1
|
Wang Z, Chen J, Ma H, Deng Y, Li Y, Geng L, Huang Y, Fan Y. A novel copper ion enhanced electrochemical DNA biosensor for the determination of epinephrine. Talanta 2024; 276:126274. [PMID: 38788379 DOI: 10.1016/j.talanta.2024.126274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
A novel electrochemical biosensor was developed for the detection of epinephrine (EP) by immobilizing double-strand DNA (dsDNA) bound with copper ions on a gold electrode (Cu2+/dsDNA/MCH/AuE). The electrochemical behavior of EP at Cu2+/dsDNA/MCH/AuE was examined, and the results demonstrated a significant enhancement in the electrocatalytic oxidation peak current of EP due to the formation of a stable G-Cu(II)-G sandwich structure between Cu2+ and guanine at the modified electrode. The modification process of the electrode was characterized by scanning electron microscopy, infrared spectroscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry. A study on the effect of pH in phosphate buffer solution on the electrochemical oxidation of EP indicated that the catalytic oxidation process was pH-dependent. A plot of catalytic current versus EP concentration exhibited a dual-linear relationship within two ranges: 1.0-12.5 μM and 12.5-1000.0 μM, with correlation coefficients of 0.995 and 0.997, respectively. The limit of detection was determined to be 47 nM (S/N = 3). According to the calculated Hill coefficient (0.99), it can be concluded that the electrocatalytic process followed the Michaelis-Menten kinetic mechanism. The maximum catalytic current Im was 25 μA, while the apparent Michaelis-Menten constant Km was 1.425 mM. These findings indicated excellent electrocatalytic activity of the modified electrode towards oxidation of EP. The developed biosensor successfully detected EP in spiked mouse serum as well as epinephrine hydrochloride injection with high selectivity, sensitivity, stability, and accuracy.
Collapse
Affiliation(s)
- Zhenbo Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Jing Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Hua Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yaru Deng
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yafei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Lijie Geng
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, PR China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan, 750004, PR China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, PR China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan, 750004, PR China.
| |
Collapse
|
2
|
Ebube. Uwaya G, Wen Y, Bisetty K. A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Jia Q, Yang C, Venton BJ, DuBay KH. Atomistic Simulations of Dopamine Diffusion Dynamics on a Pristine Graphene Surface. Chemphyschem 2022; 23:e202100783. [PMID: 34939307 PMCID: PMC9933135 DOI: 10.1002/cphc.202100783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Indexed: 11/08/2022]
Abstract
Carbon microelectrodes enable in vivo detection of neurotransmitters, and new electrodes aim to optimize the carbon surface. However, atomistic detail on the diffusion and orientation of neurotransmitters near these surfaces is lacking. Here, we employ molecular dynamics simulations to investigate the surface diffusion of dopamine (DA), its oxidation product dopamine-o-quinone (DOQ), and their protonated forms on the pristine basal plane of flat graphene. We find that all DA species rapidly adsorb to the surface and remain adsorbed, even without a holding potential or graphene surface defects. We also find that the diffusivities of the adsorbed and the fully solvated DA are similar and that the protonated species diffuse more slowly on the surface than their corresponding neutral forms, while the oxidized species diffuse more rapidly. Structurally, we find that the underlying graphene lattice has little influence over the molecular adsorbate's lateral position, and the vertical placement of the amine group on dopamine is highly dependent upon its charge. Finally, we find that solvation has a large effect on surface diffusivities. These first results from molecular dynamics simulations of dopamine at the aqueous-graphene interface show that dopamine diffuses rapidly on the surface, even without an applied potential, and provide a basis for future simulations of neurotransmitter structure and dynamics on advanced carbon materials electrodes.
