1
|
Wang Q, Zhao ZA, Yao KY, Cheng YL, Wong DSH, Wong DWC, Cheung JCW. The Versatility of Biological Field-Effect Transistor-Based Biosensors (BioFETs) in Point-of-Care Diagnostics: Applications and Future Directions for Peritoneal Dialysis Monitoring. BIOSENSORS 2025; 15:193. [PMID: 40136991 PMCID: PMC11940136 DOI: 10.3390/bios15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Peritoneal dialysis (PD) is a vital treatment for end-stage renal disease patients, but its efficacy is often compromised by complications such as infections and peritoneal fibrosis. Biological field-effect transistors (BioFETs) present a promising solution for rapid, sensitive, and non-invasive detection of indicators and biomarkers associated with these complications, potentially enabling early intervention. However, BioFETs are yet to be adopted for PD monitoring. This review presents a forward-looking analysis of the capacity and potential integration of BioFETs into PD management systems, highlighting their capacity to monitor both routine indicators of dialysis efficiency and metabolic status, as well as specific biomarkers for complications such as inflammation and fibrosis. We examine the challenges in adapting BioFETs for PD applications, focusing on key areas for improvement, including sensitivity, specificity, stability, reusability, and clinical integration. Furthermore, we discuss various approaches to address these challenges, which are crucial for developing point-of-care (PoC) and multiplexed wearable devices. These advancements could facilitate continuous, precise, and user-friendly monitoring, potentially revolutionizing PD complication management and enhancing patient care.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Zi-An Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Ke-Yu Yao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yuk-Lun Cheng
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | - Dexter Siu-Hong Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024; 28:4515-4552. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
3
|
Fei J, Yang W, Dai Y, Xu W, Fan H, Zheng Y, Hong J, Zhang J, Zhu W, Zhou X. Oxygen-functionalized Fe 3O 4@o-polypyrrole acting as high-efficiency oxidase mimics and their application in glutathione colorimetric sensing. Talanta 2024; 278:126431. [PMID: 38943764 DOI: 10.1016/j.talanta.2024.126431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
The enzyme-like properties of nanozymes may be considerably affected by the structure and surface groups, which thus need to be optimized. Here, through a simple NaOH chemical corrosion method, the chemical structure similar to N-Methylpyrrolidone (NMP), which possessed intrinsic oxidase-like activity, was introduced into polypyrrole (PPy), and then this nanomaterial became oxygen-functionalized PPy (o-PPy) with excellent oxidase-like activity from PPy without this property. Furthermore, after compounding magnetic Fe3O4, the obtained nanocomposites Fe3O4@o-PPy nanoparticles (Fe3O4@o-PPy NPs) showed superiorities in separation during synthesis and real-time control of enzyme catalysis. Studies have found that the enzymatic activity of Fe3O4@o-PPy NPs depended on the amount of functionalized oxygen and the conjugation extent of o-PPy. Fe3O4@o-PPy NPs had efficient oxidase-like activity under a wide range of pH and temperature. Based on the oxidase-like activity of Fe3O4@o-PPy NPs, a colorimetric sensor for glutathione (GSH), which presented rich color changes and satisfactory colorimetric resolution by adding the amaranth, was realized. We believe that the functional modification and structural regulation of PPy can not only realize its wider application but also promote the discovery of novel and efficient nanozymes.
Collapse
Affiliation(s)
- Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yin Dai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yani Zheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
4
|
Hou H, Liu Y, Li X, Liu W, Gong X. Rapid electrodeposition of Cu nanoparticle film on Ni foam as an integrated 3D free-standing electrode for non-invasive and non-enzymatic creatinine sensing. Analyst 2024; 149:2905-2914. [PMID: 38572989 DOI: 10.1039/d4an00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 μA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.
Collapse
Affiliation(s)
- Hongming Hou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Yifan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xianglong Li
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Wenbo Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaoli Gong
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Wang M, Jin L, Hang-Mei Leung P, Wang-Ngai Chow F, Zhao X, Chen H, Pan W, Liu H, Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front Bioeng Biotechnol 2024; 12:1393789. [PMID: 38725992 PMCID: PMC11079239 DOI: 10.3389/fbioe.2024.1393789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The significance of point-of-care testing (POCT) in early clinical diagnosis and personalized patient care is increasingly recognized as a crucial tool in reducing disease outbreaks and improving patient survival rates. Within the realm of POCT, biosensors utilizing magnetic nanoparticles (MNPs) have emerged as a subject of substantial interest. This review aims to provide a comprehensive evaluation of the current landscape of POCT, emphasizing its growing significance within clinical practice. Subsequently, the current status of the combination of MNPs in the Biological detection has been presented. Furthermore, it delves into the specific domain of MNP-based biosensors, assessing their potential impact on POCT. By combining existing research and spotlighting pivotal discoveries, this review enhances our comprehension of the advancements and promising prospects offered by MNP-based biosensors in the context of POCT. It seeks to facilitate informed decision-making among healthcare professionals and researchers while also promoting further exploration in this promising field of study.
