1
|
Chen Y, Xia W, Lu F, Chen Z, Liu Y, Cao M, He N. Cell-free synthesis system: An accessible platform from biosensing to biomanufacturing. Microbiol Res 2025; 293:128079. [PMID: 39908944 DOI: 10.1016/j.micres.2025.128079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The fundamental aspect of cell-free synthesis systems is the in vitro transcription-translation process. By artificially providing the components required for protein expression, in vitro protein production alleviates various limitations tied to in vivo production, such as oxygen supply and nutrient constraints, thus showcasing substantial potential in engineering applications. This article presents a comprehensive review of cell-free synthesis systems, with a primary focus on biosensing and biomanufacturing. In terms of biosensing, it summarizes the recognition-response mechanisms and key advantages of cell-free biosensors. Moreover, it examines the strategies for the cell-free production of intricate proteins, including membrane proteins and glycoproteins. Additionally, the integration of cell-free metabolic engineering approaches with cell-free synthesis systems in biomanufacturing is thoroughly discussed, with the expectation that biotechnology will embrace greater prosperity.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| |
Collapse
|
2
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Schloßhauer JL, Dondapati SK, Kubick S, Zemella A. A Cost-Effective Pichia pastoris Cell-Free System Driven by Glycolytic Intermediates Enables the Production of Complex Eukaryotic Proteins. Bioengineering (Basel) 2024; 11:92. [PMID: 38247969 PMCID: PMC10813726 DOI: 10.3390/bioengineering11010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, 14469 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| |
Collapse
|
4
|
Schloßhauer JL, Zemella A, Dondapati SK, Thoring L, Meyer M, Kubick S. Enhancing the performance of a mutant pyrrolysyl-tRNA synthetase to create a highly versatile eukaryotic cell-free protein synthesis tool. Sci Rep 2023; 13:15236. [PMID: 37709815 PMCID: PMC10502014 DOI: 10.1038/s41598-023-42198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Modification of proteins with a broad range of chemical functionalities enables the investigation of protein structure and activity by manipulating polypeptides at single amino acid resolution. Indeed, various functional groups including bulky non-canonical amino acids like strained cyclooctenes could be introduced by the unique features of the binding pocket of the double mutant pyrrolysyl-tRNA synthetase (Y306A, Y384F), but the instable nature of the enzyme limits its application in vivo. Here, we constructed a cell-free protein production system, which increased the overall enzyme stability by combining different reaction compartments. Moreover, a co-expression approach in a one-pot reaction allowed straightforward site-specific fluorescent labeling of the functional complex membrane protein cystic fibrosis transmembrane conductance regulator. Our work provides a versatile platform for introducing various non-canonical amino acids into difficult-to-express proteins for structural and fluorescence based investigation of proteins activity.
Collapse
Affiliation(s)
- Jeffrey L Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Institute of Biotechnology,, Brandenburg University of Technology Cottbus-Senftenberg, Am Mühlenberg, Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany.
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Manpreet Meyer
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| |
Collapse
|
5
|
Ullrich J, Ohlhoff C, Dondapati SK, Zemella A, Kubick S. Evaluation of the Ion Channel Assembly in a Eukaryotic Cell-Free System Focusing on Two-Pore Domain Potassium Channels K 2P. Int J Mol Sci 2023; 24:6299. [PMID: 37047271 PMCID: PMC10094441 DOI: 10.3390/ijms24076299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K2P) within endogenous endoplasmic reticulum-derived microsomes. Exploiting the open nature of CFS, we investigate the cotranslational translocation of TREK-2 into the microsomes and suggest a cotranslational assembly with typical single-channel behavior in planar lipid-bilayer electrophysiology. The heteromeric assembly of K2P channels is a contentious matter, accordingly we prove the successful assembly of TREK-2 with TWIK-1 using a biomolecular fluorescence complementation assay, Western blot analysis and autoradiography. The results demonstrate that TREK-2 homodimer assembly is the initial step, followed by heterodimer formation with the nascent TWIK-1, providing evidence of the intergroup heterodimerization of TREK-2 and TWIK-1 in eukaryotic CFS. Since K2P channels are involved in various pathophysiological conditions, including pain and nociception, CFS paves the way for in-depth functional studies and related pharmacological interventions. This study highlights the versatility of the eukaryotic CFS platform for investigating ion channel assembly in a native-like environment.
