1
|
Hu X, Abbasi R, Wachsmann-Hogiu S. Microfluidics on lensless, semiconductor optical image sensors: challenges and opportunities for democratization of biosensing at the micro-and nano-scale. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3977-4008. [PMID: 39635640 PMCID: PMC11501743 DOI: 10.1515/nanoph-2023-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 12/07/2024]
Abstract
Optical image sensors are 2D arrays of pixels that integrate semiconductor photodiodes and field effect transistors for efficient photon conversion and processing of generated electrons. With technological advancements and subsequent democratization of these sensors, opportunities for integration with microfluidics devices are currently explored. 2D pixel arrays of such optical image sensors can reach dimensions larger than one centimeter with a sub-micrometer pixel size, for high spatial resolution lensless imaging with large field of view, a feat that cannot be achieved with lens-based optical microscopy. Moreover, with advancements in fabrication processes, the field of microfluidics has evolved to develop microfluidic devices with an overall size below one centimeter and individual components of sub-micrometer size, such that they can now be implemented onto optical image sensors. The convergence of these fields is discussed in this article, where we review fundamental principles, opportunities, challenges, and outlook for integration, with focus on contact-mode imaging configuration. Most recent developments and applications of microfluidic lensless contact-based imaging to the field of biosensors, in particular those related to the potential for point of need applications, are also discussed.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | | |
Collapse
|
2
|
Yasuga H. Methods to spontaneously generate three dimensionally arrayed microdroplets triggered by capillarity for bioassays and bioengineering. Biophys Physicobiol 2023; 20:e200029. [PMID: 38496237 PMCID: PMC10941964 DOI: 10.2142/biophysico.bppb-v20.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/08/2023] [Indexed: 03/19/2024] Open
Abstract
Herein, I review our recent work toward developing methods for generating three-dimensional (3D) droplet arrays driven by capillarity. Microdroplet array-based systems are useful for bioassays and bioengineering because they require only small amounts of samples and reagents and provide the high throughput. Various methods have been developed for preparing droplet arrays, among which methods based on capillarity have attracted considerable attention owing to their simplicity. I and collaborators have developed such methods based on capillary flow, including a method for preparing droplet arrays via oil-water replacement. We recently proposed our own concept of "fluid-fluid interfacial energy driven 3D structure emergence in a micropillar scaffold (FLUID3EAMS)" and its application. FLUID3EAMS allows a 3D droplet (or hydrogel bead) array to be generated in a micropillar scaffold by passing a fluid-fluid interface through the scaffold. This approach is useful for applications requiring ordered or arrayed microdroplets in biosensors, biophysics, biology, and tissue engineering. This review is an extended version of the article "FLUID3EAMS: Fluid-Fluid Interfacial Energy Driven 3D Structure Emergence in a Micropillar Scaffold and Development in Bioengineering" published in Seibutsu Butsuri (vol. 62, p. 110-113, 2022).
Collapse
Affiliation(s)
- Hiroki Yasuga
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
3
|
Microfluidic-based blood immunoassays. J Pharm Biomed Anal 2023; 228:115313. [PMID: 36868029 DOI: 10.1016/j.jpba.2023.115313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Microfluidics enables the integration of whole protocols performed in a laboratory, including sample loading, reaction, extraction, and measurement steps on a single system, which offers significant advantages thanks to small-scale operation combined with precise fluid control. These include providing efficient transportation mechanisms and immobilization, reduced sample and reagent volumes, fast analysis and response times, lower power requirements, lower cost and disposability, improved portability and sensitivity, and greater integration and automation capability. Immunoassay is a specific bioanalytical method based on the interaction of antigens and antibodies, which is utilized to detect bacteria, viruses, proteins, and small molecules in several areas such as biopharmaceutical analysis, environmental analysis, food safety, and clinical diagnostics. Because of the advantages of both techniques, the combination of immunoassays and microfluidic technology is considered one of the most potential biosensor systems for blood samples. This review presents the current progress and important developments in microfluidic-based blood immunoassays. After providing several basic information about blood analysis, immunoassays, and microfluidics, the review points out in-depth information about microfluidic platforms, detection techniques, and commercial microfluidic blood immunoassay platforms. In conclusion, some thoughts and future perspectives are provided.
