1
|
Zeng X, Tong X, Chen J, Chen Q, Lai R, Xu Q, Wang D, Zhou X, Shao Y. Fluorogenic target competitors for developing label-free and sensitive folding-unswitching aptamer sensors. Anal Chim Acta 2024; 1329:343237. [PMID: 39396299 DOI: 10.1016/j.aca.2024.343237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aptamers have aroused tremendous applications in sensors, drug deliveries, diagnosis, and therapies. In particular, target-induced global structure switching of aptamers has been widely used to develop selective sensors. However, fluorophore and/or quencher modification, sequence elongation, and nano-interface adsorption are required to design such global structure-switching aptamer sensors (SSAS) in order to signal target binding events. Accordingly, these requirements make SSAS at a high cost and expense of sensors' sensitivity. In this aspect, efforts should be made to overcome these drawbacks of SSAS. RESULTS Herein, we tried to develop label-free folding-unswitching aptamer sensors (FUAS) by searching fluorogenic target competitors. Using adenine nucleoside/nucleotide as the proof-of-concept model targets, we screened out berberine (BER) from natural isoquinoline alkaloids (having rings comparable to targets) as the best fluorogenic target competitor. Binding of BER at the conserved nucleotides of intact aptamer foldings turned on this fluorogenic target competitor' fluorescence. Targets then competed with this fluorogenic target competitor over the same conserved nucleotides to cause its release in favor of a resultant fluorescence change. We found that the developed FUAS are much more sensitive than the previously reported SSAS. The FUAS were successfully applied to assays of ATP and adenosine deaminase in serums, and to screening of the adenosine deaminase's inhibitor, verifying the reliability and applicability of this FUAS platform in variant fields. SIGNIFICANCE We demonstrate that by designing fluorogenic target competitors, FUAS can be alternatively developed in a label-free manner and with a higher sensitivity than the previously developed SSAS. This work opens a new way to develop high-performance aptamer-based sensors. Furthermore, our developed FUAS should inspire more interest for wide applications incluidng target-triggered drug deliveries when therapeutic fluorogenic target competitors are used.
Collapse
Affiliation(s)
- Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiufang Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Jiahui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiyao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
2
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Xu ZH, Zhao ZY, Wang H, Wang SM, Chen HY, Xu JJ. CRISPR-Cas12a-based efficient electrochemiluminescence biosensor for ATP detection. Anal Chim Acta 2021; 1188:339180. [PMID: 34794559 DOI: 10.1016/j.aca.2021.339180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12a system exhibits tremendous potential in accurate recognition and quantitation of nucleic acids and non-nucleic-acid targets thanks to the discovery of its cleavage capability toward single-stranded DNA (ssDNA). In this study, we developed an efficient electrochemiluminescence (ECL) sensing platform based on CRISPR-Cas12a for the analysis of adenosine triphosphate (ATP). In the presence of the target, the successful release of the DNA activator is specially recognized by Cas12a-crRNA duplex and activates the cleavage of ferrocene (Fc) labeled-ssDNA (Fc-ssDNA) modified on the cathode of bipolar electrode (BPE), resulting in a decrease of ECL intensity of [Ru(bpy)3]2+/TPrA in the anodic cell of BPE. By means of the unique combination of Cas12a with ECL technique based on BPE, it can convert the recognition of target ATP into a detectable ECL signal. The detection limit of ATP was determined to be 0.48 nM under the optimal conditions. This work will expand the application of CRISPR-Cas detection system and propose a potential method for the analysis of non-nucleic-acid targets.
Collapse
Affiliation(s)
- Zhi-Hong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zi-Yuan Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shu-Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Animesh S, Singh YD. A Comprehensive Study on Aptasensors For Cancer Diagnosis. Curr Pharm Biotechnol 2021; 22:1069-1084. [PMID: 32957883 DOI: 10.2174/1389201021999200918152721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the most devastating disease in the present scenario, killing millions of people every year. Early detection, accurate diagnosis, and timely treatment are considered to be the most effective ways to control this disease. Rapid and efficient detection of cancer at their earliest stage is one of the most significant challenges in cancer detection and cure. Numerous diagnostic modules have been developed to detect cancer cells early. As nucleic acid equivalent to antibodies, aptamers emerge as a new class of molecular probes that can identify cancer-related biomarkers or circulating rare cancer/ tumor cells with very high specificity and sensitivity. The amalgamation of aptamers with the biosensing platforms gave birth to "Aptasensors." The advent of highly sensitive aptasensors has opened up many new promising point-of-care diagnostics for cancer. This comprehensive review focuses on the newly developed aptasensors for cancer diagnostics.
