1
|
Butt MA. Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications-A Comprehensive Review. BIOSENSORS 2025; 15:35. [PMID: 39852086 PMCID: PMC11763797 DOI: 10.3390/bios15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and surface plasmons that underpin its high sensitivity and specificity. Recent advancements in SPR technology, including enhancements in sensor chip materials, integration with nanostructures, and coupling with complementary detection techniques, are discussed to showcase their role in improving analytical performance. The paper also explores diverse applications of SPR biodetection systems, ranging from pathogen detection and cancer biomarker identification to food safety monitoring and environmental toxin analysis. By providing a comprehensive overview of technological progress and emerging trends, this review underscores the transformative potential of SPR-based biodetection systems in addressing critical scientific and societal challenges. Future directions and challenges, including miniaturization, cost reduction, and expanding multiplexing capabilities, are also presented to guide ongoing research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Muhammad A Butt
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| |
Collapse
|
2
|
Sarma S, Catella CM, San Pedro ET, Xiao X, Durmusoglu D, Menegatti S, Crook N, Magness ST, Hall CK. Design of 8-mer peptides that block Clostridioides difficile toxin A in intestinal cells. Commun Biol 2023; 6:878. [PMID: 37634026 PMCID: PMC10460389 DOI: 10.1038/s42003-023-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Infections by Clostridioides difficile, a bacterium that targets the large intestine (colon), impact a large number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can be delivered to the gut and inhibit the biocatalytic activity of these toxins represent a promising therapeutic strategy to prevent and treat C. diff. infection. We describe an approach that combines a Peptide Binding Design (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in colon epithelial cells. One peptide, SA1, is found to block TcdA toxicity in primary-derived human colon (large intestinal) epithelial cells. SA1 binds TcdA with a KD of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR).
Collapse
Affiliation(s)
- Sudeep Sarma
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Carly M Catella
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Ellyce T San Pedro
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Xingqing Xiao
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Deniz Durmusoglu
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Stefano Menegatti
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Carol K Hall
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
3
|
Sarma S, Catella CM, Pedro ETS, Xiao X, Durmusoglu D, Menegatti S, Crook N, Magness ST, Hall CK. Design of 8-mer Peptides that Block Clostridioides difficile Toxin A in Intestinal Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523493. [PMID: 36711911 PMCID: PMC9882058 DOI: 10.1101/2023.01.10.523493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Clostridioides difficile ( C. diff .) is a bacterium that causes severe diarrhea and inflammation of the colon. The pathogenicity of C. diff . infection is derived from two major toxins, toxins A (TcdA) and B (TcdB). Peptide inhibitors that can be delivered to the gut to inactivate these toxins are an attractive therapeutic strategy. In this work, we present a new approach that combines a pep tide b inding d esign algorithm (PepBD), molecular-level simulations, rapid screening of candidate peptides for toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block the glucosyltransferase activity of TcdA by targeting its glucosyltransferase domain (GTD). Using PepBD and explicit-solvent molecular dynamics simulations, we identified seven candidate peptides, SA1-SA7. These peptides were selected for specific TcdA GTD binding through a custom solid-phase peptide screening system, which eliminated the weaker inhibitors SA5-SA7. The efficacies of SA1-SA4 were then tested using a trans-epithelial electrical resistance (TEER) assay on monolayers of the human gut epithelial culture model. One peptide, SA1, was found to block TcdA toxicity in primary-derived human jejunum (small intestinal) and colon (large intestinal) epithelial cells. SA1 bound TcdA with a K D of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR). Significance Statement Infections by Clostridioides difficile , a bacterium that targets the large intestine (colon), impact a significant number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can inhibit the biocatalytic activity of these toxins represent a promising strategy to prevent and treat C. diff . infection. We describe an approach that combines a Peptide B inding D esign (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in small intestinal and colon epithelial cells. Importantly, our designed peptide, SA1, bound toxin A with nanomolar affinity and blocked toxicity in colon cells.