Collapse
Affiliation(s)
- Miaomiao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoni Zhao
- Guangzhou Wanfu Biotechnology Company, Guangzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wenjing Pan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Hongna Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
- Hengyang Medical School, University of South China, Hengyang, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, China
| |
Collapse
|
6
|
Shen X, Zhang Y, Wang D, Huang Y, Song Y, Wang S. Mediator Monomer Regulated Emulsion Interfacial Polymerization to Synthesize Nanofractal Magnetic Particles for Nucleic Acid Separation. SMALL METHODS 2024; 8:e2300531. [PMID: 37491768 DOI: 10.1002/smtd.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Polymer-based magnetic particles have been widely used for the separation of biological samples including nucleic acids, proteins, virus, and cells. Existing magnetic particles are almost prepared by coating polymers on magnetic nanoparticles (NPs). However, this strategy usually encounters the problem of poor magnetic NPs loading capacity. Here, a series of nanofractal magnetic particles (nanoFMPs) synthesized by a strategy of mediator monomer regulated emulsion interfacial polymerization is presented, which allows effective magnetic NPs loading and show efficient nucleic acid separation performance. The mediator monomers facilitate the dispersion of magnetic NPs in internal phase to achieve higher loading, and the hydrophilic monomers use electrostatic interactions to form surface nanofractal structures with functional groups. Compared with magnetic particles without nanofractal structure, nanoFMPs exhibit a higher nucleic acid extraction capability. This strategy offers an effective and versatile way for the synthesis of nanoFMPs toward efficient separation in various fields from clinical diagnosis to food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xinyi Shen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duanda Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanling Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| |
Collapse
|
7
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
8
|
Cabaleiro-Lago C, Hasterok S, Gjörloff Wingren A, Tassidis H. Recent Advances in Molecularly Imprinted Polymers and Their Disease-Related Applications. Polymers (Basel) 2023; 15:4199. [PMID: 37959879 PMCID: PMC10649583 DOI: 10.3390/polym15214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| | - Sylwia Hasterok
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Helena Tassidis
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| |
Collapse
|
9
|
Indah Wardani N, Kanatharana P, Thavarungkul P, Limbut W. Molecularly imprinted polymer dual electrochemical sensor for the one-step determination of albuminuria to creatinine ratio (ACR). Talanta 2023; 265:124769. [PMID: 37329752 DOI: 10.1016/j.talanta.2023.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The urinary albumin to creatinine ratio (ACR) is a convenient and accurate biomarker of chronic kidney disease (CKD). An electrochemical sensor for the quantification of ACR was developed based on a dual screen-printed carbon electrode (SPdCE). The SPdCE was modified with carboxylated multiwalled carbon nanotubes (f-MWCNTs) and redox probes of polymethylene blue (PMB) for creatinine and ferrocene (Fc) for albumin. The modified working electrodes were then molecularly imprinted with coated with polymerized poly-o-phenylenediamine (PoPD) to form surfaces that could be separately imprinted with creatinine and albumin template molecules. The seeded polymer layers were polymerized with a second coating of PoPD and the templates were removed to form two different molecularly imprinted polymer (MIP) layers. The dual sensor presented recognition sites for creatinine and albumin on different working electrodes, enabling the measurement of each analyte in one potential scan of square wave voltammetry (SWV). The proposed sensor produced linear ranges of 5.0-100 ng mL-1 and 100-2500 ng mL-1 for creatinine, and 5.0-100 ng mL-1 for albumin. LODs were 1.5 ± 0.2 ng mL-1 and 1.5 ± 0.3 ng mL-1, respectively. The dual MIP sensor was highly selective and stable for seven weeks at room temperature. The ACRs obtained using the proposed sensor compared well (P > 0.05) with the results from immunoturbidimetric and enzymatic methods.
Collapse
Affiliation(s)
- Nur Indah Wardani
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
10
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
11
|
Saddique Z, Faheem M, Habib A, UlHasan I, Mujahid A, Afzal A. Electrochemical Creatinine (Bio)Sensors for Point-of-Care Diagnosis of Renal Malfunction and Chronic Kidney Disorders. Diagnostics (Basel) 2023; 13:1737. [PMID: 37238220 PMCID: PMC10217452 DOI: 10.3390/diagnostics13101737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In the post-pandemic era, point-of-care (POC) diagnosis of diseases is an important research frontier. Modern portable electrochemical (bio)sensors enable the design of POC diagnostics for the identification of diseases and regular healthcare monitoring. Herein, we present a critical review of the electrochemical creatinine (bio)sensors. These sensors either make use of biological receptors such as enzymes or employ synthetic responsive materials, which provide a sensitive interface for creatinine-specific interactions. The characteristics of different receptors and electrochemical devices are discussed, along with their limitations. The major challenges in the development of affordable and deliverable creatinine diagnostics and the drawbacks of enzymatic and enzymeless electrochemical biosensors are elaborated, especially considering their analytical performance parameters. These revolutionary devices have potential biomedical applications ranging from early POC diagnosis of chronic kidney disease (CKD) and other kidney-related illnesses to routine monitoring of creatinine in elderly and at-risk humans.