Collapse
|
4
|
Gharib G, Bütün İ, Muganlı Z, Kozalak G, Namlı İ, Sarraf SS, Ahmadi VE, Toyran E, van Wijnen AJ, Koşar A. Biomedical Applications of Microfluidic Devices: A Review. BIOSENSORS 2022; 12:1023. [PMID: 36421141 PMCID: PMC9688231 DOI: 10.3390/bios12111023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İsmail Bütün
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Zülâl Muganlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Gül Kozalak
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İlayda Namlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | | | | | - Erçil Toyran
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
5
|
Bhardwaj T, Ramana LN, Sharma TK. Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. BIOSENSORS 2022; 12:357. [PMID: 35624657 PMCID: PMC9139021 DOI: 10.3390/bios12050357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Better diagnostics are always essential for the treatment and prevention of a disease. Existing technologies for detecting infectious and non-infectious diseases are mostly tedious, expensive, and do not meet the World Health Organization's (WHO) ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end user) criteria. Hence, more accurate, sensitive, and faster diagnostic technologies that meet the ASSURED criteria are highly required for timely and evidenced-based treatment. Presently, the diagnostics industry is finding interest in microfluidics-based biosensors, as this integration comprises all qualities, such as reduction in the size of the equipment, rapid turnaround time, possibility of parallel multiple analysis or multiplexing, etc. Microfluidics deal with the manipulation/analysis of fluid within micrometer-sized channels. Biosensors comprise biomolecules immobilized on a physicochemical transducer for the detection of a specific analyte. In this review article, we provide an outline of the history of microfluidics, current practices in the selection of materials in microfluidics, and how and where microfluidics-based biosensors have been used for the diagnosis of infectious and non-infectious diseases. Our inclination in this review article is toward the employment of microfluidics-based biosensors for the improvement of already existing/traditional methods in order to reduce efforts without compromising the accuracy of the diagnostic test. This article also suggests the possible improvements required in microfluidic chip-based biosensors in order to meet the ASSURED criteria.
Collapse
Affiliation(s)
- Tanu Bhardwaj
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, 3rd Milestone, Gurugram Expressway, Faridabad 121001, India;
| | - Lakshmi Narashimhan Ramana
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India;
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gujarat International Finance and Tec (GIFT) City, Gandhinagar 382355, India
| |
Collapse
|
6
|
|
7
|
Pham ATT, Wallace A, Zhang X, Tohl D, Fu H, Chuah C, Reynolds KJ, Ramsey C, Tang Y. Optical-Based Biosensors and Their Portable Healthcare Devices for Detecting and Monitoring Biomarkers in Body Fluids. Diagnostics (Basel) 2021; 11:diagnostics11071285. [PMID: 34359368 PMCID: PMC8307945 DOI: 10.3390/diagnostics11071285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The detection and monitoring of biomarkers in body fluids has been used to improve human healthcare activities for decades. In recent years, researchers have focused their attention on applying the point-of-care (POC) strategies into biomarker detection. The evolution of mobile technologies has allowed researchers to develop numerous portable medical devices that aim to deliver comparable results to clinical measurements. Among these, optical-based detection methods have been considered as one of the common and efficient ways to detect and monitor the presence of biomarkers in bodily fluids, and emerging aggregation-induced emission luminogens (AIEgens) with their distinct features are merging with portable medical devices. In this review, the detection methodologies that use optical measurements in the POC systems for the detection and monitoring of biomarkers in bodily fluids are compared, including colorimetry, fluorescence and chemiluminescence measurements. The current portable technologies, with or without the use of smartphones in device development, that are combined with optical biosensors for the detection and monitoring of biomarkers in body fluids, are also investigated. The review also discusses novel AIEgens used in the portable systems for the detection and monitoring of biomarkers in body fluid. Finally, the potential of future developments and the use of optical detection-based portable devices in healthcare activities are explored.