Collapse
Affiliation(s)
- Sudeep Sarma
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Carly M. Catella
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Ellyce T. San Pedro
- Department of Medicine, University of North Carolina at Chapel Hill, NC 27514, United States
| | - Xingqing Xiao
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Deniz Durmusoglu
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Stefano Menegatti
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, NC 27514, United States
| | - Carol K. Hall
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| |
Collapse
|
4
|
Impact of conformational change of immunoglobulin G induced by silver ions on Escherichia coli and macrophage adhesion to biomaterial surfaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:3781. [PMID: 34072572 PMCID: PMC8198293 DOI: 10.3390/s21113781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
The rapid progress in the development of surface plasmon resonance-based immunosensing platforms offers wide application possibilities in medical diagnostics as a label-free alternative to enzyme immunoassays. The early diagnosis of diseases or metabolic changes through the detection of biomarkers in body fluids requires methods characterized by a very good sensitivity and selectivity. In the case of the SPR technique, as well as other surface-sensitive detection strategies, the quality of the transducer-immunoreceptor interphase is crucial for maintaining the analytical reliability of an assay. In this work, an overview of general approaches to the design of functional SPR-immunoassays is presented. It covers both immunosensors, the design of which utilizes well-known and often commercially available substrates, as well as the latest solutions developed in-house. Various approaches employing chemical and passive binding, affinity-based antibody immobilization, and the introduction of nanomaterial-based surfaces are discussed. The essence of their influence on the improvement of the main analytical parameters of a given immunosensor is explained. Particular attention is paid to solutions compatible with the latest trends in the development of label-free immunosensors, such as platforms dedicated to real-time monitoring in a quasi-continuous mode, the use of in situ-generated receptor layers (elimination of the regeneration step), and biosensors using recombinant and labelled protein receptors.
Collapse
Affiliation(s)
- Marcin Drozd
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sylwia Karoń
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
6
|
Day K, Schneible JD, Young AT, Pozdin VA, Van Den Driessche G, Gaffney LA, Prodromou R, Freytes DO, Fourches D, Daniele M, Menegatti S. Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptides. J Mater Chem B 2021; 8:7413-7427. [PMID: 32661544 DOI: 10.1039/d0tb01189d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of next-generation biorecognition elements (ligands) will be determined by the ability to remotely control their binding activity for a target biomolecule in complex environments. Compared to conventional mechanisms for regulating binding affinity (pH, ionic strength, or chaotropic agents), light provides higher accuracy and rapidity, and is particularly suited for labile targets. In this study, we demonstrate a general method to develop azobenzene-cyclized peptide ligands with light-controlled affinity for target proteins. Light triggers a cis/trans isomerization of the azobenzene, which results in a major structural rearrangement of the cyclic peptide from a non-binding to a binding configuration. Critical to this goal are the ability to achieve efficient photo-isomerization under low light dosage and the temporal stability of both cis and trans isomers. We demonstrated our method by designing photo-switchable peptides targeting vascular cell adhesion marker 1 (VCAM1), a cell marker implicated in stem cell function. Starting from a known VCAM1-binding linear peptide, an ensemble of azobenzene-cyclized variants with selective light-controlled binding were identified by combining in silico design with experimental characterization via spectroscopy and surface plasmon resonance. Variant cycloAZOB[G-VHAKQHRN-K] featured rapid, light-controlled binding of VCAM1 (KD,trans/KD,cis ∼ 130). Biotin-cycloAZOB[G-VHAKQHRN-K] was utilized to label brain microvascular endothelial cells (BMECs), showing co-localization with anti-VCAM1 antibodies in cis configuration and negligible binding in trans configuration.
Collapse
Affiliation(s)
- Kevin Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Melo FCC, Rodrigues LP, Feliciano ND, Costa-Cruz JM, Ribeiro VS, Matias-Colombo BF, Alves-Balvedi RP, Goulart LR. Strongyloidiasis Serological Analysis with Three Different Biological Probes and Their Electrochemical Responses in a Screen-Printed Gold Electrode. SENSORS (BASEL, SWITZERLAND) 2021; 21:1931. [PMID: 33801807 PMCID: PMC8000320 DOI: 10.3390/s21061931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/01/2023]
Abstract
(1) Background: The validation of biological antigens is the study's utmost goal in biomedical applications. We evaluated three different probes with single and multiple epitopes through electrochemical detection of specific IgG in serum for human strongyloidiasis diagnosis. (2) Methods: Screen-printed gold electrodes were used and probes consisting of two single-epitope synthetic peptides (D3 and C10) with different sequences, and a multi-epitope antigen [detergent phase (DP)-hydrophobic membrane proteins]. Human serum samples from three populations were used: Strongyloides stercoralis positive, positive for other parasitic infections and negative controls. To test the immobilization of probes onto a screen-printed gold electrode and the serum IgG detection, electrochemical analyses were carried out through differential pulse voltammetry (DPV) and the electrode surface analyses were recorded using atomic force microscopy. (3) Results: The electrochemical response in screen-printed gold electrodes of peptides D3 and C10 when using positive serum was significantly higher than that when using the DP. Our sensor improved sensitivity to detect strongyloidiasis. (4) Conclusions: Probes' sequences are critical factors for differential electrochemical responses, and the D3 peptide presented the best electrochemical performance for strongyloidiasis detection, and may efficiently substitute whole antigen extracts from parasites for strongyloidiasis diagnosis in electrochemical immunosensors.