Collapse
Affiliation(s)
- Zohaib Saddique
- Sensors and Diagnostics Laboratory, School of Chemistry, University of the Punjab, Quaid-I-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Faheem
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Amir Habib
- Department of Physics, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 39524, Saudi Arabia
| | - Iftikhar UlHasan
- Department of Physics, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 39524, Saudi Arabia
| | - Adnan Mujahid
- Sensors and Diagnostics Laboratory, School of Chemistry, University of the Punjab, Quaid-I-Azam Campus, Lahore 54590, Pakistan
| | - Adeel Afzal
- Sensors and Diagnostics Laboratory, School of Chemistry, University of the Punjab, Quaid-I-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
12
|
Jankhunthod S, Kaewket K, Termsombut P, Khamdang C, Ngamchuea K. Electrodeposited copper nanoparticles for creatinine detection via the in situ formation of copper-creatinine complexes. Anal Bioanal Chem 2023:10.1007/s00216-023-04699-3. [PMID: 37071142 DOI: 10.1007/s00216-023-04699-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Creatinine is an important biomarker of kidney diseases. In this work, a fast and facile electrochemical sensor was developed for creatinine detection based on the use of copper nanoparticle-modified screen-printed electrodes. The copper electrodes were prepared by simple electrodeposition of Cu2+ (aq). The electrochemically inactive creatinine was detected reductively via the in situ formation of copper-creatinine complexes. Two linear detection ranges, 0.28-3.0 mM and 3.0-20.0 mM, were achieved using differential pulse voltammetry, with the sensitivities of 0.824 ± 0.053 μA mM-1 and 0.132 ± 0.003 μA mM-1, respectively. The limit of detection was determined to be 0.084 mM. The sensor was validated in synthetic urine samples to yield 99.3% recovery (%RSD = 2.8), demonstrating high tolerance to possible interfering species. Finally, the stability of creatinine and its degradation kinetics at different temperatures were evaluated using our developed sensor. The loss of creatinine was found to be a first-order reaction with the activation energy of 64.7 kJ mol-1.
Collapse
Affiliation(s)
- Sukanya Jankhunthod
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Keerakit Kaewket
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Piyathida Termsombut
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Chadawan Khamdang
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
- Center of Excellence-Advanced Functional Materials, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
13
|
Li Y, Luo L, Nie M, Davenport A, Li Y, Li B, Choy KL. A graphene nanoplatelet-polydopamine molecularly imprinted biosensor for Ultratrace creatinine detection. Biosens Bioelectron 2022; 216:114638. [DOI: 10.1016/j.bios.2022.114638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
|
14
|
Gonzalez-Gallardo CL, Arjona N, Álvarez-Contreras L, Guerra-Balcázar M. Electrochemical creatinine detection for advanced point-of-care sensing devices: a review. RSC Adv 2022; 12:30785-30802. [PMID: 36349154 PMCID: PMC9606732 DOI: 10.1039/d2ra04479j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022] Open
Abstract
Creatinine is an amino acid derived from creatine catabolism at different steps of the body's organs, and its detection is significant because levels out of normal values are linked to some diseases like kidney failure. Normal concentration levels of creatinine in blood are from 45 to 110 μM, while in urine, typical concentrations range between 3.3 to 27 mM, and in saliva from 8.8 and 26.5 μM. Nowadays, the creatinine detection is carried through different spectroscopic-colorimetric methods; however, the resulting values present errors due to high interferences, delayed analysis, and poor stability. Electrochemical sensors have been an alternative to creatinine detection, and the electrochemical methods have been adapted to detect in enzymatic and non-enzymatic sensors, the latter being more relevant in recent years. Nanomaterials have made creatinine sensors more stable, sensitive, and selective. This review presents recent advances in creatinine electrochemical sensors for advances in point-of-care (POC) sensing devices, comprising both a materials point of view and prototypes for advanced sensing. The effect of the metal, particle size, shape and other morphological and electronic characteristics of nanomaterials are discussed in terms of their impact on the effective detection of creatinine. In addition, the application of nanomaterials in POC devices is revised pointing to practical applications and looking for more straightforward and less expensive devices to manufacture.
Collapse
Affiliation(s)
- Carlos Luis Gonzalez-Gallardo
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro Querétaro C. P. 76010 Mexico
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C. Sanfandila, Pedro Escobedo Querétaro C. P. 76703 Mexico
| | - Lorena Álvarez-Contreras
- Centro de Investigación en Materiales Avanzados S. C. Complejo Industrial Chihuahua Chihuahua C. P. 31136 Mexico
| | - Minerva Guerra-Balcázar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro Querétaro C. P. 76010 Mexico
| |
Collapse
|
15
|
Farasati Far B, Naimi-Jamal MR, Jahanbakhshi M, Mohammed HT, Altimari US, Ansari J. Poly(3-thienylboronic acid) coated magnetic nanoparticles as a magnetic solid-phase adsorbent for extraction of methamphetamine from urine samples. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2124169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Halah T. Mohammed
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
16
|
Nanomaterial-Based Electrochemical Nanodiagnostics for Human and Gut Metabolites Diagnostics: Recent Advances and Challenges. BIOSENSORS 2022; 12:bios12090733. [PMID: 36140118 PMCID: PMC9496054 DOI: 10.3390/bios12090733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Metabolites are the intermediatory products of metabolic processes catalyzed by numerous enzymes found inside the cells. Detecting clinically relevant metabolites is important to understand their physiological and biological functions along with the evolving medical diagnostics. Rapid advances in detecting the tiny metabolites such as biomarkers that signify disease hallmarks have an immense need for high-performance identifying techniques. Low concentrations are found in biological fluids because the metabolites are difficult to dissolve in an aqueous medium. Therefore, the selective and sensitive study of metabolites as biomarkers in biological fluids is problematic. The different non-electrochemical and conventional methods need a long time of analysis, long sampling, high maintenance costs, and costly instrumentation. Hence, employing electrochemical techniques in clinical examination could efficiently meet the requirements of fully automated, inexpensive, specific, and quick means of biomarker detection. The electrochemical methods are broadly utilized in several emerging and established technologies, and electrochemical biosensors are employed to detect different metabolites. This review describes the advancement in electrochemical sensors developed for clinically associated human metabolites, including glucose, lactose, uric acid, urea, cholesterol, etc., and gut metabolites such as TMAO, TMA, and indole derivatives. Different sensing techniques are evaluated for their potential to achieve relevant degrees of multiplexing, specificity, and sensitivity limits. Moreover, we have also focused on the opportunities and remaining challenges for integrating the electrochemical sensor into the point-of-care (POC) devices.