Collapse
Affiliation(s)
- Jessica Ullrich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Carsten Ohlhoff
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Haueis L, Stech M, Schneider E, Lanz T, Hebel N, Zemella A, Kubick S. Rapid One-Step Capturing of Native, Cell-Free Synthesized and Membrane-Embedded GLP-1R. Int J Mol Sci 2023; 24:ijms24032808. [PMID: 36769142 PMCID: PMC9917595 DOI: 10.3390/ijms24032808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are of outstanding pharmacological interest as they are abundant in cell membranes where they perform diverse functions that are closely related to the vitality of cells. The analysis of GPCRs in natural membranes is laborious, as established methods are almost exclusively cell culture-based and only a few methods for immobilization in a natural membrane outside the cell are known. Within this study, we present a one-step, fast and robust immobilization strategy of the GPCR glucagon-like peptide 1 receptor (GLP-1R). GLP-1R was synthesized in eukaryotic lysates harboring endogenous endoplasmic reticulum-derived microsomes enabling the embedment of GLP-1R in a natural membrane. Interestingly, we found that these microsomes spontaneously adsorbed to magnetic Neutravidin beads thus providing immobilized membrane protein preparations which required no additional manipulation of the target receptor or its supporting membrane. The accessibility of the extracellular domain of membrane-embedded and bead-immobilized GLP-1R was demonstrated by bead-based enzyme-linked immunosorbent assay (ELISA) using GLP-1R-specific monoclonal antibodies. In addition, ligand binding of immobilized GLP-1R was verified in a radioligand binding assay. In summary, we present an easy and straightforward synthesis and immobilization methodology of an active GPCR which can be beneficial for studying membrane proteins in general.
Collapse
Affiliation(s)
- Lisa Haueis
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Correspondence:
| | | | - Thorsten Lanz
- 3B Pharmaceuticals GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Nicole Hebel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus–Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Poddar A, Hsu YY, Zhang F, Shamma A, Kreais Z, Muller C, Malla M, Ray A, Liu AP, Chen Q. Membrane stretching activates calcium permeability of a putative channel Pkd2 during fission yeast cytokinesis. Mol Biol Cell 2022; 33:ar134. [PMID: 36200871 PMCID: PMC9727806 DOI: 10.1091/mbc.e22-07-0248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pkd2 is the fission yeast homologue of polycystins. This putative ion channel localizes to the plasma membrane. It is required for the expansion of cell volume during interphase growth and cytokinesis, the last step of cell division. However, the channel activity of Pkd2 remains untested. Here, we examined the calcium permeability and mechanosensitivity of Pkd2 through in vitro reconstitution and calcium imaging of pkd2 mutant cells. Pkd2 was translated and inserted into the lipid bilayers of giant unilamellar vesicles using a cell-free expression system. The reconstituted Pkd2 permeated calcium when the membrane was stretched via hypoosmotic shock. In vivo, inactivation of Pkd2 through a temperature-sensitive mutation pkd2-B42 reduced the average intracellular calcium level by 34%. Compared with the wild type, the hypomorphic mutation pkd2-81KD reduced the amplitude of hypoosmotic shock-triggered calcium spikes by 59%. During cytokinesis, mutations of pkd2 reduced the calcium spikes, accompanying cell separation and the ensuing membrane stretching, by 60%. We concluded that fission yeast polycystin Pkd2 allows calcium influx when activated by membrane stretching, representing a likely mechanosensitive channel that contributes to the cytokinetic calcium spikes.
Collapse
Affiliation(s)
- Abhishek Poddar
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Faith Zhang
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Abeda Shamma
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
| | - Zachary Kreais
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Mamata Malla
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109,Department of Biophysics, University of Michigan, Ann Arbor, MI 48109,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109,*Address correspondence to: Qian Chen (); Allen Liu ()
| | - Qian Chen
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606,*Address correspondence to: Qian Chen (); Allen Liu ()
| |
Collapse
|
8
|
Harris NJ, Pellowe GA, Blackholly LR, Gulaidi-Breen S, Findlay HE, Booth PJ. Methods to study folding of alpha-helical membrane proteins in lipids. Open Biol 2022; 12:220054. [PMID: 35855589 PMCID: PMC9297032 DOI: 10.1098/rsob.220054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How alpha-helical membrane proteins fold correctly in the highly hydrophobic membrane interior is not well understood. Their folding is known to be highly influenced by the lipids within the surrounding bilayer, but the majority of folding studies have focused on detergent-solubilized protein rather than protein in a lipid environment. There are different ways to study folding in lipid bilayers, and each method has its own advantages and disadvantages. This review will discuss folding methods which can be used to study alpha-helical membrane proteins in bicelles, liposomes, nanodiscs or native membranes. These folding methods include in vitro folding methods in liposomes such as denaturant unfolding studies, and single-molecule force spectroscopy studies in bicelles, liposomes and native membranes. This review will also discuss recent advances in co-translational folding studies, which use cell-free expression with liposomes or nanodiscs or are performed in vivo with native membranes.