Collapse
Affiliation(s)
- Anh Tran Tam Pham
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Angus Wallace
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Xinyi Zhang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Damian Tohl
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Hao Fu
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Clarence Chuah
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Karen J. Reynolds
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Carolyn Ramsey
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Youhong Tang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
- Correspondence: ; Tel.: +61-8-8201-2138
| |
Collapse
|
8
|
Nureye D, Tekalign E, Fisseha N, Tesfaye T, Hammeso WW. Evaluation of Antiplasmodial Activity of Hydroalcoholic Crude Extract and Solvent Fractions of Zehneria scabra Roots Against Plasmodium berghei in Swiss Albino Mice. Infect Drug Resist 2021; 14:2583-2596. [PMID: 34262303 PMCID: PMC8275019 DOI: 10.2147/idr.s314262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background Since drug resistance makes controlling malaria parasites a major challenge, these pioneering researchers explore and discover new novel drugs from a variety of sources. As a result, this study aimed to assess the anti-plasmodial activity of hydroalcoholic crude extract and solvent fractions of Zehneria scabra roots in mice infected with Plasmodium berghei. Methods The antimalarial activity and safety profile of Zehneria scabra extracts were tested in a mouse model using four-day suppressive, prophylactic, and rane’s tests against chloroquine-sensitive Plasmodium berghei. Mice were divided into five groups at random: group I received distilled water (10 mL/kg), group II, III, and IV received 200, 400, and 600 mg/kg of the extract, respectively, and group V received chloroquine (25 mg/kg). The antimalarial activity of the extract was determined using parasitemia levels, survival time, rectal temperature, and weight variation. Results At all dose levels, the crude extract and solvent fractions of Zehneria scabra showed significant (p<0.05 to p<0.001) chemosuppression, with the crude extract and butanol fraction showing the highest chemosuppression (73.09% and 74.09%, respectively). Apart from suppressing parasitemia, the extract also increased survival time and secured packed cell volume reduction substantially (p<0.05 to p<0.001), while the crude extract had no significant impact on body weight or rectal temperature reduction in four-day suppressive and prophylactic models. Conclusion The result designated that Zehneria scabra is endowed with significant antimalarial activity. These results thus support the traditional use of Zehneria scabra, for the treatment of malaria.
Collapse
Affiliation(s)
- Dejen Nureye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Southwest Ethiopia
| | - Eyob Tekalign
- Department of Medical Laboratory sciences, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Southwest Ethiopia
| | - Nebeyi Fisseha
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Southwest Ethiopia
| | - Tarekegn Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Southwest Ethiopia
| | - Workineh Woldeselassie Hammeso
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Southwest Ethiopia
| |
Collapse
|
9
|
Fu Y, Zhang Y, Khoo BL. Liquid biopsy technologies for hematological diseases. Med Res Rev 2020; 41:246-274. [PMID: 32929726 DOI: 10.1002/med.21731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in studying circulating biomarkers from patients' blood have made the diagnosis of nonhematologic cancers less invasive. Technological advances in the detection and analysis of biomarkers provide new opportunities for the characterization of other disease types. When compared with traditional biopsies, liquid biopsy markers, such as exfoliated bladder cancer cells, circulating cell-free DNA (cfDNA), and extracellular vesicles (EV), are considered more convenient than conventional biopsies. Liquid biopsy markers undoubtedly have the potential to influence disease management and treatment dynamics. Our main focuses of this review will be the cell-based, gene-based, and protein-based key liquid biopsy markers (including EV and cfDNA) in disease detection, and discuss the research progress of these biomarkers used in conjunction with liquid biopsy. First, we highlighted the key technologies that have been broadly adopted used in hematological diseases. Second, we introduced the latest technological developments for the specific detection of cardiovascular disease, leukemia, and coronavirus disease. Finally, we concluded with perspectives on these research areas, focusing on the role of microfluidic technology and artificial intelligence in point-of-care medical applications. We believe that the noninvasive capabilities of these technologies have great potential in the development of diagnostics and can influence treatment options, thereby advancing precision disease management.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