Collapse
|
17
|
Ravi PV, Subramaniyam V, Saravanakumar N, Pichumani M. Alkaline n-gqds fluorescent probe for the ultrasensitive detection of creatinine. Methods Appl Fluoresc 2022; 10. [PMID: 35901801 DOI: 10.1088/2050-6120/ac8527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022]
Abstract
Creatinine (Crn) is an important excretory product of the human body. Medical laboratory technology has improved over years and brought many advancements in clinical diagnostics equipment, and testing techniques and made the tests more efficient. Yet, the quantitative analysis of Crn is still carried out by the classical Jaffe's reaction (using Picric acid (PA) with NaOH) method. Since PA is hazardous to human health, alternative solutions such as; nanoparticles and surface-modified nanoparticles can be used. Exploring the optoelectronic properties of carbon-based quantum dots for biomolecule sensing is of current interest among researchers. Nitrogen functionalized graphene quantum dots (Alk-NGQDs) measured featured Crn easier and reduced the time taken for the test carried out in laboratories. The synthesized Alk-NGQDs optical, structural, morphological properties, surface and compositions are studied through XPS, HRTEM, XRD, FTIR, and spectroscopic techniques. Alk-NGQDs at alkaline conditions (pH 9.5) form a stable complex with Crn through intermolecular charge transfer (ICT). The fluorescence titration method is used to sense Crn in commercial Crn samples and human blood serum. To understand the efficacy of sensing creatinine using Alk-NGQDs, working concentration, fluorescence quantum yield, the limit of detection, and quenching constant are calculated using the Stern-Volmer plot. The emission property of Alk-NGQDs is aimed to bring an alternative to the traditional colorimetric Jaffe's reaction.
Collapse
Affiliation(s)
- Pavithra Verthikere Ravi
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Vattamalaipalayam, Coimbatore, Tamilnadu, 641022, INDIA
| | - Vinodhini Subramaniyam
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Vattamalaipalayam, Coimbatore, Tamilnadu, 641022, INDIA
| | - Neha Saravanakumar
- Department of Biotechnology, PSG College of Technology, Peelamedu, Coimbatore, Tamilnadu, 641004, INDIA
| | - Moorthi Pichumani
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Vattamalaipalayam, NGGO colony post,, Coimbatore, Tamilnadu, 641022, INDIA
| |
Collapse
|
18
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
19
|
Molecularly imprinted polymers for selective extraction/microextraction of cancer biomarkers: A review. Mikrochim Acta 2022; 189:255. [PMID: 35697898 DOI: 10.1007/s00604-022-05356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Over recent years, great efforts have been extensively documented in top scientific journals on the development of methods for early diagnosis, treatment, and monitoring of cancers which are prevalent critical diseases with a high mortality rate among men and women. The determination of cancer biomarkers using different optimum methodologies is one of the finest options for achieving these goals with more precision, speed, and at a lower cost than traditional clinical procedures. In this regard, while focusing on specific biomarkers, molecularly imprinted technology has enabled novel diagnostic techniques for a variety of diseases. Due to the well-known advantages of molecularly imprinted polymers (MIPs), this review focuses on the current trends of MIPs-based extraction/microextraction methods, specifically targeting cancer biomarkers from various matrices. These optimized methods have demonstrated high selectivity, accuracy, sorbent reusability, extraction recovery, and low limits of detection and quantification for a variety of cancer biomarkers, which are a powerful tool to provide early diagnosis, prognosis, and treatment monitoring, with potential clinical application expected soon. This review highlights the key progress, specific modifications, and strategies used for MIP synthesis. The future perspectives for cancer biomarkers purification and determination by fabricating MIP-based techniques are also discussed.
Collapse
|
20
|
Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022; 147:571-586. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific recognition and highly sensitive detection of biomarkers play an essential role in identification, early diagnosis and prevention of many diseases. Magnetic molecularly imprinted polymers (MMIPs) have been widely used to capture biomimetic receptors for targets in various complex matrices due to their superior recognition ability, structural stability, and rapid separation characteristics, which overcome the existing deficiencies of traditional recognition elements such as antibodies, aptamers. The integration of MMIPs as recognition elements with chemical sensors opens new opportunities for the development of advanced analytical devices with improved selectivity and sensitivity, shorter analysis time, and lower cost. Recently, MMIPs-chemical sensors (MMIPs-CS) have made significant progress in detection, but many challenges and development spaces remain. Therefore, this review focuses on the research progress of the sensor based on biomarker detection and introduces the surface modification of the magnetic support material used to prepare high selective MMIPs, as well as the selective extraction of target biomarkers by MMIPs from the complex biological sample matrix. Based on the understanding of optical sensors and electrochemical sensors, the applications of MMIPs-optical sensors (MMIPs-OS) and MMIPs-electrochemical sensors (MMIPs-ECS) for biomarker detection were reviewed and discussed in detail. Moreover, it provides an overview of the challenges in this research area and the potential strategies for the rational design of high-performance MMIPs-CS, accelerating the development of multifunctional MMIPs-CS.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Xiaomin Yang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
21
|
Atta NF, Galal A, El-Gohary AR. Electrochemical sensing of dobutamine, paracetamol, amlodipine, and daclatasvir in serum based on thiourea SAMs over nano-gold particles-CNTs composite. NEW J CHEM 2022. [DOI: 10.1039/d2nj01822e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report in this work a one-step approach for the formation of self-assembled monolayers (SAMs) from thiourea (TU) over gold nanoparticles dispersed in carbon nanotubes (CNTs-Aunano). The fabrication of the...