Collapse
Affiliation(s)
- Nicola J. Harris
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A. Pellowe
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Laura R. Blackholly
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | | | - Heather E. Findlay
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paula J. Booth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
9
|
Virosome, a promising delivery vehicle for siRNA delivery and its novel preparation method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Moghimianavval H, Hsu YY, Groaz A, Liu AP. In Vitro Reconstitution Platforms of Mammalian Cell-Free Expressed Membrane Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:105-120. [PMID: 34985740 DOI: 10.1007/978-1-0716-1998-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Membrane proteins are essential components in cell membranes and enable cells to communicate with their outside environment and to carry out intracellular signaling. Functional reconstitution of complex membrane proteins using cell-free expression (CFE) systems has been proved to be challenging mainly due to the lack of necessary machinery for proper folding and translocation of nascent membrane proteins and their delivery to the supplied synthetic bilayers. Here, we provide protocols for detergent-free, cell-free reconstitution of functional membrane proteins using HeLa-based CFE system and outline assays for studying their membrane insertion, topology, and their orientation upon incorporation into the supported lipid bilayers or bilayers of giant unilamellar vesicles as well as methods to isolate functional translocated cell-free produced membrane proteins.
Collapse
Affiliation(s)
| | - Yen-Yu Hsu
- University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
11
|
Harris NJ, Reading E, Booth PJ. Cell-Free Synthesis Strategies to Probe Co-translational Folding of Proteins Within Lipid Membranes. Methods Mol Biol 2022; 2433:273-292. [PMID: 34985751 DOI: 10.1007/978-1-0716-1998-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to comprehend the molecular basis of transmembrane protein biogenesis, methods are required that are capable of investigating the co-translational folding of these hydrophobic proteins. Equally, in artificial cell studies, controllable methods are desirable for in situ synthesis of membrane proteins that then direct reactions in the synthetic cell membrane. Here we describe a method that exploits cell-free expression systems and tunable membrane mimetics to facilitate co-translational studies. Alteration of the lipid bilayer composition improves the efficiency of the folding system. The approach also enables membrane transport proteins to be made and inserted into artificial cell platforms such as droplet interface bilayers. Importantly, this gives a new facet to the droplet networks by enabling specific transport of molecules across the synthetic bilayer against a concentration gradient. This method also includes a protocol to pause and restart translation of membrane proteins at specified positions during their co-translational folding. This stop-start strategy provides an avenue to investigate whether the proteins fold in sequence order, or if the correct fold of N-terminal regions is reliant on the synthesis of downstream residues.
Collapse
Affiliation(s)
| | - Eamonn Reading
- Department of Chemistry, King's College London, London, UK
| | - Paula J Booth
- Department of Chemistry, King's College London, London, UK.
| |
Collapse
|
12
|
Abstract
Proteins are the main source of drug targets and some of them possess therapeutic potential themselves. Among them, membrane proteins constitute approximately 50% of the major drug targets. In the drug discovery pipeline, rapid methods for producing different classes of proteins in a simple manner with high quality are important for structural and functional analysis. Cell-free systems are emerging as an attractive alternative for the production of proteins due to their flexible nature without any cell membrane constraints. In a bioproduction context, open systems based on cell lysates derived from different sources, and with batch-to-batch consistency, have acted as a catalyst for cell-free synthesis of target proteins. Most importantly, proteins can be processed for downstream applications like purification and functional analysis without the necessity of transfection, selection, and expansion of clones. In the last 5 years, there has been an increased availability of new cell-free lysates derived from multiple organisms, and their use for the synthesis of a diverse range of proteins. Despite this progress, major challenges still exist in terms of scalability, cost effectiveness, protein folding, and functionality. In this review, we present an overview of different cell-free systems derived from diverse sources and their application in the production of a wide spectrum of proteins. Further, this article discusses some recent progress in cell-free systems derived from Chinese hamster ovary and Sf21 lysates containing endogenous translocationally active microsomes for the synthesis of membrane proteins. We particularly highlight the usage of internal ribosomal entry site sequences for more efficient protein production, and also the significance of site-specific incorporation of non-canonical amino acids for labeling applications and creation of antibody drug conjugates using cell-free systems. We also discuss strategies to overcome the major challenges involved in commercializing cell-free platforms from a laboratory level for future drug development.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
13
|
Dondapati SK, Lübberding H, Zemella A, Thoring L, Wüstenhagen DA, Kubick S. Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems. Front Pharmacol 2019; 10:917. [PMID: 31543813 PMCID: PMC6728924 DOI: 10.3389/fphar.2019.00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) based on eukaryotic Sf21 lysate is gaining interest among researchers due to its ability to handle the synthesis of complex human membrane proteins (MPs). Additionally Sf21 cell-free systems contain endogenous microsomal vesicles originally derived from the endoplasmic reticulum (ER). After CFPS, MPs will be translocated into the microsomal vesicles membranes present in the lysates. Thus microsomal membranes offer a natural environment for de novo synthesized MPs. Despite the advantage of synthesizing complex MPs with post translational modifications directly into the microsomal membranes without any additional solubilization supplements, batch based Sf21 cell-free synthesis suffers from low yields. The bottleneck for MPs in particular after the synthesis and incorporation into the microsomal membranes is to analyze their functionality. Apart from low yields of the synthesized MPs with batch based cell-free synthesis, the challenges arise in the form of cytoskeleton elements and peripheral endogenous proteins surrounding the microsomes which may impede the functional analysis of the synthesized proteins. So careful sample processing after the synthesis is particularly important for developing the appropriate functional assays. Here we demonstrate how MPs (native and batch synthesized) from ER derived microsomes can be processed for functional analysis by electrophysiology and radioactive uptake assay methods. Treatment of the microsomal membranes either with a sucrose washing step in the case of human serotonin transporter (hSERT) and sarco/endoplasmic reticulum Ca2+/ATPase (SERCA) pump or with mild detergents followed by the preparation of proteoliposomes in the case of the human voltage dependent anionic channel (hVDAC1) helps to analyze the functional properties of MPs.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Henning Lübberding