Collapse
|
4
|
Dutta K, De S, Das B, Bera S, Guria B, Ali MS, Chattopadhyay D. Development of an Efficient Immunosensing Platform by Exploring Single-Walled Carbon Nanohorns (SWCNHs) and Nitrogen Doped Graphene Quantum Dot (N-GQD) Nanocomposite for Early Detection of Cancer Biomarker. ACS Biomater Sci Eng 2021; 7:5541-5554. [PMID: 34802226 DOI: 10.1021/acsbiomaterials.1c00753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, a novel electrochemical immunosensor based on nitrogen doped graphene quantum dot (N-GQD) and single-walled carbon nanohorns (SWCNHs) was developed for the detection of α-fetoprotein (AFP), a cancer biomarker. Thus, to fabricate the platform of the immunosensor, nanocomposite architecture was developed by decorating N-GQD on the surface of the SWCNHs. The resulting hybrid architecture (N-GQD@SWCNHs) functioned as an exceptional base for the immobilization of antibody (Anti-AFP) through carbodiimide reaction with good stability and bioactivity. The immunosensor was prepared by evenly distributing the bioconjugates (N-GQD@SWCNHs/Anti-AFP) dispersion on the surface of the glassy carbon electrode, and subsequently blocking the remaining active sites by bovine serum albumin to prevent the nonspecific adsorption. Cyclic voltammetry and electrochemical impedance spectroscopy technique was employed to investigate the assembly process of the immunosensor. Under optimal conditions, the immunosensor exhibited a broad dynamic range in between 0.001 ng/mL to 200 ng/mL and a low detection limit of 0.25 pg/mL. Furthermore, the sensor showed high selectivity, desirable stability, and reproducibility. Measurements of AFP in human serum gave outstanding recovery within 99.2% and 102.1%. Thus, this investigation and the amplification strategy exhibited a potential role of the developed nanocomposite based sensor for early clinical screening of cancer biomarkers.
Collapse
Affiliation(s)
- Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata 700129, India
| | - Beauty Das
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Suman Bera
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Biswanath Guria
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Mir Sahidul Ali
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
5
|
Ramu AG, Umar A, Ibrahim AA, Algadi H, Ibrahim YSA, Wang Y, Hanafiah MM, Shanmugam P, Choi D. Synthesis of porous 2D layered nickel oxide-reduced graphene oxide (NiO-rGO) hybrid composite for the efficient electrochemical detection of epinephrine in biological fluid. ENVIRONMENTAL RESEARCH 2021; 200:111366. [PMID: 34029547 DOI: 10.1016/j.envres.2021.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
In the present research work, 2D-Porous NiO decorated graphene nanocomposite was synthesized by hydrothermal method to monitored the concentration of epinephrine (EPI). The morphology (SEM and TEM) results confirmed 2D-Porous NiO nanoparticles firmly attached over graphene nanosheets. FTIR and XPS analysis confirmed the formation of nickel oxide formation and complete reduction of GO to rGO. The electrochemical activity of the proposed NiO-rGO/GCE modified electrode on epinephrine was analyzed by simple cyclic voltammetry technique. The proposed low cost NiO-rGO/GCE modified electrode showed excellent catalytic activity over GCE and rGO/GCE electrodes. Due to its high conductivity and charge transfer ability of the NiO-rGO/GCE modified electrode exhibited high sensitivity of EPI at optimized conditions. The anodic peak current of the EPI linearly increases with increasing the concertation of EPI. A wide linear range (50 μM-1000 μM) was achieved with high correlation coefficient (R2 = 0.9986) and the limit of detection (LOD) of NiO-rGO/GCE modified electrode was calculated to be 10 μM. NiO-rGO/GCE electrode showed good stability and repeatability towards the EPI oxidation. Mainly, the proposed NiO-rGO/GCE modified electrode showed good sensitivity of EPI in the human biological fluid with high recovery percentage. The low cost, NiO-rGO/GCE electrode could be the promising sensor electrode for the detection of Epinephrine in the real samples.
Collapse
Affiliation(s)
- A G Ramu
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- Ro, Jochiwon-eup, Sejong-city, 30016, South Korea
| | - Ahmad Umar
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science and Arts, Najran, 11001, Kingdom of Saudi Arabia.
| | - Ahmed A Ibrahim
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science and Arts, Najran, 11001, Kingdom of Saudi Arabia
| | - Hassan Algadi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Yousif S A Ibrahim
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Marlia M Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi UKM, Selangor, Malaysia; Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi UKM, Selangor, Malaysia
| | - P Shanmugam
- Department of Chemistry, St. Joseph University, Dimapur, Nagaland, India
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- Ro, Jochiwon-eup, Sejong-city, 30016, South Korea.
