliation(s)
- Reinhard I Boysen
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia
| | - Lachlan J Schwarz
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia.,School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, Australia
| | - Dan V Nicolau
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia.,Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Canada
| | - Milton T W Hearn
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia
| |
Collapse
|
43
|
Zhang X, Li H, Kang J, Zhu X, Peng W, Zhou H, Zhong S, Wang Y. The synthesis of temperature-sensitive molecularly imprinted film on support beads and its application for bovine serum albumin separation. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Wankar S, Turner NW, Krupadam RJ. Polythiophene nanofilms for sensitive fluorescence detection of viruses in drinking water. Biosens Bioelectron 2016; 82:20-5. [PMID: 27031187 DOI: 10.1016/j.bios.2016.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
Molecular imprints of the tobacco necrosis virus (TNV) have been formed within polythiophene nanofilms with an approximate thickness of 200nm. These films have been electrochemically deposited onto conducting Au surfaces. Upon rebinding, the TNV-polythiophene complex changes the fluorescence intensity of the nanofilm. The fluorescence intensity at 410nm was observed to be proportional to the concentration of viruses in the range of 0.1-10ngL(-1) (0.15-15pg) with the lower calculated detection limit of 2.29ngL(-1) (3.4pg). The intensity of the fluorescence emission is not affected by the thickness of the polythiophene film and the nature of TNV specific binding sites. Kinetic data analyses showed that the nanofilm responds to TNV within 2min; and cross-selectivity studies with tobacco mosaic virus (TMV) showed an excellent specificity for the targeted TNV. These binding experiments demonstrate the potential of fluorescence emission for the specific, label free and rapid detection of viruses using nanofilm sensors. Taking into account the lower limit of detection, the fluorescence sensing reported here is reliable, simple to perform, rapid, cost-effective and offers a sensitive analytical method for virus detection in water resources.
Collapse
Affiliation(s)
- Shashwati Wankar
- Environmental Impact and Risk Assessment Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India
| | - Nicholas W Turner
- Faculty of Science, The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA, United Kingdom
| | - Reddithota J Krupadam
- Environmental Impact and Risk Assessment Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
45
|
Wang JX, Zhuo Y, Zhou Y, Wang HJ, Yuan R, Chai YQ. Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid-β Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12968-12975. [PMID: 27145690 DOI: 10.1021/acsami.6b00021] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, ceria doped ZnO nanomaterials with flower-structure (Ce:ZONFs) were prepared to construct a luminol-based electrochemiluminescence (ECL) immunosensor for amyloid-β protein (Aβ) detection. Herein, carboxyl groups (-COOH) covered Ce:ZONFs were synthesized by a green method with lysine as reductant. After that, Ce:ZONFs-based ECL nanocomposite was prepared by combining the luminophore of luminol and Ce:ZONFs via amidation and physical absorption. Luminol modified on Ce:ZONFs surface could generate a strong ECL signal under the assistance of reactive oxygen species (ROSs) (such as OH(•) and O2(•-)), which were produced by a catalytic reaction between Ce:ZONFs and H2O2. It was worth noticing that a quick Ce(4+) ↔ Ce(3+) reaction in this doped material could increase the rate of electron transfer to realize the signal amplification. Subsequently, the luminol functionalized Ce:ZONFs (Ce:ZONFs-Lum) were covered by secondary antibody (Ab2) and glucose oxidase (GOD), respectively, to construct a novel Ab2 bioconjugate (Ab2-GOD@Ce:ZONFs-Lum). The wire-structured silver-cysteine complex (AgCys NWs) with a large number of -COOH, which was synthesized by AgNO3 and l-cysteine, was used as substrate of the immunosensor to capture the primary antibody (Ab1). Under the optimal conditions, this proposed ECL immunosensor had exhibited high sensitivity for Aβ detection with a wide linear range from 80 fg/mL to 100 ng/mL and an ultralow detection limit of 52 fg/mL. Meanwhile, this biosensor had good specificity for Aβ, indicating that the provided strategy had a promising potential in the detection of Aβ.
Collapse
Affiliation(s)
- Jing-Xi Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ying Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Hai-Jun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| |
Collapse
|
46
|
Yang K, Li S, Liu J, Liu L, Zhang L, Zhang Y. Multiepitope Templates Imprinted Particles for the Simultaneous Capture of Various Target Proteins. Anal Chem 2016; 88:5621-5. [DOI: 10.1021/acs.analchem.6b01247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kaiguang Yang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Senwu Li
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxi Liu
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lukuan Liu
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihua Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yukui Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
47
|
Li S, Yang K, Deng N, Min Y, Liu L, Zhang L, Zhang Y. Thermoresponsive Epitope Surface-Imprinted Nanoparticles for Specific Capture and Release of Target Protein from Human Plasma. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5747-5751. [PMID: 26906290 DOI: 10.1021/acsami.5b11415] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Among various artificial antibodies, epitope imprinted polymer has been paid increasingly attention. To modulate the "adsorption and release" behavior by environment stimuli, N-isopropylacrylamide, was adopted to fabricate the thermoresponsive epitope imprinted sites. The prepared imprinted materials could adsorb 46.6 mg/g of target protein with the imprinting factor of 4.0. The template utilization efficiency could reach as high as 8.21%. More importantly, in the real sample, the materials could controllably capture the target protein from the human plasma at 45 °C and release it at 4 °C, which demonstrated the "on-demand" application potentials of such materials in the biomolecule recognition field.
Collapse
Affiliation(s)
- Senwu Li
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Nan Deng
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yi Min
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lukuan Liu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
48
|
Li S, Wu X, Zhang Q, Li P. Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1765-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|