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Gregorio NE, Levine MZ, Oza JP. A User's Guide to Cell-Free Protein Synthesis. Methods Protoc 2019; 2:E24. [PMID: 31164605 PMCID: PMC6481089 DOI: 10.3390/mps2010024] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Collapse
Affiliation(s)
- Nicole E Gregorio
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Max Z Levine
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Javin P Oza
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
15
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
16
|
Abstract
Cell-free production is a valuable and alternative method for the synthesis of membrane proteins. This system offers openness allowing the researchers to modify the reaction conditions without any boundaries. Additionally, the cell-free reactions are scalable from 20 μL up to several mL, faster and suitable for the high-throughput protein production. Here, we present two cell-free systems derived from Escherichia coli (E. coli) and Spodoptera frugiperda (Sf21) lysates. In the case of the E. coli cell-free system, nanodiscs are used for the solubilization and purification of membrane proteins. In the case of the Sf21 system, endogenous microsomes with an active translocon complex are present within the lysates which facilitate the incorporation of the bacterial potassium channel KcsA within the microsomal membranes. Following cell-free synthesis, these microsomes are directly used for the functional analysis of membrane proteins.
Collapse
|
17
|
Iwamoto M, Elfaramawy MA, Yamatake M, Matsuura T, Oiki S. Concurrent In Vitro Synthesis and Functional Detection of Nascent Activity of the KcsA Channel under a Membrane Potential. ACS Synth Biol 2018; 7:1004-1011. [PMID: 29566487 DOI: 10.1021/acssynbio.7b00454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Processes involved in the functional formation of prokaryotic membrane proteins have remained elusive. Here, we developed a new in vitro membrane protein expression system to detect nascent activities of the KcsA potassium channel in lipid bilayers under an applied membrane potential. The channel was synthesized using a reconstituted Escherichia coli-based in vitro transcription/translation system (IVTT) in a water-in-oil droplet lined by a membrane. The synthesized channels spontaneously incorporated into the membrane even without the translocon machinery (unassisted pathway) and formed functional channels with the correct orientation. The single-channel current of the first appearing nascent channel was captured, followed by the subsequent appearance of multiple channels. Notably, the first appearance time shortened substantially as the membrane potential was hyperpolarized. Under a steadily applied membrane potential, this system serves as a production line of membrane proteins via the unassisted pathway, mimicking the bacterial synthetic membrane.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| | - Maie A. Elfaramawy
- Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Yamatake
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| |
Collapse
|
18
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
19
|
Dondapati SK, Wüstenhagen DA, Strauch E, Kubick S. Cell-free production of pore forming toxins: Functional analysis of thermostable direct hemolysin from Vibrio parahaemolyticus. Eng Life Sci 2017; 18:140-148. [PMID: 29497355 PMCID: PMC5814925 DOI: 10.1002/elsc.201600259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 09/19/2017] [Accepted: 11/02/2017] [Indexed: 01/21/2023] Open
Abstract
The pore forming characteristic of TDH1 and TDH2 variants of thermostable direct hemolysin (TDH), a major toxin involved in the pathogenesis of Vibrio parahaemolyticus, was studied on a planar lipid bilayer painted over individual picoliter cavities containing microelectrodes assembled in a multiarray. Both proteins formed pores upon insertion into the lipid bilayer which was shown as a shift in the conductance from the baseline current. TDH2 protein was able to produce stable currents and the currents were influenced by external factors like concentration, type of salt and voltage. The pore currents were influenced and showed a detectable response in the presence of polymers which makes them suitable for biotechnology applications.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Potsdam Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Potsdam Germany
| | - Eckhard Strauch
- Federal Institute for Risk Assessment Department of Biological Safety National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Molluscs Berlin Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Potsdam Germany
| |
Collapse
|
20
|
Thoring L, Dondapati SK, Stech M, Wüstenhagen DA, Kubick S. High-yield production of "difficult-to-express" proteins in a continuous exchange cell-free system based on CHO cell lysates. Sci Rep 2017; 7:11710. [PMID: 28916746 PMCID: PMC5601898 DOI: 10.1038/s41598-017-12188-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/06/2017] [Indexed: 11/10/2022] Open
Abstract
Cell-free protein synthesis (CFPS) represents a promising technology for efficient protein production targeting especially so called "difficult-to-express" proteins whose synthesis is challenging in conventional in vivo protein production platforms. Chinese hamster ovary (CHO) cells are one of the most prominent and safety approved cell lines for industrial protein production. In this study we demonstrated the ability to produce high yields of various protein types including membrane proteins and single chain variable fragments (scFv) in a continuous exchange cell-free (CECF) system based on CHO cell lysate that contains endogenous microsomal structures. We showed significant improvement of protein yield compared to batch formatted reactions and proved biological activity of synthesized proteins using various analysis technologies. Optimized CECF reaction conditions led to membrane protein yields up to 980 µg/ml, which is the highest protein yield reached in a microsome containing eukaryotic cell-free system presented so far.