| |
Collapse
|
6
|
Yang X, Zhao P, Xie Z, Ni M, Wang C, Yang P, Xie Y, Fei J. Selective determination of epinephrine using electrochemical sensor based on ordered mesoporous carbon / nickel oxide nanocomposite. Talanta 2021; 233:122545. [PMID: 34215048 DOI: 10.1016/j.talanta.2021.122545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
A nanocomposite of ordered mesoporous carbon/nickel oxide (OMC-NiO) was synthesized by hard-templating method. The nanocomposite remained ordered mesostructure and high surface area with the NiO nanocrystals embedded in the wall of the OMC. A sensitive sensor for electrochemical detection of epinephrine (EP) was developed with GCE modified by OMC-NiO nanocomposite. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) were used as the techniques to explore the electrochemical behavior of EP on OMC-NiO/GCE surface. The result showed that the electrode demonstrated better electrocatalytic performance to EP compared to that seen at OMC/GCE. Under the optimum condition, DPV measurements of the electrode response displayed a linear detection range for 8.0 × 10-7 to 5.0 × 10-5 M with a detection limit of 8.5 × 10-8 M (S/N = 3). It is worth noting that the electrocatalytic redox mechanism of EP on the electrode have studied through experiments and calculations (cyclic voltammetry and molecular electrostatic potential distribution). Moreover, the electrocatalytic behavior for the oxidation of EP and uric acid (UA) on OMC-NiO/GCE surface was investigated. The result showed that the sensor can be used to selectively determinate EP in the presence of an excesses of UA. Finally, the developed sensor was successfully applied to the determination of EP in spiked human blood serum and EP injection with satisfactory results.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Fisheries Science Institute, Changsha, 410153, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, 410153, People's Republic of China
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pingping Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
7
|
Zieba W, Czarnecka J, Rusak T, Zieba M, Terzyk AP. Nitric-Acid Oxidized Single-Walled Carbon Nanohorns as a Potential Material for Bio-Applications-Toxicity and Hemocompatibility Studies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1419. [PMID: 33804062 PMCID: PMC8002155 DOI: 10.3390/ma14061419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/23/2023]
Abstract
The results of in vitro studies of single-walled carbon nanohorn (SWCNH) oxidized materials' cytotoxicity obtained by the cell membrane integrity (Neutral Red Uptake (NRU)) and metabolic activity (by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)) on A549 and human dermal fibroblasts (HDF) cell lines are presented. We also present hemocompatibility studies on human and porcine blood, and an erythrocyte concentrate to prove that the obtained samples will not interfere with blood components. Characterization of the materials is supplemented by ζ-potential measurements, Transmission Electron Microscope (TEM) imaging, and thermogravimetric studies (TG). The presented results show the correlation between the specific surface area of materials and the platelet aggregation, when the ID/IG ratio determined from Raman spectra correlates with hemoglobin release from the erythrocytes (in whole blood testing). A plausible mechanism explaining the observed correlations is given. The cytotoxicity and hemocompatibility studies prove that the studied materials are acceptable for use in biomedical applications, especially a sample SWCNH-ox-1.5 with the best application potential.
Collapse
Affiliation(s)
- Wojciech Zieba
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin Street 7, 87-100 Torun, Poland; (W.Z.); (M.Z.)
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska Street 1, 87-100 Torun, Poland;
| | - Tomasz Rusak
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego Street 1, 15-328 Bialystok, Poland;
| | - Monika Zieba
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin Street 7, 87-100 Torun, Poland; (W.Z.); (M.Z.)
| | - Artur P. Terzyk
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin Street 7, 87-100 Torun, Poland; (W.Z.); (M.Z.)
| |
Collapse
|
8
|
Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis 2021; 153:105328. [PMID: 33713842 DOI: 10.1016/j.nbd.2021.105328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the physiology and pathology of the brain requires detailed knowledge of its complex structures as well as dynamic internal processes at very different scales from the macro down to the molecular dimensions. A major yet poorly described brain compartment is the brain extracellular space (ECS). Signalling molecules rapidly diffuse through the brain ECS which is complex and dynamic structure at numerous lengths and time scales. In recent years, characterization of the ECS using nanomaterials has made remarkable progress, including local analysis of nanoscopic dimensions and diffusivity as well as local chemical sensing. In particular, carbon nanomaterials combined with advanced optical technologies, biochemical and biophysical analysis, offer novel promises for understanding the ECS morphology as well as neuron connectivity and neurochemistry. In this review, we present the state-of-the-art in this quest, which mainly focuses on a type of carbon nanomaterial, single walled carbon nanotubes, as fluorescent nanoprobes to unveil the ECS features in the nanometre domain.