Collapse
|
22
|
Simple and green route for fabrication of a nanostructured of the graphene‐Fe3O4@PANI for the photovoltaic activity. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Atta NF, Galal A, El-Gohary AR. Novel method of one pot preparation of thiourea self-assembled monolayers over gold nanoparticles-carbon nanotubes composite for sensing application of phenolic compounds. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Rakesh Kumar RK, Shaikh MO, Chuang CH. A review of recent advances in non-enzymatic electrochemical creatinine biosensing. Anal Chim Acta 2021; 1183:338748. [PMID: 34627521 DOI: 10.1016/j.aca.2021.338748] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023]
Abstract
Creatinine biosensing is a rapidly developing field owing to the clinical relevance of creatinine as a vital biomarker for several diseases associated with renal, thyroidal, and muscular dysfunctions. Over the years, we have observed numerous creatinine biosensing strategies, including the most widely studied enzymatic creatinine biosensors. Though the enzymatic approach provides excellent selectivity and reliability, it has certain drawbacks, which include high fabrication cost and poor storage stability (that is inherent to every enzyme-based biosensors). This has led to the development of non-enzymatic creatinine biosensors, of which electrochemical sensors are the most promising for point-of-care applications. However, only a limited number of studies have been conducted and there is a lack of reviews addressing the recent advances in this research area. Herein, we present for the first time, a review with a prime focus on the various strategies implemented in non-enzymatic electrochemical creatinine biosensing. We aim to offer a comprehensive context on the achievements and limitations of currently available non-enzymatic electrochemical creatinine biosensors and address the underlying factors pertaining to the interplay of modification/fabrication techniques with the sensitivity, selectivity, interferences, and long-term storage stability of the biosensor. We hope that this work shall prove to be seminal in the conception and advancement of future non-enzymatic electrochemical creatinine biosensors.
Collapse
Affiliation(s)
- R K Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Taiwan
| | | | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Taiwan.
| |
Collapse
|
25
|
Singh P, Mandal S, Roy D, Chanda N. Facile Detection of Blood Creatinine Using Binary Copper-Iron Oxide and rGO-Based Nanocomposite on 3D Printed Ag-Electrode under POC Settings. ACS Biomater Sci Eng 2021; 7:3446-3458. [PMID: 34142794 DOI: 10.1021/acsbiomaterials.1c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal nanoparticles have been helpful in creatinine sensing technology under point-of-care (POC) settings because of their excellent electrocatalyst properties. However, the behavior of monometallic nanoparticles as electrochemical creatinine sensors showed limitations concerning the current density in the mA/cm2 range and wide detection window, which are essential parameters for the development of a sensor for POC applications. Herein, we report a new sensor, a reduced graphene oxide stabilized binary copper-iron oxide-based nanocomposite on a 3D printed Ag-electrode (Fe-Cu-rGO@Ag) for detecting a wide range of blood creatinine (0.01 to 1000 μM; detection limit 10 nM) in an electrochemical chip with a current density ranging between 0.185 and 1.371 mA/cm2 and sensitivity limit of 1.1 μA μM-1 cm-2 at physiological pH. Interference studies confirmed that the sensor exhibited no interference from analytes like uric acid, urea, dopamine, and glutathione. The sensor response was also evaluated to detect creatinine in human blood samples with high accuracy in less than a minute. The sensing mechanism suggested that the synergistic effects of Cu and iron oxide nanoparticles played an essential role in the efficient sensing where Fe atoms act as active sites for creatinine oxidation through the secondary amine nitrogen, and Cu nanoparticles acted as an excellent electron-transfer mediator through rGO. The rapid sensor fabrication procedure, mA/cm2 peak current density, a wide range of detection limits, low contact resistance including high selectivity, excellent linear response (R2 = 0.991), and reusability ensured the application of advanced electrochemical sensor toward the POC creatinine detection.
Collapse
Affiliation(s)
- Preeti Singh
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur, West Bengal 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Soumen Mandal
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur, West Bengal 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Debolina Roy
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur, West Bengal 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Nripen Chanda
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur, West Bengal 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
26
|
Marfà J, Pupin RR, Sotomayor M, Pividori MI. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal Bioanal Chem 2021; 413:6141-6157. [PMID: 34164705 DOI: 10.1007/s00216-021-03461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Magnetic particles, as well as molecularly imprinted polymers, have revolutionized separation and bioanalytical methodologies in the 1980s due to their wide range of applications. Today, biologically modified magnetic particles are used in many scientific and technological applications and are integrated in more than 50,000 diagnostic instruments for the detection of a huge range of analytes. However, the main drawback of this material is their stability and high cost. In this work, we review recent advances in the synthesis and characterization of hybrid molecularly imprinted polymers with magnetic properties, as a cheaper and robust alternative for the well-known biologically modified magnetic particles. The main advantages of these materials are, besides the magnetic properties, the possibility to be stored at room temperature without any loss in the activity. Among all the applications, this work reviews the direct detection of electroactive analytes based on the preconcentration by using magnetic-MIP integrated on magneto-actuated electrodes, including food safety, environmental monitoring, and clinical and pharmaceutical analysis. The main features of these electrochemical sensors, including their analytical performance, are summarized. This simple and rapid method will open the way to incorporate this material in different magneto-actuated devices with no need for extensive sample pretreatment and sophisticated instruments.