Collapse
Affiliation(s)
- Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany.
| |
Collapse
|
21
|
Thoring L, Dondapati SK, Stech M, Wüstenhagen DA, Kubick S. High-yield production of "difficult-to-express" proteins in a continuous exchange cell-free system based on CHO cell lysates. Sci Rep 2017; 7:11710. [PMID: 28916746 DOI: 10.1038/s41598-017-12188-12188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/06/2017] [Indexed: 05/28/2023] Open
Abstract
Cell-free protein synthesis (CFPS) represents a promising technology for efficient protein production targeting especially so called "difficult-to-express" proteins whose synthesis is challenging in conventional in vivo protein production platforms. Chinese hamster ovary (CHO) cells are one of the most prominent and safety approved cell lines for industrial protein production. In this study we demonstrated the ability to produce high yields of various protein types including membrane proteins and single chain variable fragments (scFv) in a continuous exchange cell-free (CECF) system based on CHO cell lysate that contains endogenous microsomal structures. We showed significant improvement of protein yield compared to batch formatted reactions and proved biological activity of synthesized proteins using various analysis technologies. Optimized CECF reaction conditions led to membrane protein yields up to 980 µg/ml, which is the highest protein yield reached in a microsome containing eukaryotic cell-free system presented so far.
Collapse
Affiliation(s)
- Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany.
| |
Collapse
|
22
|
Zhang C, Deng Y, Lei Y, Zhao J, Wei W, Li Y. Effects of selenium on myocardial apoptosis by modifying the activity of mitochondrial STAT3 and regulating potassium channel expression. Exp Ther Med 2017; 14:2201-2205. [PMID: 28962142 PMCID: PMC5609099 DOI: 10.3892/etm.2017.4716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/19/2017] [Indexed: 01/21/2023] Open
Abstract
The present study investigated the effects of myocardial mitochondrial signal transduction and activator of transcription 3 (STAT3), succinate dehydrogenase activity and changes of potassium channel expression on cardiomyocyte apoptosis under low selenium conditions. Primary cultured cardiomyocytes from neonatal mice were divided into the non-toxic control group (0.1 µM sodium selenite) and low selenium treatment group (0.05 µM sodium selenite) according to different selenium concentrations. The expression of mitochondrial STAT3, p-STAT3, p-Kv1.2 potassium channel and apoptosis-related proteins, Bax and Bcl-2, were assessed by immunoblotting. Succinate dehydrogenase activity was measured by spectrophotometry. Flow cytometry was used to detect cardiomyocyte apoptosis. Low selenium treatment reduced the expression of p-STAT3, but did not affect the expression of STAT3. In addition, low selenium treatment reduced the activity of mitochondrial STAT3 and succinate dehydrogenase in cardiomyocytes, leading to injury of myocardial mitochondria. Compared with the control group, low selenium conditions reduced the activity of p-Kv1.2 and reduced the normal electrophysiological function of cardiomyocytes. In the low selenium-treated group, the expression of Bax protein increased, whereas the expression of Bcl-2 protein decreased. The apoptotic rate increased. In conclusion, selenium deficiency in cardiomyocytes leads to decreased potassium channel expression and decreased mitochondrial STAT3 activity and mitochondrial function, which in turn promotes the apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Changjiang Zhang
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yinzhi Deng
- Department of Gastroenterology, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yuhua Lei
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Jingbo Zhao
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Wen Wei
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yuanhong Li
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
23
|
Sonnabend A, Spahn V, Stech M, Zemella A, Stein C, Kubick S. Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnol Bioeng 2017; 114:2328-2338. [PMID: 28574582 PMCID: PMC5599999 DOI: 10.1002/bit.26346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Viola Spahn
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Christoph Stein
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| |
Collapse
|
24
|
Lentini R, Yeh Martín N, Mansy SS. Communicating artificial cells. Curr Opin Chem Biol 2016; 34:53-61. [DOI: 10.1016/j.cbpa.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
25
|
Thoring L, Wüstenhagen DA, Borowiak M, Stech M, Sonnabend A, Kubick S. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives. PLoS One 2016; 11:e0163670. [PMID: 27684475 PMCID: PMC5042383 DOI: 10.1371/journal.pone.0163670] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/11/2016] [Indexed: 11/18/2022] Open
Abstract
Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.