Collapse
Affiliation(s)
- Francielli C. C. Melo
- National Agency for Health Surveillance-Brasília, SIA Trecho 5, Área Especial 57, Bloco A/B, 1° Andar, Brasília, DF 71205-050, Brazil;
| | - Luciano P. Rodrigues
- Institute of Engineering, Science and Technology, Federal University of the Jequitinhonha and Vale de Mucuri, Av. Um, n. 4.050—Cidade Universitária, Janaúba, MG 39447-790, Brazil;
| | - Nágilla D. Feliciano
- Laboratory of Parasite Diagnosis, Institute of Biomedical Sciences, Federal University of Uberlandia, Av. Amazonas s/n Bl. 4C, sl. 239, Uberlândia, MG 38400-902, Brazil; (N.D.F.); (J.M.C.-C.); (V.S.R.)
| | - Julia M. Costa-Cruz
- Laboratory of Parasite Diagnosis, Institute of Biomedical Sciences, Federal University of Uberlandia, Av. Amazonas s/n Bl. 4C, sl. 239, Uberlândia, MG 38400-902, Brazil; (N.D.F.); (J.M.C.-C.); (V.S.R.)
| | - Vanessa S. Ribeiro
- Laboratory of Parasite Diagnosis, Institute of Biomedical Sciences, Federal University of Uberlandia, Av. Amazonas s/n Bl. 4C, sl. 239, Uberlândia, MG 38400-902, Brazil; (N.D.F.); (J.M.C.-C.); (V.S.R.)
| | - Bruna F. Matias-Colombo
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n Bl. 2E, sl. 248, Uberlândia, MG 38402-022, Brazil; (B.F.M.-C.); (L.R.G.)
| | - Renata P. Alves-Balvedi
- Biological Science, Federal University of Triângulo Mineiro, Rua Antônio Baiano, n 150, Iturama, MG 38280-000, Brazil
| | - Luiz R. Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n Bl. 2E, sl. 248, Uberlândia, MG 38402-022, Brazil; (B.F.M.-C.); (L.R.G.)
| |
Collapse
|
8
|
Chen S, Liu C, Liu Y, Liu Q, Lu M, Bi S, Jing Z, Yu Q, Peng W. Label-Free Near-Infrared Plasmonic Sensing Technique for DNA Detection at Ultralow Concentrations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000763. [PMID: 33304743 PMCID: PMC7709993 DOI: 10.1002/advs.202000763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Biomolecular detection at a low concentration is usually the most important criterion for biological measurement and early stage disease diagnosis. In this paper, a highly sensitive nanoplasmonic biosensing approach is demonstrated by achieving near-infrared plasmonic excitation on a continuous gold-coated nanotriangular array. Near-infrared incident light at a small incident angle excites surface plasmon resonance with much higher spectral sensitivity compared with traditional configuration, due to its greater interactive volume and the stronger electric field intensity. By introducing sharp nanotriangular metallic tips, intense localization of plasmonic near-fields is realized to enhance the molecular perception ability on sensing surface. This approach with an enhanced sensitivity (42103.8 nm per RIU) and a high figure of merit (367.812) achieves a direct assay of ssDNA at nanomolar level, which is a further step in label-free ultrasensitive sensing technique. Considerable improvement is recorded in the detection limit of ssDNA as 1.2 × 10-18 m based on the coupling effect between nanotriangles and gold nanoparticles. This work combines high bulk- and surface-sensitivities, providing a simple way toward label-free ultralow-concentration biomolecular detection.