Collapse
Affiliation(s)
- J Marfà
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R R Pupin
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - Mpt Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - M I Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
27
|
Narimani R, Esmaeili M, Rasta SH, Khosroshahi HT, Mobed A. Trend in creatinine determining methods: Conventional methods to molecular-based methods. ANALYTICAL SCIENCE ADVANCES 2021; 2:308-325. [PMID: 38716155 PMCID: PMC10989614 DOI: 10.1002/ansa.202000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 10/07/2023]
Abstract
Renal failure (RF) disease is ranked as one of the most prevalent diseases with severe morbidity and mortality. Early diagnosis of RF leads to subsequent control of disease to reduce the poor prognosis. The level of sera creatinine is considered as a significant biomarker for kidney biofunction, which is routinely detected by the Jaffe reaction. The normal range for creatinine in the blood may be 0.84-1.21 mg/dL. Low accuracy, insufficient sensitivity, explosive and toxicity of picric acid, and pseudo-interaction with nonspecific elements such as ammonium ions in the Jaffe method lead to the development of various techniques for precise detection of creatinine such as spectroscopic, electrochemical, and chromatography approaches and sensors based on enzymes, molecular imprinted polymer and nanoparticles, etc. Based on previously established results, they are trying to construct sensors with high accuracy, optimum sensitivity, acceptable linear/calibration range, and limit of detection, which are small in size and applicable by the patient him/herself (point-of-care testing). By comparing the results of research, a molecularly imprinted electrochemiluminescence-based sensor with linear/calibration range of 5-1 mMconcentration of creatinine and the detection limit of 0.5 nM has the best detectable resolution with 2 million measurable points. In this paper, we will review the recently developed methods for measuring creatinine concentration and renal biofunction.
Collapse
Affiliation(s)
- Ramin Narimani
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mahdad Esmaeili
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Seyed Hossein Rasta
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Department of Medical Physics, School of MedicineTabriz University of Medical SciencesTabrizIran
- Department of Biomedical Physics, School of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Hamid Tayebi Khosroshahi
- Center for Chronic Kidney DiseaseTabriz University of Medical SciencesTabrizIran
- Department of Internal Medicine, Imam Reza HospitalTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ahmad Mobed
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
28
|
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.
Collapse
|
29
|
Loghmani MH, Shojaie AF, Hosseini SA. Glutathione-responsive hydrogel and molecularly imprinted polymer nanospheres: New aspect on cisplatin delivery. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Ramezani Z, Safdarian M, Ghadiri AA. Metal-coded hydrogel magnetic molecularly imprinted polymer for preconcentration and cleanup of sarcosine: Determination in urine; coupled to on-column capillary electrophoresis. Talanta 2021; 230:122309. [PMID: 33934774 DOI: 10.1016/j.talanta.2021.122309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023]
Abstract
In this study, sarcosine metal-coded hydrogel magnetic molecularly imprinted polymer (Hydro-MeC-MMIP) has been fabricated and coupled to on-column derivatization capillary electrophoresis (CE). As a metal-coding approach, sarcosine-Cu2+-ligand (Sar-Cu2+-L) chelate complex was introduced as a template to overcome the problems associated with the fabrication of MMIP for a small molecule having limited functional groups such as sarcosine. To our best knowledge, it is the first time that methacrylamide (MA) coated Fe3O4 (Fe3O4@MA) with abounded reactive double-bound on the surface has been used as a magnetic core in the one-pot synthesis of MMIPs. As prepared, Hydro-MeC-MMIP was characterized by different microscopic, spectroscopic, and thermal gravimetric methods. Hydro-MeC-MMIP was used to extract and preconcentrate sarcosine in the urine sample with no treatment and dilution. Sarcosine was quantified by on-column derivatization capillary electrophoresis equipped with a photodiode array detector. A mixture of thirteen amino acids was separated with a total run time of 12 min. Three structural analogs, including alanine, sarcosine, and glycine, were significantly resolved. Under optimal experimental conditions, the method's detection and quantification limits were 9.93 and 33.10 ng mL-1, respectively. The linear range of 50-2000 ng mL-1 and 96% recovery, along with the relative standard deviation of 6.07% (n = 6) for the target amino acid, were obtained. This method provides a simple, low-cost, fast, and efficient tool for extracting and quantifying sarcosine in the urine. The present method can address inconsistency in evaluating sarcosine as a candidate biomarker for prostate cancer with a simple CE/UV; no need for a sophisticated detection system such as a mass spectrometer.