10
|
Park J, Han DH, Park JK. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. LAB ON A CHIP 2020; 20:1191-1203. [PMID: 32119024 DOI: 10.1039/d0lc00047g] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microfluidic technologies offer a number of advantages for sample preparation in point-of-care testing (POCT), but the requirement for complicated external pumping systems limits their wide use. To facilitate sample preparation in POCT, various methods have been developed to operate microfluidic devices without complicated external pumping systems. In this review, we introduce an overview of user-friendly microfluidic devices for practical sample preparation in POCT, including self- and hand-operated microfluidic devices. Self-operated microfluidic devices exploit capillary force, vacuum-driven pressure, or gas-generating chemical reactions to apply pressure into microchannels, and hand-operated microfluidic devices utilize human power sources using simple equipment, including a syringe, pipette, or simply by using finger actuation. Furthermore, this review provides future perspectives to realize user-friendly integrated microfluidic circuits for wider applications with the integration of simple microfluidic valves.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | |
Collapse
|
11
|
Hong F, Wang Q, Wang W, Chen X, Cao Y, Dong Y, Gan N, Wu D, Hu F. Background signal-free and highly sensitive electrochemical aptasensor for rapid detecting tumor markers with Pb-MOF functionalized dendritic DNA probes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. Electrophoresis 2019; 41:287-305. [DOI: 10.1002/elps.201900258] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Worapot Suntornsuk
- Department of Microbiology, Faculty of ScienceKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Leena Suntornsuk
- Department of Pharmaceutical ChemistryFaculty of PharmacyMahidol University Bangkok Thailand
| |
Collapse
|
13
|
Xue TY, Mei LP, Xu YT, Liu YL, Fan GC, Li HY, Ye D, Zhao WW. Nanoporous Semiconductor Electrode Captures the Quantum Dots: Toward Ultrasensitive Signal-On Liposomal Photoelectrochemical Immunoassay. Anal Chem 2019; 91:3795-3799. [PMID: 30789708 DOI: 10.1021/acs.analchem.9b00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liposomal photoelectrochemical (PEC) bioanalysis has recently emerged and exhibited great potential in sensitive biomolecular detection. Exploration of the facile and efficient route for advanced liposomal PEC bioanalysis is highly appealing. In this work, we report the split-type liposomal PEC immunoassay system consisting of sandwich immunorecognition, CdS quantum dots (QDs)-loaded liposomes (QDLL), and the release and subsequent capture of the QDs by a separated TiO2 nanotubes (NTs) electrode. The system elegantly operated upon the protein binding and lysis treatment of CdS QDLL labels within the 96-well plate, and then the CdS QDs-enabled sensitization of TiO2 NTs electrode. Exemplified by cardiac markers troponin I (cTnI) as target, the proposed system achieved efficient activation of TiO2 NTs electrode and thus the signal generation toward the split-type PEC immunoassay. This work features the first use of QDs for liposomal PEC bioanalysis and is expected to inspire more interests in the design and implementation of numerous QDs-involved liposomal PEC bioanalysis.
Collapse
Affiliation(s)
- Tie-Ying Xue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Li-Ping Mei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Heng-Ye Li
- School of Materials Science and Engineering , Yancheng Institute of Technology , Yancheng 224051 , China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
14
|
Zheng L, Dong X, Chi J, Sun M, Zhao C, Liu H. Integration of patterned photonic nitrocellulose and microfluidic chip for fluorescent point-of-care testing of multiple targets. NEW J CHEM 2019. [DOI: 10.1039/c9nj00125e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With the unique capability of enhancing fluorescence, photonic material is integrated into microfluidic chip for point-of-care testing of multiple targets.
Collapse
Affiliation(s)
- Liuzheng Zheng
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Xing Dong
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Junjie Chi
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Mi Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Hong Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
15
|
Barbosa AI, Reis NM. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst 2018; 142:858-882. [PMID: 28217778 DOI: 10.1039/c6an02445a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.