Collapse
Affiliation(s)
- Chiara Paviolo
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Laurent Cognet
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France.
| |
Collapse
|
9
|
Liu X, Ying Y, Ping J. Structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosens Bioelectron 2020; 167:112495. [PMID: 32818751 DOI: 10.1016/j.bios.2020.112495] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Single-walled carbon nanohorns (SWCNHs), a type of tapered carbon nanomaterials, are generally prepared by laser ablation method, arc method, and Joule heating method without the addition of metal catalysts, which makes them pure and environmentally friendly. The obtained aggregates of SWCNHs mainly have three different types of structure, dahlia-like, bud-like, and seed-like. Over the past few decades, they have been widely used in the fields of energy, medicine, chemistry, and sensing. The SWCNHs-based sensors have shown high sensitivity, rapid response, and excellent stability, which are mainly attributed to the excellent electrical conductivity, large electrochemical window, large specific surface area, and mechanical strength of SWCNHs. In this review, we systematically summarizes the structures, synthesis methods, and sensing applications of SWCNHs, including electrochemical sensors, photoelectrochemical sensors, electrochemiluminescence sensors, fluorescent sensors, and resistive sensors. Moreover, the development prospects of SWCNHs in this field are also discussed.
Collapse
Affiliation(s)
- Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
10
|
Zieba W, Olejnik P, Koter S, Kowalczyk P, Plonska-Brzezinska ME, Terzyk AP. Opening the internal structure for transport of ions: improvement of the structural and chemical properties of single-walled carbon nanohorns for supercapacitor electrodes. RSC Adv 2020; 10:38357-38368. [PMID: 35517569 PMCID: PMC9057265 DOI: 10.1039/d0ra07748h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
We investigated the electrochemical performance of single-walled carbon nanohorns (SWCNHs) for use as supercapacitor electrodes. For the first time, we used acid-treatment for oxidation of SWCNHs and hole creation in their structure. A detailed study was performed on the correlation between the oxidation of SWCNHs via acid treatment and variable acid treatment times, the structural properties of the oxidized carbon nanostructures, and the specific capacitance of the SWCNH electrodes. We showed that simple functionalization of carbon nanostructures under controlled conditions leads to an almost 3-fold increase in their specific capacitance (from 65 to 180 F g-1 in 0.1 M H2SO4). This phenomenon indicates higher accessibility of the surface area of the electrodes by electrolyte ions as a result of gradual opening of the SWCNH internal channels.
Collapse
Affiliation(s)
- Wojciech Zieba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń Gagarin Street 7 87-100 Toruń Poland
| | - Piotr Olejnik
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok Mickiewicza 2A 15-222 Bialystok Poland
| | - Stanislaw Koter
- Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń Gagarin Street 7 87-100 Toruń Poland
| | - Piotr Kowalczyk
- College of Science, Health, Engineering and Education, Murdoch University WA, 6150 Australia
| | - Marta E Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok Mickiewicza 2A 15-222 Bialystok Poland
| | - Artur P Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń Gagarin Street 7 87-100 Toruń Poland
| |
Collapse
|
11
|
Mattioli IA, Cervini P, Cavalheiro ÉTG. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: a comparative study. Mikrochim Acta 2020; 187:318. [PMID: 32388628 DOI: 10.1007/s00604-020-04259-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022]
Abstract
Disposable screen-printed electrodes based on the use of graphite-polyurethane composites modified with magnetite nanoparticles (MNP-SPE) or chitosan-coated magnetite nanoparticles (CHMNP-SPE) are described. The MNP and CHMNP were synthetized and comparatively characterized by TEM, XRD, FTIR, and TGA/DTG. The MNP-SPE and CHMNP-SPE were characterized by SEM and EDX. After optimization of the MNP percentage in MNP-SPE, the materials were electrochemically characterized by cyclic voltammetry, EIS, and chronocoulometry. The electrodes were tested for their performance towards sensing of epinephrine (EP). The CHMNP-SPE is found to have better electrochemical responses in comparison to the MNP-SPE. This is assumed to be due to the chitosan coating which also protects the MNPs from oxidation under air and at different applied potential fields. The performances of the MNP-SPE and CHMNP-SPE were studied by DPV after optimization of equilibration time and DPV parameters. Response is