Collapse
Affiliation(s)
- Lena Thoring
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Doreen A. Wüstenhagen
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Maria Borowiak
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Marlitt Stech
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Andrei Sonnabend
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Stefan Kubick
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
26
|
Quast RB, Ballion B, Stech M, Sonnabend A, Varga BR, Wüstenhagen DA, Kele P, Schiller SM, Kubick S. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids. Sci Rep 2016; 6:34048. [PMID: 27670253 PMCID: PMC5037433 DOI: 10.1038/srep34048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Biljana Ballion
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19, D-79104 Freiburg, Germany.,Center for Biosystems Analysis (ZBSA), University of Freiburg, Habsburger Str. 49, D-79104 Freiburg, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Balázs R Varga
- Chemical Biology Research Group, Hungarian Academy of Sciences, CNS, IOC, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Péter Kele
- Chemical Biology Research Group, Hungarian Academy of Sciences, CNS, IOC, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Stefan M Schiller
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19, D-79104 Freiburg, Germany.,Center for Biosystems Analysis (ZBSA), University of Freiburg, Habsburger Str. 49, D-79104 Freiburg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| |
Collapse
|
27
|
Schoborg JA, Clark LG, Choudhury A, Hodgman CE, Jewett MC. Yeast knockout library allows for efficient testing of genomic mutations for cell-free protein synthesis. Synth Syst Biotechnol 2016; 1:2-6. [PMID: 29062921 PMCID: PMC5640588 DOI: 10.1016/j.synbio.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 12/31/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems from crude lysates have benefitted from modifications to their enzyme composition. For example, functionally deleting enzymes in the source strain that are deleterious to CFPS can improve protein synthesis yields. However, making such modifications can take substantial time. As a proof-of-concept to accelerate prototyping capabilities, we assessed the feasibility of using the yeast knockout collection to identify negative effectors in a Saccharomyces cerevisiae CFPS platform. We analyzed extracts made from six deletion strains that targeted the single deletion of potentially negative effectors (e.g., nucleases). We found a statistically significant increase in luciferase yields upon loss of function of GCN3, PEP4, PPT1, NGL3, and XRN1 with a maximum increase of over 6-fold as compared to the wild type. Our work has implications for yeast CFPS and for rapidly prototyping strains to enable cell-free synthetic biology applications.
Collapse
Key Words
- ANOVA, analysis of variance
- ATP, adenosine triphosphate
- CFPS, cell-free protein synthesis
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cell-free biology
- Cell-free protein synthesis
- In vitro translation
- NTP, nucleoside triphosphate
- OD, optical density
- Protein expression
- SC, synthetic complete media
- Saccharomyces cerevisiae
- Synthetic biology
- YKO, yeast knockout
- cAMP, cyclic adenosine monophosphate
- eIF, eukaryotic initiation factor
Collapse
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Lauren G. Clark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Alaksh Choudhury
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Masters in Biotechnology Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
| | - C. Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Masters in Biotechnology Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St Clair St, Suite 1200, Chicago, IL 60611-3068, USA
- Simpson Querrey Institute, Northwestern University, 303 E. Superior St, Suite 11-131, Chicago, IL 60611-2875, USA
- Corresponding author. 2145 Sheridan Road, Tech E-136, Evanston, IL 60208-3120, USA.2145 Sheridan RoadTech E-136EvanstonIL60208-3120USA
| |
Collapse
|
28
|
Ando M, Akiyama M, Okuno D, Hirano M, Ide T, Sawada S, Sasaki Y, Akiyoshi K. Liposome chaperon in cell-free membrane protein synthesis: one-step preparation of KcsA-integrated liposomes and electrophysiological analysis by the planar bilayer method. Biomater Sci 2016; 4:258-64. [DOI: 10.1039/c5bm00285k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chaperoning functions of liposomes were investigated using cell-free membrane protein synthesis.