Collapse
Affiliation(s)
- Ana I Barbosa
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Nuno M Reis
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK and Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
16
|
Olanrewaju A, Beaugrand M, Yafia M, Juncker D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. LAB ON A CHIP 2018; 18:2323-2347. [PMID: 30010168 DOI: 10.1039/c8lc00458g] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidics offer economy of reagents, rapid liquid delivery, and potential for automation of many reactions, but often require peripheral equipment for flow control. Capillary microfluidics can deliver liquids in a pre-programmed manner without peripheral equipment by exploiting surface tension effects encoded by the geometry and surface chemistry of a microchannel. Here, we review the history and progress of microchannel-based capillary microfluidics spanning over three decades. To both reflect recent experimental and conceptual progress, and distinguish from paper-based capillary microfluidics, we adopt the more recent terminology of capillaric circuits (CCs). We identify three distinct waves of development driven by microfabrication technologies starting with early implementations in industry using machining and lamination, followed by development in the context of micro total analysis systems (μTAS) and lab-on-a-chip devices using cleanroom microfabrication, and finally a third wave that arose with advances in rapid prototyping technologies. We discuss the basic physical laws governing capillary flow, deconstruct CCs into basic circuit elements including capillary pumps, stop valves, trigger valves, retention valves, and so on, and describe their operating principle and limitations. We discuss applications of CCs starting with the most common usage in automating liquid delivery steps for immunoassays, and highlight emerging applications such as DNA analysis. Finally, we highlight recent developments in rapid prototyping of CCs and the benefits offered including speed, low cost, and greater degrees of freedom in CC design. The combination of better analytical models and lower entry barriers (thanks to advances in rapid manufacturing) make CCs both a fertile research area and an increasingly capable technology for user-friendly and high-performance laboratory and diagnostic tests.
Collapse
Affiliation(s)
- Ayokunle Olanrewaju
- Biomedical Engineering Department, McGill University, Genome Quebec and McGill University Innovation Centre, Canada.
| | | | | | | |
Collapse
|
17
|
O'Dwyer K, Mouras R, Mani AA, Rice D, Gleeson M, Liu N, Tofail SAM, Silien C. Label-free multimodal coherent anti-Stokes Raman scattering analysis of microparticles in unconstrained microfluidics. APPLIED OPTICS 2018; 57:E32-E36. [PMID: 30117918 DOI: 10.1364/ao.57.000e32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Fast, label-free optical identification and quantification of biomolecules and other relevant biological materials in microfluidic devices and the vascular system will play a major role in liquid biopsy and related diagnoses. An optical microscope probing simultaneously non-linear coherent anti-Stokes Raman scattering (CARS) and linear scattering (LS) was used to probe microparticles in aqueous solutions flowed unconstrained in microfluidic channels. Despite the optical complexity of these systems, where out-of-focus microparticles randomly impede CARS and LS, and where water CARS generates a substantial background, we demonstrate that in-focus microparticles can be individually and unambiguously detected when CARS and LS are co-analyzed. The ability to chemically discriminate microscale features in optically realistic flows supports the relevance of multimodal CARS platforms for liquid biopsy.
Collapse
|
18
|
Lee D, Hwang J, Seo Y, Gilad AA, Choi J. Optical Immunosensors for the Efficient Detection of Target Biomolecules. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Khodayari Bavil A, Kim J. A capillary flow-driven microfluidic system for microparticle-labeled immunoassays. Analyst 2018; 143:3335-3342. [DOI: 10.1039/c8an00898a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple and sensitive capillary-driven microfluidic platform is designed and demonstrated for direct and sandwich microparticle-labeled immunoassays.