Collapse
Affiliation(s)
- Sambhavi Animesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yengkhom D Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| |
Collapse
|
5
|
Shariati M, Vaezjalali M, Sadeghi M. Ultrasensitive and easily reproducible biosensor based on novel doped MoS 2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum. Anal Chim Acta 2021; 1156:338360. [PMID: 33781462 DOI: 10.1016/j.aca.2021.338360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
An ultrasensitive field-effect transistor (FET) for hepatitis B virus deoxyribonucleic acid (HBV DNA) detection in label free approach and easily reproducible setup was reported. The fabricated FET biosensor was materialized by ZnO doped MoS2 nanowires (NWs). This report introduced a novel structure of the MoS2 in bio-sensing approach. Because of unique electrical and structural properties of MoS2, HBV biosensor could demonstrate the high sensitivity and showed the detection limit of 1 fM. The MoS2 NWs fabrication was materialized through ZnO based vapor-liquid-solid (VLS) technique. The fabricated device could measure the DNA targets in a linear concentration range from 0.5 pM to 50 μM. The dynamic response time of FET biosensor was 25 s. The functionality of the NWs biosensor for label-free measurements could be repeated for several times without any significant malfunction and biosensor could retain 96% of its initial response after eight weeks maintenance. The HBV biosensor showed high selectivity by discrimination the complementary DNA oligonucleotides from non-complementary and the mismatch (1, 2 and 3 bases) oligonucleotides. The materialized platform was desirably reproduced for HBV concentrations in human serum. The specificity of the biosensor was evaluated against several different types of DNAs and the fabricated device showed the outstanding performance. In order to optimize the device functionality, the biosensor was checked for two different human samples and device could distinguish the samples from each other in the same manner.
Collapse
Affiliation(s)
- Mohsen Shariati
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran.
| |
Collapse
|
6
|
Zhu Q, Liu L, Wang R, Zhou X. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123941. [PMID: 33264988 DOI: 10.1016/j.jhazmat.2020.123941] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
As antibiotic pollution is gaining prominence as a global issue, the demand for detection of streptomycin (STR), which is a widely used antibiotic with potential human health and ecological risks, has attracted increasing attention. Aptamer-based biosensors have been developed for the detection of STR in buffers and samples, however, the non-target signals due to the conformational variation of free aptamers possibly affect their sensitivity and stability. In this study, by introducing the STR-specific split aptamer (SPA), a sensitive evanescent wave fluorescent (EWF) biosensor is developed for the sandwich-type based detection of STR. The standard calibration curve obtained for STR has a detection limit of 33 nM with a linear range of 60-526 nM. This biosensor exhibited good selectivity, reliable reusability for at least 100 times measurements, and high recovery rates for spiked water samples; moreover, all detection steps are easy-to-operate and can be completed in 5 min. Therefore, it exhibits great promise for actual on-site environmental monitoring. Additionally, without introducing any other oligonucleotides or auxiliary materials, this SPA-based biosensing method shows potential as a simple, sensitive, and low-cost manner for the detection of other small molecular targets.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Advanced Technology and Equipment of Water Environment Pollution Monitoring, Changsha, 410205, China.