Collapse
Affiliation(s)
- M. Ando
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - M. Akiyama
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - D. Okuno
- Laboratory for Cell Dynamics Observation
- Quantitative Biology Center
- RIKEN
- Osaka 565-0874
- Japan
| | - M. Hirano
- Laboratory for Cell Dynamics Observation
- Quantitative Biology Center
- RIKEN
- Osaka 565-0874
- Japan
| | - T. Ide
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - S. Sawada
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Y. Sasaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - K. Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
29
|
Niwa T, Sasaki Y, Uemura E, Nakamura S, Akiyama M, Ando M, Sawada S, Mukai SA, Ueda T, Taguchi H, Akiyoshi K. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci Rep 2015; 5:18025. [PMID: 26667602 PMCID: PMC4678891 DOI: 10.1038/srep18025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023] Open
Abstract
Membrane proteins play pivotal roles in cellular processes and are key targets for drug discovery. However, the reliable synthesis and folding of membrane proteins are significant problems that need to be addressed owing to their extremely high hydrophobic properties, which promote irreversible aggregation in hydrophilic conditions. Previous reports have suggested that protein aggregation could be prevented by including exogenous liposomes in cell-free translation processes. Systematic studies that identify which membrane proteins can be rescued from irreversible aggregation during translation by liposomes would be valuable in terms of understanding the effects of liposomes and developing applications for membrane protein engineering in the context of pharmaceutical science and nanodevice development. Therefore, we performed a comprehensive study to evaluate the effects of liposomes on 85 aggregation-prone membrane proteins from Escherichia coli by using a reconstituted, chemically defined cell-free translation system. Statistical analyses revealed that the presence of liposomes increased the solubility of >90% of the studied membrane proteins, and ultimately improved the yields of the synthesized proteins. Bioinformatics analyses revealed significant correlations between the liposome effect and the physicochemical properties of the membrane proteins.
Collapse
Affiliation(s)
- Tatsuya Niwa
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Eri Uemura
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Shugo Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Minato Akiyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Mitsuru Ando
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
30
|
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems. Chembiochem 2015; 16:2420-31. [PMID: 26478227 PMCID: PMC4676933 DOI: 10.1002/cbic.201500340] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/07/2023]
Abstract
From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
31
|
Soranzo T, Cortès S, Gilde F, Kreir M, Picart C, Lenormand JL. Functional characterization of p7 viroporin from hepatitis C virus produced in a cell-free expression system. Protein Expr Purif 2015; 118:83-91. [PMID: 26477501 DOI: 10.1016/j.pep.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
Using a cell-free expression system we produced the p7 viroporin embedded into a lipid bilayer in a single-step manner. The protein quality was assessed using different methods. We examined the channel forming activity of p7 and verified its inhibition by 5-(N,N-Hexamethylene) amiloride (HMA). Fourier transformed infrared spectroscopy (FTIR) experiments further showed that when p7 was inserted into synthetic liposomes, the protein displayed a native-like conformation similar to p7 obtained from other sources. Photoactivable amino acid analogs used for p7 protein synthesis enabled oligomerization state analysis in liposomes by cross-linking. Therefore, these findings emphasize the quality of the cell-free produced p7 proteoliposomes which can benefit the field of the hepatitis C virus (HCV) protein production and characterization and also provide tools for the development of new inhibitors to reinforce our therapeutic arsenal against HCV.
Collapse
Affiliation(s)
- Thomas Soranzo
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France; TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France
| | - Sandra Cortès
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France
| | - Flora Gilde
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraβe 9, 80636, Munich, Germany
| | - Catherine Picart
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Jean-Luc Lenormand
- TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France.
| |
Collapse
|
32
|
Kovácsová G, Gustavsson E, Wang J, Kreir M, Peuker S, Westenhoff S. Cell-free expression of a functional pore-only sodium channel. Protein Expr Purif 2015; 111:42-7. [PMID: 25770647 PMCID: PMC4430601 DOI: 10.1016/j.pep.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 01/10/2023]
Abstract
Voltage-gated sodium channels participate in the propagation of action potentials in excitable cells. Eukaryotic Navs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane segments (S1-S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore domain with the selectivity filter. Prokaryotic Navs resemble these characteristics, but are truly tetrameric. They can typically be efficiently synthesized in bacteria, but production in vitro with cell-free synthesis has not been demonstrated. Here we report the cell-free expression and purification of a prokaryotic tetrameric pore-only sodium channel. We produced milligram quantities of the functional channel protein as characterized by size-exclusion chromatography, infrared spectroscopy and electrophysiological recordings. Cell-free expression enables advanced site-directed labelling, post-translational modifications, and special solubilization schemes. This enables next-generation biophysical experiments to study the principle of sodium ion selectivity and transport in sodium channels.