Collapse
Affiliation(s)
- Shimeng Chen
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalian116024China
| | - Chuan Liu
- State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalian116024China
| | - Yun Liu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Qiang Liu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Mengdi Lu
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Sheng Bi
- Key Laboratory for Precision and Non‐traditional MachiningTechnology of the Ministry of EducationDalian University of TechnologyDalian116024China
| | - Zhenguo Jing
- School of PhysicsDalian University of TechnologyDalian116024China
| | - Qingxu Yu
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalian116024China
| | - Wei Peng
- School of PhysicsDalian University of TechnologyDalian116024China
| |
Collapse
|
9
|
Li P, Huang Z, She Y, Qin S, Gao W, Cao Y, Liu X. An assessment of the interaction for three Chrysanthemum indicum flavonoids and α-amylase by surface plasmon resonance. Food Sci Nutr 2020; 8:620-628. [PMID: 31993185 PMCID: PMC6977516 DOI: 10.1002/fsn3.1349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the interaction of Chrysanthemum indicum (CI) flavonoids (luteolin, acacetin, and buddleoside) with α-amylase. Surface plasmon resonance (SPR) assay showed their equilibrium dissociation constants (KD ) are 1.9695 ± 0.12, 2.9240 ± 0.20, and 3.2966 ± 0.08 mM at pH 6.0, respectively. Furthermore, their binding affinities were influenced by KCl, MgCl2, and CaCl2. Enzymatic kinetic studies revealed that three flavonoids exhibited noncompetitive α-amylase inhibitory activity. The inhibitory sequence is luteolin > acacetin > buddleoside, which was in accordance with the results of binding affinity from SPR. 1,1-diphenyl-2-picryl hydrazyl radical assay demonstrated that antioxidant activities of three flavonoids were inhibited significantly with α-amylase. Meanwhile, the study reveals that hydroxyl on C'-4, C'-5, and C-7 of flavonoids play an important role on the interaction of three flavonoids with α-amylase. Also, SPR could be used as sensor for rapid screening inhibitors of α-amylase and provide useful information for the application of C. indicum flavonoids in food and pharmaceutical area.
Collapse
Affiliation(s)
- Pao Li
- College of Food Science and TechnologyHunan Provincial Key Laboratory of Food Science and BiotechnologyHunan Agricultural UniversityChangshaChina
| | - Zhao Huang
- College of Food Science and TechnologyHunan Provincial Key Laboratory of Food Science and BiotechnologyHunan Agricultural UniversityChangshaChina
| | - Yin She
- College of Food Science and TechnologyHunan Provincial Key Laboratory of Food Science and BiotechnologyHunan Agricultural UniversityChangshaChina
| | - Si Qin
- College of Food Science and TechnologyHunan Provincial Key Laboratory of Food Science and BiotechnologyHunan Agricultural UniversityChangshaChina
- Hunan Co‐Innovation Center for Utilization of Botanical Functional IngredientsChangshaChina
| | - Wanru Gao
- College of Food Science and TechnologyHunan Provincial Key Laboratory of Food Science and BiotechnologyHunan Agricultural UniversityChangshaChina
| | - Yanan Cao
- College of Food Science and TechnologyHunan Provincial Key Laboratory of Food Science and BiotechnologyHunan Agricultural UniversityChangshaChina
| | - Xia Liu
- College of Food Science and TechnologyHunan Provincial Key Laboratory of Food Science and BiotechnologyHunan Agricultural UniversityChangshaChina
- Hunan Co‐Innovation Center for Utilization of Botanical Functional IngredientsChangshaChina
| |
Collapse
|
10
|
Islam N, Gurgel PV, Rojas OJ, Carbonell RG. Use of a Branched Linker for Enhanced Biosensing Properties in IgG Detection from Mixed Chinese Hamster Ovary Cell Cultures. Bioconjug Chem 2019; 30:815-825. [PMID: 30653289 DOI: 10.1021/acs.bioconjchem.8b00918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tris(2-aminoethyl)-amine (TREN), a branched amine, was coupled to planar surfaces of alkanethiol self-assembled monolayers (SAMs) to increase the grafting density of IgG-binding peptide (HWRGWV or HWRGWVG) on gold surfaces. One of the three primary amine pendant groups of TREN anchors onto the SAM, while the other two are available for grafting with the C-termini of the peptide. The ellipsometric peptide density on the SAM-branched amine was 1.24 molecules nm-2. The surfaces carrying the peptides were investigated via surface plasmon resonance (SPR) to quantify the adsorption of IgG and showed maximum binding capacity, Qm of 4.45 mg m-2, and dissociation constant, Kd of 8.7 × 10-7 M. Real-time dynamic adsorption data was used to determine adsorption rate constants, ka values, and the values were dependent on IgG concentration. IgG binding from complex mixtures of Chinese hamster ovary supernatant (CHO) was investigated and regeneration studies were carried out. Compared to the unbranched amine-based surfaces, the branched amines increased the overall sensitivity and selectivity for IgG adsorption from complex mixtures. Regeneration of the branched amine-based surfaces was achieved with 0.1 M NaOH, with less than 10% decline in peptide activity after 12 cycles of regeneration-binding.