Collapse
Affiliation(s)
| | - Jungkyu Kim
- Department of Mechanical Engineering
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
20
|
Synergistic Use of Gold Nanoparticles (AuNPs) and "Capillary Enzyme-Linked Immunosorbent Assay (ELISA)" for High Sensitivity and Fast Assays. SENSORS 2017; 18:s18010055. [PMID: 29278402 PMCID: PMC5795359 DOI: 10.3390/s18010055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/01/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Using gold nanoparticles (AuNPs) on "capillary enzyme-linked immunosorbent assay (ELISA)", we produced highly sensitive and rapid assays, which are the major attributes for point-of-care applications. First, in order to understand the size effect of AuNPs, AuNPs of varying diameters (5 nm, 10 nm, 15 nm, 20 nm, 30 nm, and 50 nm) conjugated with Horseradish Peroxidase (HRP)-labeled anti-C reactive protein (antiCRP) (AuNP•antiCRP-HRP) were used for well-plate ELISA. AuNP of 10 nm produced the largest optical density, enabling detection of 0.1 ng/mL of CRP with only 30 s of incubation, in contrast to 10 ng/mL for the ELISA run in the absence of AuNP. Then, AuNP of 10 nm conjugated with antiCRP-HRP (AuNP•antiCRP-HRP) was used for "capillary ELISA" to detect as low as 0.1 ng/mL of CRP. Also, kinetic study on both 96-well plates and in a capillary tube using antiCRP-HRP or AuNP•antiCRP-HRP showed a synergistic effect between AuNP and the capillary system, in which the fastest assay was observed from the "AuNP capillary ELISA", with its maximum absorbance reaching 2.5 min, while the slowest was the typical well-plate ELISA with its maximum absorbance reaching in 13.5 min.
Collapse
|
21
|
Wu J, Dong M, Santos S, Rigatto C, Liu Y, Lin F. Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. SENSORS 2017; 17:s17122934. [PMID: 29258216 PMCID: PMC5751502 DOI: 10.3390/s17122934] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) and cancer are two leading causes of death worldwide. CVD and cancer share risk factors such as obesity and diabetes mellitus and have common diagnostic biomarkers such as interleukin-6 and C-reactive protein. Thus, timely and accurate diagnosis of these two correlated diseases is of high interest to both the research and healthcare communities. Most conventional methods for CVD and cancer biomarker detection such as microwell plate-based immunoassay and polymerase chain reaction often suffer from high costs, low test speeds, and complicated procedures. Recently, lab-on-a-chip (LoC)-based platforms have been increasingly developed for CVD and cancer biomarker sensing and analysis using various molecular and cell-based diagnostic biomarkers. These new platforms not only enable better sample preparation, chemical manipulation and reaction, high-throughput and portability, but also provide attractive features such as label-free detection and improved sensitivity due to the integration of various novel detection techniques. These features effectively improve the diagnostic test speed and simplify the detection procedure. In addition, microfluidic cell assays and organ-on-chip models offer new potential approaches for CVD and cancer diagnosis. Here we provide a mini-review focusing on recent development of LoC-based methods for CVD and cancer diagnostic biomarker measurements, and our perspectives of the challenges, opportunities and future directions.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Meili Dong
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China.
| | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community Areas, Winnipeg, MB, R3T 2E8, Canada.
| | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China.
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
22
|
Zhu Q, Trau D. PEG-based autonomous capillary system with integrated microbead array for immunoassay. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1031-1038. [DOI: 10.1016/j.msec.2016.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 11/17/2022]
|
23
|
Watanabe T, Biswas GC, Carlen ET, Suzuki H. An autonomous electrochemically-actuated microvalve for controlled transport in stand-alone microfluidic systems. RSC Adv 2017. [DOI: 10.1039/c7ra07335f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An autonomous stand-alone microfluidic system using an electrochemically-actuated microvalve based on a single bi-metallic Zn/Pt electrode.
Collapse
Affiliation(s)
- T. Watanabe
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- 305-8573 Tsukuba
- Japan
| | - G. C. Biswas
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- 305-8573 Tsukuba
- Japan
| | - E. T. Carlen
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- 305-8573 Tsukuba
- Japan
| | - H. Suzuki
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- 305-8573 Tsukuba
- Japan
| |
Collapse
|
24
|
Lafleur JP, Jönsson A, Senkbeil S, Kutter JP. Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron 2016; 76:213-33. [DOI: 10.1016/j.bios.2015.08.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022]
|
25
|
Sanjay ST, Fu G, Dou M, Xu F, Liu R, Qi H, Li X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 2015; 140:7062-81. [PMID: 26171467 PMCID: PMC4604043 DOI: 10.1039/c5an00780a] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.