Collapse
Affiliation(s)
- Gabriela Kovácsová
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Jiajun Wang
- Nanion Technologies GmbH, Gabrielenstraße 9, 80636 Munich, Germany
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraße 9, 80636 Munich, Germany
| | - Sebastian Peuker
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden.
| | - Sebastian Westenhoff
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
33
|
Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 2015; 589:1703-12. [PMID: 25937125 DOI: 10.1016/j.febslet.2015.04.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Over the last years protein engineering using non-standard amino acids has gained increasing attention. As a result, improved methods are now available, enabling the efficient and directed cotranslational incorporation of various non-standard amino acids to equip proteins with desired characteristics. In this context, the utilization of cell-free protein synthesis is particularly useful due to the direct accessibility of the translational machinery and synthesized proteins without having to maintain a vital cellular host. We review prominent methods for the incorporation of non-standard amino acids into proteins using cell-free protein synthesis. Furthermore, a list of non-standard amino acids that have been successfully incorporated into proteins in cell-free systems together with selected applications is provided.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Devid Mrusek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
34
|
Quast RB, Kortt O, Henkel J, Dondapati SK, Wüstenhagen DA, Stech M, Kubick S. Automated production of functional membrane proteins using eukaryotic cell-free translation systems. J Biotechnol 2015; 203:45-53. [PMID: 25828454 DOI: 10.1016/j.jbiotec.2015.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022]
Abstract
Due to their high abundance and pharmacological relevance there is a growing demand for the efficient production of functional membrane proteins. In this context, cell-free protein synthesis represents a valuable alternative that allows for the high-throughput synthesis of functional membrane proteins. Here, we demonstrate the potential of our cell-free protein synthesis system, based on lysates from cultured Spodoptera frugiperda 21 cells, to produce pro- and eukaryotic membrane proteins with individual topological characteristics in an automated fashion. Analytical techniques, including confocal laser scanning microscopy, fluorescence detection of eYFP fusion proteins in a microplate reader and in-gel fluorescence of statistically incorporated fluorescent amino acid derivatives were employed. The reproducibility of our automated synthesis approach is underlined by coefficients of variation below 7.2%. Moreover, the functionality of the cell-free synthesized potassium channel KcsA was analyzed electrophysiologically. Finally, we expanded our cell-free membrane protein synthesis system by an orthogonal tRNA/synthetase pair for the site-directed incorporation of p-Azido-l-phenylalanine based on stop codon suppression. Incorporation was optimized by performance of a two-dimensional screening with different Mg(2+) and lysate concentrations. Subsequently, the selective modification of membrane proteins with incorporated p-Azido-l-phenylalanine was exemplified by Staudinger ligation with a phosphine-based fluorescence dye.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Oliver Kortt
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Jörg Henkel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
35
|
|
36
|
Developing cell-free protein synthesis systems: a focus on mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Stech M, Hust M, Schulze C, Dübel S, Kubick S. Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments. Eng Life Sci 2014; 14:387-398. [PMID: 25821419 PMCID: PMC4374706 DOI: 10.1002/elsc.201400036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 01/27/2023] Open
Abstract
Open cell-free translation systems based on Escherichia coli cell lysates have successfully been used to produce antibodies and antibody fragments. In this study, we demonstrate the cell-free expression of functional single-chain antibody variable fragments (scFvs) in a eukaryotic and endotoxin-free in vitro translation system based on Spodoptera frugiperda (Sf21) insect cell extracts. Three scFv candidates with different specificities were chosen as models. The first scFv candidate SH527-IIA4 specifically discriminates between its phosphorylated (SMAD2-P) and nonphosphorylated antigens (SMAD2) (where SMAD is mothers against decapentaplegic homolog 2), whereas the second scFv candidate SH527-IIC10 recognizes both, SMAD2-P and SMAD2. The third scFv candidate SH855-C11 binds specifically to a linear epitope of the CXC chemokine receptor type 5. The translocation of antibody fragments into the lumen of endogenous microsomal vesicles, which are contained in the lysate, was facilitated by fusion of scFv genes to the insect cell specific signal sequence of honeybee melittin. We compared the binding capabilities of scFv fragments with and without melittin signal peptide and detected that translocated scFv fragments were highly functional, whereas scFvs synthesized in the cytosol of the cell extract showed strongly decreased binding capabilities. Additionally, we describe a cell-free protein synthesis method for the incorporation of noncanonical amino acids into scFv molecules in eukaryotic cell lysates. We demonstrate the successful cotranslational labeling of de novo synthesized scFv molecules with fluorescent amino acids, using residue-specific as well as site-specific labeling.
Collapse
Affiliation(s)
- Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm Potsdam, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Braunschweig, Germany
| | - Corina Schulze
- Department of Life Sciences and Technology, Beuth Hochschule für Technik Berlin, University of Applied Sciences Berlin, Germany
| | - Stefan Dübel
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Braunschweig, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm Potsdam, Germany
| |
Collapse
|
38
|
Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S. Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Lett 2014; 588:2774-81. [DOI: 10.1016/j.febslet.2014.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
|