linear in the 0.1-0.8 μM EP concentration range, at 0.03 V (vs. pseudo-Ag/AgCl), and the detection limit is 25 nM for the MNP-SPE. The linear response for the CHMNP-SPE was 0.1-0.6 μM, at 0.0 V (vs. pseudo-Ag/AgCl), and a LOD of 14 nM was achieved. The devices were used for the quantification of EP in synthetic urine and in cerebrospinal synthetic fluids. Recoveries from spiked samples are in the 95.6-102.2% range for the CHMNP-SPE and in the 98.3-109% range for MNP-SPE. The stability of the respective sensors was investigated and compared over a period of 5 months. The EP peak currents were found to decrease by only 4% for the CHMNP-SPE, while the MNP-SPE lost 23% of its EP peak current. Accordingly, the CHMNP-SPE was chosen as the most stable and sensitive sensor for EP. Graphical abstract Schematic figure of modification of a graphite-polyurethane screen-printed composite electrode with magnetite nanoparticles (MNPs) and chitosan-coated magnetite nanoparticles (CHMNPs) for the voltammetric determination of epinephrine (EP). Improved response of CHMNP-SPE (black voltammogram) in comparison to MNP-SPE (red voltammogram) was attributed to the protection of MNP from oxidation.
Collapse
Affiliation(s)
- Isabela A Mattioli
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP, CEP 13566-590, Brazil
| | - Priscila Cervini
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP, CEP 13566-590, Brazil
| | - Éder T G Cavalheiro
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP, CEP 13566-590, Brazil.
| |
Collapse
|
12
|
Zouraris D, Kiafi S, Zerva A, Topakas E, Karantonis A. FTacV study of electroactive immobilized enzyme/free substrate reactions: Enzymatic catalysis of epinephrine by a multicopper oxidase from Thermothelomyces thermophila. Bioelectrochemistry 2020; 134:107538. [PMID: 32380451 DOI: 10.1016/j.bioelechem.2020.107538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/02/2023]
Abstract
In the present work, a kinetic analysis is made concerning the reaction of an electroactive immobilized enzyme with a free substrate, based on a Michaelis-Menten scheme. The proposed kinetic equations are investigated numerically for conditions describing large amplitude fast Fourier transform alternating current voltammetry (FTacV), under different reaction states (transient or steady state for the reaction intermediate as well as quasi or complete reversibility of the electrochemical step). The dependence of two chief observables that occur from the analysis of the results of the method, that is, the maximum of the harmonics and the potential shift of the corresponding dominant peaks, on substrate concentration is presented. The FTacV method is applied experimentally for an immobilized laccase-like multicopper oxidase from Thermothelomyces thermophila, TtLMCO1, and its reaction with epinephrine. From the experimental findings it is shown that the intrinsic characteristics of the system do not lead to the extraction of the desired kinetic data although indications on the relation between the kinetic constants is revealed. Finally, the response of the third harmonic for the first additions of epinephrine at subnanomolarity range can be exploited for the detection of epinephrine at rather low concentrations.
Collapse
Affiliation(s)
- D Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - S Kiafi
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - A Zerva
- IndBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - E Topakas
- IndBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - A Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece.
| |
Collapse
|
13
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
14
|
Sun Y, Wang Y, Yang Y, Yang M. An Electrochemiluminescent Sensor for Epinephrine Detection Based on Graphitic Carbon Nitride Nanosheet/Multi-walled Carbon Nanotubes Nanohybrids. CHEM LETT 2019. [DOI: 10.1246/cl.180893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanan Sun
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yan Wang
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yawen Yang
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Minli Yang
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
15
|
Devereux SJ, Massaro M, Barker A, Hinds DT, Hifni B, Simpson JC, Quinn SJ. Spectroscopic study of the loading of cationic porphyrins by carbon nanohorns as high capacity carriers of photoactive molecules to cells. J Mater Chem B 2019. [DOI: 10.1039/c9tb00217k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spherical carbon nanohorns have great potential as drug delivery agents. Here a detailed study of the loading of porphyrin molecules is reported and the influence on their stability described. An optimally loaded sample is shown to cause photoactivated cell death.