Collapse
Affiliation(s)
- Sharma T Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas 79968, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Li P, Zhang B, Cui T. Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosens Bioelectron 2015; 72:168-74. [PMID: 25982724 DOI: 10.1016/j.bios.2015.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 01/02/2023]
Abstract
Graphene biosensors reported so far are based on polycrystalline graphene flakes which are anchored on supporting substrates. The influence of grain boundary and the scattering from substrate drastically degrade the properties of graphene and conceal the performance of intrinsic graphene as a sensor. Here we report a label-free biosensor based on suspended single crystalline graphene (SCG), which can get rid of grain boundary and substrate scattering, revealing the biosensing mechanism of intrinsic graphene for the first time. Monolayer SCG flakes were derived from low pressure chemical vapor deposition (LPCVD) method. Multiplex detection of three different lung cancer tumor markers was realized. The suspended structure can largely improve the sensitivity and detection limit (0.1 pg/ml) of the sensor, and the single crystalline nature of SCG enable the biosensor to have superior uniformity compared to polycrystalline ones. The SCG sensors exhibit superb specificity and large linear detection range from 1 pg/ml to 1 μg/ml, showing the prominent advantages of graphene as a sensing material.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China; Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bo Zhang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Development of quantum dots-based biosensor towards on-farm detection of subclinical ketosis. Biosens Bioelectron 2015; 72:140-7. [PMID: 25978442 DOI: 10.1016/j.bios.2015.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022]
Abstract
Early detection of dairy animal health issues allows the producer or veterinarian to intervene before the animals' production levels, or even survival, is threatened. An increased concentration of β-hydroxybutyrate (βHBA) is a key biomarker for diagnosis of subclinical ketosis (SCK), and provides information on the health stress in cows well before any external symptoms are observable. In this study, quantum dots (QDs) modified with cofactor nicotinamide adenine dinucleotide (NAD(+)) were prepared for the sensing event, by which the βHBA concentration in the cow's blood and milk samples was determined via fluorescence analysis of the functionalized QDs. The detection was performed on a custom designed microfluidic platform combining with a low cost and miniaturized optical sensor. The sensing mechanism was first validated by a microplate reader method and then applied to the microfluidic platform. Standard βHBA solution, βHBA in blood and milk samples from cows were successfully measured by this novel technology with a detection limit at a level of 35 µM. Side by side comparison of the developed microfluidic biosensor with a commercial kit presented its good performance.
Collapse
|
28
|
Sha Y, Guo Z, Chen B, Wang S, Ge G, Qiu B, Jiang X. A one-step electrochemiluminescence immunosensor preparation for ultrasensitive detection of carbohydrate antigen 19-9 based on multi-functionalized graphene oxide. Biosens Bioelectron 2015; 66:468-73. [DOI: 10.1016/j.bios.2014.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
|
29
|
Bernacka-Wojcik I, Águas H, Carlos FF, Lopes P, Wojcik PJ, Costa MN, Veigas B, Igreja R, Fortunato E, Baptista PV, Martins R. Single nucleotide polymorphism detection using gold nanoprobes and bio-microfluidic platform with embedded microlenses. Biotechnol Bioeng 2015; 112:1210-9. [PMID: 25765286 DOI: 10.1002/bit.25542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The use of microfluidics platforms combined with the optimal optical properties of gold nanoparticles has found plenty of application in molecular biosensing. This paper describes a bio-microfluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/µL below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/µL) with 10 times lower solution volume (i.e., 3 µL). A set of optimization of our previously reported bio-microfluidic platform (Bernacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanoparticles, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' colorimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical microscope to a digital camera with a long exposure time (30 s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates).
Collapse
Affiliation(s)
- Iwona Bernacka-Wojcik
- Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, CENIMAT/I3N, Caparica, 2829-516, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
CO2 Laser Manufacturing of Miniaturised Lenses for Lab-on-a-Chip Systems. MICROMACHINES 2014. [DOI: 10.3390/mi5030457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|