Collapse
Affiliation(s)
- Nafisa Islam
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States.,Department of Chemical Engineering , Bangladesh University of Engineering and Technology , Dhaka 1000 , Bangladesh
| | - Patrick V Gurgel
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States.,Prometic Bioseparations , Cambridgeshire , CB23 7AJ , United Kingdom
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States.,Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , Espoo , 00076 , Finland
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States.,Biomanufacturing Training and Education (BTEC) , North Carolina State University , Raleigh , North Carolina 27606 , United States
| |
Collapse
|
11
|
MINAMIKI T, TOKITO S, MINAMI T. Fabrication of a Flexible Biosensor Based on an Organic Field-effect Transistor for Lactate Detection. ANAL SCI 2019; 35:103-106. [DOI: 10.2116/analsci.18sdn02] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tsukuru MINAMIKI
- Institute of Industrial Science, The University of Tokyo
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shizuo TOKITO
- Research Center for Organic Electronics (ROEL), Yamagata University
| | | |
Collapse
|
12
|
Islam T, Naik AD, Hashimoto Y, Menegatti S, Carbonell RG. Optimization of Sequence, Display, and Mode of Operation of IgG-Binding Peptide Ligands to Develop Robust, High-Capacity Affinity Adsorbents That Afford High IgG Product Quality. Int J Mol Sci 2019; 20:E161. [PMID: 30621158 PMCID: PMC6337475 DOI: 10.3390/ijms20010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
This work presents the use of peptide ligand HWRGWV and its cognate sequences to develop affinity adsorbents that compete with Protein A in terms of binding capacity and quality of the eluted product. First, the peptide ligand was conjugated to crosslinked agarose resins (WorkBeads) at different densities and using different spacer arms. The optimization of ligand density and display resulted in values of static and dynamic binding capacity of 85 mg/mL and 65 mg/mL, respectively. A selected peptide-WorkBeads adsorbent was utilized for purifying Mabs from Chinese Hamster Ovary (CHO) cell culture supernatants. The peptide-WorkBeads adsorbent was found able to withstand sanitization with strong alkaline solutions (0.5 M NaOH). The purity of the eluted product was consistently higher than 95%, with logarithmic removal value (LRV) of 1.5 for host cell proteins (HCPs) and 4.0 for DNA. HCP clearance was significantly improved by adding a post-load washing step with either 0.1 M Tris HCl pH 9 or 1 M NaCl. The cognate peptide of HWRGWV, constructed by replacing arginine (R) with citrulline, further increased the HCP LRV to 2.15. The peptide-based adsorbent also showed a remarkable performance in terms of removal of Mab aggregates; unlike Protein A, in fact, HWRGWV was found to bind only monomeric IgG. Collectively, these results demonstrate the potential of peptide-based adsorbents as alternative to Protein A for the purification of therapeutic antibodies.
Collapse
Affiliation(s)
- Tuhidul Islam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Amith D Naik
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Yasuhiro Hashimoto
- Department of Research and Development, Fuji Silysia Chemical LTD, Kasugai Aichi 487-0013, Japan.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
13
|
Yi J, Qin Q, Wang Y, Zhang R, Bi H, Yu S, Liu B, Qiao L. Identification of pathogenic bacteria in human blood using IgG-modified Fe 3O 4 magnetic beads as a sorbent and MALDI-TOF MS for profiling. Mikrochim Acta 2018; 185:542. [PMID: 30415312 DOI: 10.1007/s00604-018-3074-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
Abstract
A method is described for fast identification of bacteria by combining (a) the enrichment of bacterial cells by using magnetite (Fe3O4) magnetic beads modified with human IgG (IgG@Fe3O4) and (b) MALDI-TOF MS analysis. IgG has affinity to protein A, protein G, protein L and glycans on the surface of bacterial cells, and IgG@Fe3O4. It therefore is applicable to the preconcentration of a range of bacterial species. The feasibility of the method has been demonstrated by collecting six species of pathogenic bacteria (Gram-positives: Staphylococcus aureus and Kocuria rosea; Gram-negatives: Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae and Pseudomonas aeruginosa). Bacteria with concentrations as low as 10 CFU·mL-1 in spiked water samples were extracted by this sorbent with recovery rates of >50%. After enrichment, bacteria on the IgG@Fe3O4 sorbent were further identified by MALDI-TOF MS. Bacteria in concentrations as low as 105 CFU in 100 μL of human whole blood can be identified by the method. Compared to other blood culture based tests, the culture time is shortened by 40% (from ~10 h to ~6 h), and the plate culture procedure (overnight) is avoided. After short blood culture, the enrichment and identification can be finished in one hour. The IgG@Fe3O4 is of practical value in clinical diagnosis and may be combined with other identification methods, e.g. PCR, Raman spectroscopy, infrared spectroscopy, etc. Graphical abstract A non-targeted, fast and sensitive assay for bacterial identification from human blood has been developed based on the enrichment of bacteria by IgG@Fe3O4 and identification by MALDI-TOF MS.