Collapse
Affiliation(s)
| | - Marina Massaro
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - Andrew Barker
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - David T. Hinds
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - Badriah Hifni
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
- School of Biology & Environmental Science, University College Dublin, Belfield
| | - Jeremy C. Simpson
- School of Biology & Environmental Science, University College Dublin, Belfield
- Dublin 4
- Ireland
| | - Susan J. Quinn
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
16
|
Ambolikar AS, Guin SK, Neogy S. An insight into the outer- and inner-sphere electrochemistry of oxygenated single-walled carbon nanohorns (o-SWCNHs). NEW J CHEM 2019. [DOI: 10.1039/c9nj04467a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalysis/interference of single-walled carbon nanohorns (o-SWCNHs) in relation to outer-sphere and inner-sphere electron transfer reactions.
Collapse
Affiliation(s)
- Arvind S. Ambolikar
- Fuel Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
- Homi Bhabha National Institute
| | - Saurav K. Guin
- Fuel Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
| | - Suman Neogy
- Mechanical Metallurgy Division
- Bhabha Atomic Research Centre
- Mumbai
- India
| |
Collapse
|
17
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
18
|
Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J RARE EARTH 2018. [DOI: 10.1016/j.jre.2018.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Zhu G, Sun H, Zou B, Liu Z, Sun N, Yi Y, Wong KY. Electrochemical sensing of 4-nitrochlorobenzene based on carbon nanohorns/graphene oxide nanohybrids. Biosens Bioelectron 2018; 106:136-141. [DOI: 10.1016/j.bios.2018.01.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022]
|
20
|
Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 2018; 185:89. [PMID: 29594390 DOI: 10.1007/s00604-017-2626-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets. Graphical Abstract Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.
Collapse
|
21
|
Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, Chen J, Jain R. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J Colloid Interface Sci 2017; 515:101-108. [PMID: 29331776 DOI: 10.1016/j.jcis.2017.12.085] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 01/24/2023]
Abstract
A green approach for the preparation of carbon black (CB) and electrochemically reduced graphene oxide composite (ERGO) is described based on screen printed carbon electrodes (SPCEs) fabricated on poly(ethylene terephthalate) (PET) as electrochemical sensors. This approach leads to a heterogeneous hydrophilic surface with high concentration of defect sites according to scanning electron microscopy, contact angle and Raman spectroscopy measurements. The SPCE/CB-ERGO sensor was tested with dopamine (DA), epinephrine (EP) and paracetamol (PCM), exhibiting an enhanced electrocatalytic performance compared to the bare SPCE. It displayed a wider linear range, lower limit of detection and a remarkably higher analytical sensitivity, viz. 1.5, 0.13 and 0.028 A L mol-1 for DA, EP and PCM, respectively, being also capable of simultaneous determination of the three analytes. Such high performance is demonstration that SPCE/CB-ERGO may serve as generic platform for cost-effective flexible electrochemical sensors.