Collapse
Affiliation(s)
- Zahra Ramezani
- Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medicinal Chemistry Department, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Safdarian
- Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ata A Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Kumaravel S, Wu SH, Chen GZ, Huang ST, Lin CM, Lee YC, Chen CH. Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva. Biosens Bioelectron 2021; 171:112720. [DOI: 10.1016/j.bios.2020.112720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023]
|
32
|
Fe2O3/polyaniline supramolecular nanocomposite: A receptor free sensor platform for the quantitative determination of serum creatinine. Anal Chim Acta 2020; 1137:103-114. [DOI: 10.1016/j.aca.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
|
33
|
Carbon dots doped tungstic anhydride on graphene oxide nanopanels: A new picomolar-range creatinine selective enzymeless electrochemical sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111010. [DOI: 10.1016/j.msec.2020.111010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
|
34
|
Ciou DS, Wu PH, Huang YC, Yang MC, Lee SY, Lin CY. Colorimetric and amperometric detection of urine creatinine based on the ABTS radical cation modified electrode. SENSORS AND ACTUATORS B: CHEMICAL 2020; 314:128034. [DOI: 10.1016/j.snb.2020.128034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
35
|
Yang Y, Yan W, Guo C, Zhang J, Yu L, Zhang G, Wang X, Fang G, Sun D. Magnetic molecularly imprinted electrochemical sensors: A review. Anal Chim Acta 2020; 1106:1-21. [PMID: 32145837 DOI: 10.1016/j.aca.2020.01.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
The preparation and practical applications of molecularly imprinted electrochemical sensors (MIECSs) remain challenging due to issues involving electrode surface renewal modes, low adsorption capacities, and sample preparation speeds. To solve these issues, magnetic molecularly imprinted electrochemical sensors (MMIECSs) have been extensively explored by various groups. Recently, MMIECSs fabricated based on diverse strategies have yielded insight into the development of MIECSs, and they have provided effective paths for sample preparation, immobilization and renewal of molecularly imprinted polymers (MIPs) on the electrode surface, leading to promising performances of MIECSs. This review comprehensively describes the research advances for various types of MMIECSs and their applications in the fields of food safety, environmental monitoring, and clinical and pharmaceutical analysis. Based on our understanding of MMIECSs, the literature in this field is thoroughly explored and classified in this review. The challenges existing in this research area and some potential strategies for the rational design of high-performance MMIECS are also outlined.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Wenyan Yan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci, 030619, China.
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
36
|
Abstract
: Nanomaterial biosensors have revolutionized the entire scientific, technology, biomedical, materials science, and engineering fields. Among all nanomaterials, magnetic nanoparticles, microparticles, and beads are unique in offering facile conjugation of biorecognition probes for selective capturing of any desired analytes from complex real sample matrices (e.g., biofluids such as whole blood, serum, urine and saliva, tissues, food, and environmental samples). In addition, rapid separation of the particle-captured analytes by the simple use of a magnet for subsequent detection on a sensor unit makes the magnetic particle sensor approach very attractive. The easy magnetic isolation feature of target analytes is not possible with other inorganic particles, both metallic (e.g., gold) and non-metallic (e.g., silica), which require difficult centrifugation and separation steps. Magnetic particle biosensors have thus enabled ultra-low detection with ultra-high sensitivity that has traditionally been achieved only by radioactive assays and other tedious optical sources. Moreover, when traditional approaches failed to selectively detect low-concentration analytes in complex matrices (e.g., colorimetric, electrochemistry, and optical methods), magnetic particle-incorporated sensing strategies enabled sample concentration into a defined microvolume of large surface area particles for a straightforward detection. The objective of this article is to highlight the ever-growing applications of magnetic materials for the detection of analytes present in various real sample matrices. The central idea of this paper was to show the versatility and advantages of using magnetic particles for a variety of sample matrices and analyte types and the adaptability of different transducers with the magnetic particle approaches.
Collapse
|
37
|
A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal Chim Acta 2019; 1083:110-118. [DOI: 10.1016/j.aca.2019.07.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
38
|
Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosens Bioelectron 2019; 144:111691. [DOI: 10.1016/j.bios.2019.111691] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023]
|
39
|
Nontawong N, Amatatongchai M, Thimoonnee S, Laosing S, Jarujamrus P, Karuwan C, Chairam S. Novel amperometric flow-injection analysis of creatinine using a molecularly-imprinted polymer coated copper oxide nanoparticle-modified carbon-paste-electrode. J Pharm Biomed Anal 2019; 175:112770. [DOI: 10.1016/j.jpba.2019.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
|
40
|
Gao W, Li P, Qin S, Huang Z, Cao Y, Liu X. A highly sensitive tetracycline sensor based on a combination of magnetic molecularly imprinted polymer nanoparticles and surface plasmon resonance detection. Mikrochim Acta 2019; 186:637. [DOI: 10.1007/s00604-019-3718-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
|
41
|
Real-Time and Online Monitoring of Glucose Contents by Using Molecular Imprinted Polymer-Based IDEs Sensor. Appl Biochem Biotechnol 2019; 189:1156-1166. [DOI: 10.1007/s12010-019-03049-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/10/2019] [Indexed: 01/18/2023]
|
42
|
Modern creatinine (Bio)sensing: Challenges of point-of-care platforms. Biosens Bioelectron 2019; 130:110-124. [PMID: 30731344 DOI: 10.1016/j.bios.2019.01.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 01/01/2023]
Abstract
The importance of knowing creatinine levels in the human body is related to the possible association with renal, muscular and thyroid dysfunction. Thus, the accurate detection of creatinine may indirectly provide information surrounding those functional processes, therefore contributing to the management of the health status of the individual and early diagnosis of acute diseases. The questions at this point are: to what extent is creatinine information clinically relevant?; and do modern creatinine (bio)sensing strategies fulfil the real needs of healthcare applications? The present review addresses these questions by means of a deep analysis of the creatinine sensors reported in the literature over the last five years. There is a wide range of techniques for detecting creatinine, most of them based on optical readouts (20 of the 33 papers collected in this review). However, the use of electrochemical techniques (13 of the 33 papers) is recently emerging in alignment with the search for a definitive and trustworthy creatinine detection at the point-of-care level. In this sense, biosensors (7 of the 33 papers) are being established as the most promising alternative over the years. While creatinine levels in the blood seem to provide better information about patient status, none of the reported sensors display adequate selectivity in such a complex matrix. In contrast, the analysis of other types of biological samples (e.g., saliva and urine) seems to be more viable in terms of simplicity, cross-selectivity and (bio)fouling, besides the fact that its extraction does not disturb individual's well-being. Consequently, simple tests may likely be used for the initial check of the individual in routine analysis, and then, more accurate blood detection of creatinine could be necessary to provide a more genuine diagnosis and/or support the corresponding decision-making by the physician. Herein, we provide a critical discussion of the advantages of current methods of (bio)sensing of creatinine, as well as an overview of the drawbacks that impede their definitive point-of-care establishment.