Collapse
Affiliation(s)
- Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Shanghai, 200433, China
| | - Yan Wang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Rutan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Shaoning Yu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
14
|
Yang XH, Huan LM, Chu XS, Sun Y, Shi QH. A comparative investigation of random and oriented immobilization of protein A ligands on the binding of immunoglobulin G. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Hou W, Liu Y, Zhang B, He X, Li H. Adsorption-associated orientational changes of immunoglobulin G and regulated phagocytosis of Staphylococcus epidermidis. J Biomed Mater Res A 2018; 106:2838-2849. [PMID: 30194904 DOI: 10.1002/jbm.a.36472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
Abstract
Understanding the adsorption of immunoglobulin G (IgG) on biomaterials surfaces is crucial for design and modification of the surfaces to alleviate inflammatory responses after implantation. Here, we report direct visualization and two-dimensional (2D) image interpretation of the IgG molecule adsorbed on simplified surfaces by single particle electron microscopy and atomic force microscopy. Influence of the orientational changes in adsorbed IgG on phagocytosis of macrophages against Staphylococcus epidermidis is further examined. Untreated amorphous carbon film and -COOH and -NH2 grafted carbon films are employed as the model surfaces for the adsorption testing. Results show that IgG displays flat orientation lying on the untreated surface, while forms vertical orientations standing on the functionalized surfaces. These specific spatial alignments are associated with altered unfolding extent and structure rearrangement of IgG domains, which are influenced synergistically by surface charge and wettability of the substrata. The changes in interdomain distance of IgG molecules subsequently regulate immune behaviors of macrophages and phagocytosis of S. epidermidis. The results would give insight into appropriate design of biomaterial surfaces in nanoscales for desired inflammatory responses. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2838-2849, 2018.
Collapse
Affiliation(s)
- Wenjia Hou
- Key laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liu
- Key laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Botao Zhang
- Key laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyan He
- Key laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hua Li
- Key laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
16
|
Minamiki T, Sasaki Y, Su S, Minami T. Development of polymer field-effect transistor-based immunoassays. Polym J 2018. [DOI: 10.1038/s41428-018-0112-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Vuoriluoto M, Orelma H, Lundahl M, Borghei M, Rojas OJ. Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils. Biomacromolecules 2017; 18:1803-1813. [PMID: 28436646 DOI: 10.1021/acs.biomac.7b00256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrate benzophenone (BP) conjugation via amine-reactive esters onto oxidized cellulosic fibers that were used as precursors, after microfluidization, of photoactive cellulose nanofibrils (CNF). From these fibrils, cellulose I filaments were synthesized by hydrogel spinning in an antisolvent followed by fast biradical UV cross-linking. As a result, the wet BP-CNF filaments retained extensively the original dry strength (a remarkable ∼80% retention). Thus, the principal limitation of these emerging materials was overcome (the wet tensile strength is typically <0.5% of the value measured in dry conditions). Subsequently, antihuman hemoglobin (anti-Hb) antibodies were conjugated onto residual surface carboxyl groups, making the filaments bifunctional for their active groups and properties (wet strength and bioactivity). Optical (surface plasmon resonance) and electroacoustic (quartz crystal microgravimetry) measurements conducted with the bifunctional CNF indicated effective anti-Hb conjugation (2.4 mg m-2), endowing an excellent sensitivity toward Hb targets (1.7 ± 0.12 mg m-2) and negligible nonspecific binding. Thus, the anti-Hb biointerface was deployed on filaments that captured Hb efficiently from aqueous matrices (confocal laser microscopy of FITC-labeled antibodies). Significantly, the anti-Hb biointerface was suitable for regeneration, while its sensitivity and selectivity in affinity binding can be tailored by application of blocking copolymers. The developed bifunctional filaments based on nanocellulose offer great promise in detection and affinity binding built upon 1D systems, which can be engineered into other structures for rational use of material and space.