Collapse
|
23
|
Yi Y, Kingsford OJ, Fiston MN, Qian J, Liu Z, Liu L, Zhu G. Perylenetetracarboxylic acid noncovalently functionalizes carbon nanohorn nanohybrids for electrochemical sensing of 4,4′-diaminobiphenyl. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Thanh TD, Balamurugan J, Tuan NT, Jeong H, Lee SH, Kim NH, Lee JH. Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing. Biosens Bioelectron 2017; 89:750-757. [DOI: 10.1016/j.bios.2016.09.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/25/2022]
|
26
|
Hasanzadeh M, Shadjou N, Guardia MDL. Current advancement in electrochemical analysis of neurotransmitters in biological fluids. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:544-551. [DOI: 10.1016/j.msec.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022]
|
28
|
Valentini F, Ciambella E, Boaretto A, Rizzitelli G, Carbone M, Conte V, Cataldo F, Russo V, Casari CS, Chillura-Martino DF, Caponetti E, Bonchio M, Giacalone F, Syrgiannis Z, Prato M. Sensor Properties of Pristine and Functionalized Carbon Nanohorns. ELECTROANAL 2016. [DOI: 10.1002/elan.201501171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Valentini
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
- Graphene Nanotechnology Hub; Parco Scientifico Edificio PP1 Via della Ricerca Scientifica, 1 00133- Roma
| | - Elena Ciambella
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Aldrei Boaretto
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Giuseppe Rizzitelli
- Graphene Nanotechnology Hub; Parco Scientifico Edificio PP1 Via della Ricerca Scientifica, 1 00133- Roma
| | - Marilena Carbone
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Valeria Conte
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Franco Cataldo
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
- Actinium Chemical Research srl; Via Casilina 1626A 00133 Rome
| | - Valeria Russo
- Dep. of Energy and NEMAS for NanoEngin. Materials and Surface, Politecnico di Milano; Via Ponzio 34/3 I-20133
| | - Carlo Spartaco Casari
- Dep. of Energy and NEMAS for NanoEngin. Materials and Surface, Politecnico di Milano; Via Ponzio 34/3 I-20133
| | | | - Eugenio Caponetti
- STEBICEF; Università degli Studi di Palermo; Via delle Scienze s/n Parco d'Orleans 90128
- Centro Grandi Apparecchiature-UniNetLab; Università degli Studi di Palermo; Via F. Marini 14 90128
| | - Marcella Bonchio
- ITM-CNR, Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 I-35131
| | - Francesco Giacalone
- STEBICEF; Università degli Studi di Palermo; Via delle Scienze s/n Parco d'Orleans 90128
| | - Zois Syrgiannis
- Dipartimento Scienze Chimiche e Farmaceutiche; Piazzale Europa 1 34127 Trieste
| | - Maurizio Prato
- Dipartimento Scienze Chimiche e Farmaceutiche; Piazzale Europa 1 34127 Trieste
| |
Collapse
|
29
|
Yu Y, Li Z. Influence of droplet coverage on the electrochemical response of planar microelectrodes and potential solving strategies based on nesting concept. PeerJ 2016; 4:e2400. [PMID: 27635356 PMCID: PMC5012334 DOI: 10.7717/peerj.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/03/2016] [Indexed: 11/20/2022] Open
Abstract
Recently, biosensors have been widely used for the detection of bacteria, viruses and other toxins. Electrodes, as commonly used transducers, are a vital part of electrochemical biosensors. The coverage of the droplets can change significantly based on the hydrophobicity of the microelectrode surface materials. In the present research, screen-printed interdigitated microelectrodes (SPIMs), as one type of planar microelectrode, were applied to investigate the influence of droplet coverage on electrochemical response. Furthermore, three dimensional (3D) printing technology was employed to print smart devices with different diameters based on the nesting concept. Theoretical explanations were proposed to elucidate the influence of the droplet coverage on the electrochemical response. 3D-printed ring devices were used to incubate the SPIMs and the analytical performances of the SPIMs were tested. According to the results obtained, our device successfully improved the stability of the signal responses and eliminated irregular signal changes to a large extent. Our proposed method based on the nesting concept provides a promising method for the fabrication of stable electrochemical biosensors. We also introduced two types of electrode bases to improve the signal stability.
Collapse
Affiliation(s)
- Yue Yu
- Department of Biosystems Engineering, Zhejiang University , Hangzhou , China
| | - Zhanming Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China; Department of Food Science, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
30
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
31
|
Baldrighi M, Trusel M, Tonini R, Giordani S. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Front Neurosci 2016; 10:250. [PMID: 27375413 PMCID: PMC4899452 DOI: 10.3389/fnins.2016.00250] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues.