Collapse
|
43
|
Kalaivani GJ, Suja SK. Enzyme-less sensing of the kidney dysfunction biomarker creatinine using an inulin based bio-nanocomposite. NEW J CHEM 2019. [DOI: 10.1039/c9nj00594c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-less electrochemical sensing of creatinine using an inulin-based bio-nanocomposite.
Collapse
Affiliation(s)
| | - S. K. Suja
- Department of Chemistry
- Lady Doak College
- Madurai
- India
| |
Collapse
|
44
|
Aluminum(III) triggered aggregation-induced emission of glutathione-capped copper nanoclusters as a fluorescent probe for creatinine. Mikrochim Acta 2018; 186:29. [DOI: 10.1007/s00604-018-3111-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/25/2018] [Indexed: 11/26/2022]
|
45
|
Lahcen AA, Amine A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. ELECTROANAL 2018. [DOI: 10.1002/elan.201800623] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdellatif Ait Lahcen
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| | - Aziz Amine
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| |
Collapse
|
46
|
Xianyu Y, Wang Q, Chen Y. Magnetic particles-enabled biosensors for point-of-care testing. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochim Acta 2018; 185:358. [DOI: 10.1007/s00604-018-2894-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
48
|
Gu X, Huang J, Zhang L, Zhang Y, Wang CZ, Sun C, Yao D, Li F, Chen L, Yuan CS. Efficient discovery and capture of new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines using magnetic molecularly imprinted polymers as artificial antibodies. J Sep Sci 2018; 40:3522-3534. [PMID: 28704580 DOI: 10.1002/jssc.201700595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
In the scope of stroke treatment, new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines were discovered and captured. To do so, highly selective magnetic molecularly imprinted polymers with a core-shell structure were prepared as artificial antibodies. According to the results of computational simulations, we designed and synthesized various polymers with varying amounts and types of template, functional monomer, cross-linker, and solvent. Characterization and performance tests revealed that the most appropriate artificial antibodies showed uniform spherical morphologies, large adsorption capacities, fast-binding kinetics, high selectivity, and quick separation. These artificial antibodies were then used as sorbents for dispersive magnetic solid-phase extraction coupled with high-performance liquid chromatography and mass spectrometry to capture and identify structural analogs to ZL006 from extracts of Scutellariae radix, Psoraleae fructus, and Trifolium pratense. Furthermore, according to the neuroprotective effect and coimmunoprecipitation test, Baicalein, Neobavaisoflavone, Corylifol A, and Biochanin A can be the potential uncouplers of neuronal nitric oxide synthase-postsynaptic density protein-95. Therefore, this present study contributes valuable information for the discovery of neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines.
Collapse
Affiliation(s)
- Xiaoli Gu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Yao D, Zhang L, Huang J, Sun C, Zhang Y, Gu X, Wang CZ, Li F, Chen L, Yuan CS. A surface magnetic imprinted polymers as artificial receptors for selective and efficient capturing of new neuronal nitric oxide synthase-post synaptic density protein-95 uncouplers. J Pharm Biomed Anal 2018; 154:180-190. [PMID: 29550707 DOI: 10.1016/j.jpba.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/06/2023]
Abstract
In this work, surface magnetic molecularly imprinted polymers (SMMIPs) were synthesized and used as artificial receptors in the dispersive magnetic solid phase extraction (DMSPE) for capturing potential neuronal nitric oxide synthase-post synaptic density protein-95 (nNOS-PSD-95) uncouplers, which is known as neuroprotection against stroke. Factors that affected selective separation and adsorption of the artificial receptors, such as the amount of template, the types of functional monomer and porogen solvents, and the molar ratio of template/functional monomer/cross-linker were optimized. The artificial receptors were also characterized using fourier transformed infrared, scanning electron microscope, thermal gravimetric analysis and physical property measurement systems. Multiple interactions between template and SMMIPs led to larger binding capacities, faster binding kinetics, quicker separation abilities and more efficient selectivity than the surface magnetic nonimprinted polymers (SMNIPs). The SMMIPs were successfully applied to capture potential nNOS-PSD-95 uncouplers from complex samples, and eight compounds were seized and confirmed rapidly when combined with HPLC and MS. The detection of the new nNOS-PSD-95 uncouplers ranged from 0.001 to 1.500 mg/mL with correlation coefficients of 0.9990-0.9995. The LOD and LOQ were 0.10-0.68 μg/mL and 0.47-2.11 μg/mL, respectively. The neuroprotective effect and co-immunoprecipitation test in vitro revealed that Emodin-1-O-β-d-glucoside, Rhaponticin, Gnetol and 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside have neuroprotective and uncoupling activities, and that they may be the new uncouplers of nNOS-PSD-95.
Collapse
Affiliation(s)
- Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoli Gu
- Department of Pharmacy, The Second Affiliated Hospital of Nantong University, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
50
|
Beyki MH, Shemirani F, Malakootikhah J, Minaeian S, Khani R. Catalytic synthesis of graphene-like polyaniline derivative - MFe 2 O 4 (M; Cu, Mn) nanohybrid as multifunctionality water decontaminant. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|