Collapse
Affiliation(s)
- Maija Vuoriluoto
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland
| | - Hannes Orelma
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland
| | - Meri Lundahl
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland
| | - Maryam Borghei
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland
| | - Orlando J Rojas
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076, Espoo, Finland.,Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.,Department of Applied Physics, School of Science, Aalto University , FI-00076, Espoo, Finland
| |
Collapse
|
18
|
Dubiel EA, Martin B, Vigier S, Vermette P. Real-time label-free detection and kinetic analysis of Etanercept—Protein A interactions using quartz crystal microbalance. Colloids Surf B Biointerfaces 2017; 149:312-321. [DOI: 10.1016/j.colsurfb.2016.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 02/08/2023]
|
19
|
Mei Z, Tang L. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Anal Chem 2016; 89:633-639. [PMID: 27991768 DOI: 10.1021/acs.analchem.6b02797] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An innovative gold nanorod (GNR) array biochip was developed to systematically investigate the localized surface plasmon resonance (LSPR)-coupled fluorescence enhancement for signal amplification in molecular beacon detection. An ordered GNR assembly in vertical standing array on a glass surface was fabricated as plasmonic substrates, resulting in dramatically intensified LSPR between adjacent nanoparticles as compared to that from an ensemble of random nanorods. We have shown that the plasmonic response of the nanoarray can be tuned by the proper choice of GNR size to overlap the fluorophore excitation and emission wavelengths greater than 600 nm. Plasmon-induced fluorescence enhancement was found to be distance-dependent with the competition between quenching and enhancement by the metal nanostructures. The augmented fluorescence enhancement by the GNR array can efficiently overcome the quenching effect of the gold nanoparticle even at close proximity. The enhancement correlates with the spectral overlap between the fluorophore excitation/emission and the plasmonic resonance of the GNR array, indicating a surface-plasmon-enhanced excitation and radiative mechanism for the amplification. From these results, the applicability of the ordered GNR array chip was extended to molecular fluorescence enhancement for practical use as a highly functional and ultrasensitive plasmonic DNA biochip in molecular beacon fashion.
Collapse
Affiliation(s)
- Zhong Mei
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | - Liang Tang
- Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| |
Collapse
|
20
|
Zhang L, Jin F, Zhang T, Zhang L, Xing J. Structural influence of graft and block polycations on the adsorption of BSA. Int J Biol Macromol 2016; 85:252-7. [DOI: 10.1016/j.ijbiomac.2015.12.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/28/2022]
|
21
|
Vuoriluoto M, Orelma H, Zhu B, Johansson LS, Rojas OJ. Control of Protein Affinity of Bioactive Nanocellulose and Passivation Using Engineered Block and Random Copolymers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5668-5678. [PMID: 26844956 DOI: 10.1021/acsami.5b11737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We passivated TEMPO-oxidized cellulose nanofibrils (TOCNF) toward human immunoglobulin G (hIgG) by modification with block and random copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA). The block copolymers reversibly adsorbed on TOCNF and were highly effective in preventing nonspecific interactions with hIgG, especially if short PDMAEMA blocks were used. In such cases, total protein rejection was achieved. This is in contrast to typical blocking agents, which performed poorly. When an anti-human IgG biointerface was installed onto the passivated TOCNF, remarkably high affinity antibody-antigen interactions were observed (0.90 ± 0.09 mg/m(2)). This is in contrast to the nonpassivated biointerface, which resulted in a significant false response. In addition, regeneration of the biointerface was possible by low pH aqueous wash. Protein A from Staphylococcus aureus was also utilized to successfully increase the sensitivity for human IgG recognition (1.28 ± 0.11 mg/m(2)). Overall, the developed system based on TOCNF modified with multifunctional polymers can be easily deployed as bioactive material with minimum fouling and excellent selectivity.