Collapse
Affiliation(s)
- Michele Baldrighi
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| | - Massimo Trusel
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Raffaella Tonini
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Silvia Giordani
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|
32
|
Pifferi V, Soliveri G, Panzarasa G, Cappelletti G, Meroni D, Falciola L. Photo-renewable electroanalytical sensor for neurotransmitters detection in body fluid mimics. Anal Bioanal Chem 2016; 408:7339-49. [DOI: 10.1007/s00216-016-9539-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/21/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
|
33
|
Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016; 116:4850-83. [PMID: 27074223 DOI: 10.1021/acs.chemrev.5b00611] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanohorns (sometimes also known as nanocones) are conical carbon nanostructures constructed from an sp(2) carbon sheet. Nanohorns require no metal catalyst in their synthesis, and can be produced in industrial quantities. They provide a realistic and useful alternative to carbon nanotubes, and possibly graphene, in a wide range of applications. They also have their own unique behavior due to their specific conical morphology. However, their research and development has been slowed by several factors, notably during synthesis, they aggregate into spherical clusters ∼100 nm in diameter, blocking functionalization and treatment of individual nanocones. This limitation has recently been overcome with a new approach to separating these "dahlia-like" clusters into individual nanocones. In this review, we describe the structure, synthesis, and topology of carbon nanohorns, and provide a detailed review of nanohorn chemistry.
Collapse
Affiliation(s)
- Nikolaos Karousis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Irene Suarez-Martinez
- Nanochemistry Research Institute, Department of Physics, Curtin University of Technology , P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Christopher P Ewels
- Institut des Materiaux Jean Rouxel, CNRS, Université de Nantes , 2 Rue de la Houssiniere, BP32229, 44322 Nantes, France
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
34
|
Hua Z, Qin Q, Bai X, Huang X, Zhang Q. An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol. RSC Adv 2016. [DOI: 10.1039/c5ra27563f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel electrochemical biosensing platform is proposed. New tyrosinase-based biosensor can be used to detect phenols.
Collapse
Affiliation(s)
- Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Qin Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Xin Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Qi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| |
Collapse
|
35
|
Metters JP, Banks CE. Carbon Nanomaterials in Electrochemical Detection. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter overviews the use of carbon nanomaterials in the field of electroanalysis and considers why carbon-based nanomaterials are widely utilized and explores the current diverse range that is available to the practising electrochemist, which spans from carbon nanotubes to carbon nanohorns through to the recent significant attention given to graphene.
Collapse
Affiliation(s)
- Jonathan P. Metters
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University Chester Street Manchester M15 GD UK
| | - Craig E. Banks
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University Chester Street Manchester M15 GD UK
| |
Collapse
|
36
|
Yang C, Denno ME, Pyakurel P, Venton BJ. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal Chim Acta 2015; 887:17-37. [PMID: 26320782 PMCID: PMC4557208 DOI: 10.1016/j.aca.2015.05.049] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Virginia, USA
| | | | | | - B Jill Venton
- Department of Chemistry, University of Virginia, USA.
| |
Collapse
|
37
|
Mahmoudi Moghaddam H, Beitollahi H, Tajik S, Soltani H. Fabrication of a Nanostructure Based Electrochemical Sensor for Voltammetric Determination of Epinephrine, Uric Acid and Folic Acid. ELECTROANAL 2015. [DOI: 10.1002/elan.201500166] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Valentini F, Ciambella E, Antonaroli S, Boaretto A, Mannino P, La Parola V. η 1-Allypalladium Complexes with Tridentate PNP’ Ligand for the Assembly of Modified Screen Printed Electrodes: an Electrochemical Study. ELECTROANAL 2015. [DOI: 10.1002/elan.201400558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Jiang D, Liu F, Zhang L, Liu L, Liu C, Pu X. An electrochemical strategy with molecular beacon and hemin/G-quadruplex for the detection of Clostridium perfringens DNA on screen-printed electrodes. RSC Adv 2014. [DOI: 10.1039/c4ra09834j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An electrochemical strategy based on molecular beacon, hemin/G-quadruplex, and SA/ADH/Fe3O4nanocomposites.
Collapse
Affiliation(s)
- Dongneng Jiang
- Department of Clinical Laboratory
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400037, P. R. China
| | - Fei Liu
- Department of Clinical Laboratory
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400037, P. R. China
| | - Liqun Zhang
- Department of Clinical Laboratory
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400037, P. R. China
| | - Linlin Liu
- Department of Clinical Laboratory
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400037, P. R. China
| | - Chang Liu
- Department of Clinical Laboratory
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400037, P. R. China
| | - Xiaoyun Pu
- Department of Clinical Laboratory
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400037, P. R. China
| |
Collapse
|