Collapse
Affiliation(s)
- Maija Vuoriluoto
- Biobased Colloids and Materials (BiCMat), Department of Forest Products Technology, School of Chemical Technology, Aalto University , FI-00076, Espoo, Finland
| | - Hannes Orelma
- Biobased Colloids and Materials (BiCMat), Department of Forest Products Technology, School of Chemical Technology, Aalto University , FI-00076, Espoo, Finland
| | - Baolei Zhu
- DWI-Leibniz-Institute for Interactive Materials Research , Forckenbeckstr. 50, D-52056 Aachen, Germany
| | - Leena-Sisko Johansson
- Biobased Colloids and Materials (BiCMat), Department of Forest Products Technology, School of Chemical Technology, Aalto University , FI-00076, Espoo, Finland
| | - Orlando J Rojas
- Biobased Colloids and Materials (BiCMat), Department of Forest Products Technology, School of Chemical Technology, Aalto University , FI-00076, Espoo, Finland
| |
Collapse
|
22
|
Surface Plasmon Resonance Sensors: Methods of Surface Functionalization and Sensitivity Enhancement. THEOR EXP CHEM+ 2015. [DOI: 10.1007/s11237-015-9427-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. Anal Bioanal Chem 2015; 408:1829-41. [DOI: 10.1007/s00216-015-9135-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 11/30/2022]
|
24
|
Zhang L, Huo W, Gao Y, Shi S, Gao Y. Determination of Affinity and Kinetic Constants of the Biotin-Streptavidin Complex Using Microfluidic GMR Biosensors. IEEE TRANSACTIONS ON MAGNETICS 2015; 51:1-4. [PMID: 0 DOI: 10.1109/tmag.2015.2443125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
25
|
Cheng F, Li MY, Wang HQ, Lin DQ, Qu JP. Antibody-ligand interactions for hydrophobic charge-induction chromatography: a surface plasmon resonance study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3422-3430. [PMID: 25734470 DOI: 10.1021/la5044987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article describes the use of surface plasmon resonance (SPR) spectroscopy to study antibody-ligand interactions for hydrophobic charge-induction chromatography (HCIC) and its versatility in investigating the surface and solution factors affecting the interactions. Two density model surfaces presenting the HCIC ligand (mercapto-ethyl-pyridine, MEP) were prepared on Au using a self-assembly technique. The surface chemistry and structure, ionization, and protein binding of such model surfaces were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), contact-angle titration, and SPR, respectively. The influences of the surface and solution factors, e.g., ligand density, salt concentration, and solution pH, on protein adsorption were determined by SPR. Our results showed that ligand density affects both equilibrium and dynamic aspects of the interactions. Specifically, a dense ligand leads to an increase in binding strength, rapid adsorption, slow desorption, and low specificity. In addition, both hydrophobic interactions and hydrogen bonding contribute significantly to the protein adsorption at neutral pH, while the electrostatic repulsion is overwhelmed under acidic conditions. The hydrophobic interaction at a high concentration of lyotropic salt would cause drastic conformational changes in the adsorbed protein. Combined with the self-assembly technique, SPR proves to be a powerful tool for studying the interactions between an antibody and a chromatographic ligand.
Collapse
Affiliation(s)
| | - Ming-Yang Li
- §School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China
| | | | - Dong-Qiang Lin
- ∥Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | | |
Collapse
|
26
|
Khalilzadeh B, Shadjou N, Eskandani M, Charoudeh HN, Omidi Y, Rashidi MR. A reliable self-assembled peptide based electrochemical biosensor for detection of caspase 3 activity and apoptosis. RSC Adv 2015. [DOI: 10.1039/c5ra08561f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sensitive electrochemical self-assembled peptide based biosensor was developed for the detection of caspase 3 activity and apoptosis using a Asp-Glu-Val-Asp (DEVD) modified peptide and horseradish peroxidase (HRP) as cleaving and electron transfer agents, respectively.
Collapse
Affiliation(s)
- Balal Khalilzadeh
- Research Center for Pharmaceutical Nanotechnology (RCPN)
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Nasrin Shadjou
- Department of Nanochemistry and Nanotechnology Center
- Urmia University
- Urmia
- Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN)
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology (RCPN)
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Faculty of Pharmacy
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology (RCPN)
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Faculty of Pharmacy
| |
Collapse
|
27
|
A Label-Free Immunosensor for IgG Based on an Extended-Gate Type Organic Field Effect Transistor. MATERIALS 2014; 7:6843-6852. [PMID: 28788216 PMCID: PMC5456160 DOI: 10.3390/ma7096843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/07/2014] [Accepted: 09/16/2014] [Indexed: 11/29/2022]
Abstract
A novel biosensor for immunoglobulin G (IgG) detection based on an extended-gate type organic field effect transistor (OFET) has been developed that possesses an anti-IgG antibody on its extended-gate electrode and can be operated below 3 V. The titration results from the target IgG in the presence of a bovine serum albumin interferent, clearly exhibiting a negative shift in the OFET transfer curve with increasing IgG concentration. This is presumed to be due an interaction between target IgG and the immobilized anti-IgG antibody on the extended-gate electrode. As a result, a linear range from 0 to 10 µg/mL was achieved with a relatively low detection limit of 0.62 µg/mL (=4 nM). We believe that these results open up opportunities for applying extended-gate-type OFETs to immunosensing.
Collapse
|