| |
Collapse
|
7
|
Liao X, Zhang C, Machuki JO, Wen X, Chen D, Tang Q, Gao F. Proximity hybridization triggered hybridization chain reaction for label-free electrochemical homogeneous aptasensors. Talanta 2021; 226:122058. [PMID: 33676642 DOI: 10.1016/j.talanta.2020.122058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
A label-free homogeneous electrochemical aptasensor was developed for detection of thrombin based on proximity hybridization triggered hybridization chain reaction induced G-quadruplex formation. Thrombin promoted the formation of a complex via the proximity hybridization of the aptamer DNA strands, which unfolded the molecular beacon, the stem part of molecular beacon as a primer to initiate the hybridization chain reaction process. Thus, with the electrochemical indicator hemin selectively intercalated into the multiple G-quadruplexes, a significant electrochemical signal drop is observed, which is dependent on the concentration of the target thrombin. Thus, using this"signal-off" mode, label-free homogeneous electrochemical strategy for sensitive thrombin assay with a detection limit of 44 fM is realized. Furthermore, this method also exhibits additional advantages of simplicity and low cost, since both expensive labeling and sophisticated probe immobilization processes are avoided. Its high sensitivity, acceptable accuracy, and satisfactory versatility of analytes led to various applications in bioanalysis.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Duankai Chen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
8
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
9
|
Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q. Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta 2020; 187:179. [PMID: 32076868 DOI: 10.1007/s00604-020-4128-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
Small molecules are key targets in molecular biology, environmental issues, medicine and food industry. However, small molecules are challenging to be detected due to the difficulty of their recognition, especially in complex samples, such as in situ in cells or animals. The emergence of graphene/aptamer probes offers an excellent opportunity for small molecule quantification owing to their appealing attributes such as high selectivity, sensitivity, and low cost, as well as the potential for probing small molecules in living cells or animals. This paper (with 130 refs.) will review the application of graphene/aptamer probes for small molecule detection. We present the recent progress in the design and development of graphene/aptamer probes enabling highly specific, sensitive and rapid detection of small molecules. Emphasis is placed on the success in their development and application for monitoring small molecules in living cells and in vivo systems. By discussing the key advances in this field, we wish to inspire more research work of the development of graphene/aptamer probes for both on-site or in situ detection of small molecules and its applications for investigating the functions of small molecules in cells in a dynamic way. Graphical abstract Graphene/aptamer probes can be used to construct different platforms for detecting small molecules with high specificity and sensitivity, both in vitro and in situ in living cells and animals.
Collapse
Affiliation(s)
- Yi Dong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Xiaoya Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jiangtao Feng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Medical, Sichuan University, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Wang L, Wu A, Wei G. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst 2019. [PMID: 29528071 DOI: 10.1039/c8an00081f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene-based nanomaterials have been widely utilized to fabricate various biosensors for environmental monitoring, food safety, and biomedical diagnostics. The combination of aptamers with graphene for creating biofunctional nanocomposites improved the sensitivity and selectivity of fabricated biosensors due to the unique molecular recognition and biocompatibility of aptamers. In this review, we highlight recent advances in the design, fabrication, and biomedical sensing application of graphene-based aptasensors within the last five years (2013-current). The typical studies on the biomedical fluorescence, colorimetric, electrochemical, electrochemiluminescence, photoelectrochemical, electronic, and force-based sensing of DNA, proteins, enzymes, small molecules, ions, and others are demonstrated and discussed in detail. More attention is paid to a few key points such as the conjugation of aptamers with graphene materials, the fabrication strategies of sensor architectures, and the importance of aptamers on improving the sensing performances. It is expected that this work will provide preliminary and useful guidance for readers to understand the fabrication of graphene-based biosensors and the corresponding sensing mechanisms in one way, and in another way will be helpful to develop novel high performance aptasensors for biological analysis and detection.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P. R. China.
| | | | | |
Collapse
|
11
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Mikrochim Acta 2018; 185:276. [PMID: 29721621 DOI: 10.1007/s00604-018-2820-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
This review (with 340 refs) focuses on methods for specific and sensitive detection of metabolites for diagnostic purposes, with particular emphasis on electrochemical nanomaterial-based sensors. It also covers novel candidate metabolites as potential biomarkers for diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis. Following an introduction into the field of metabolic biomarkers, a first major section classifies electrochemical biosensors according to the bioreceptor type (enzymatic, immuno, apta and peptide based sensors). A next section covers applications of nanomaterials in electrochemical biosensing (with subsections on the classification of nanomaterials, electrochemical approaches for signal generation and amplification using nanomaterials, and on nanomaterials as tags). A next large sections treats candidate metabolic biomarkers for diagnosis of diseases (in the context with metabolomics), with subsections on biomarkers for neurodegenerative diseases, autism spectrum disorder and hepatitis. The Conclusion addresses current challenges and future perspectives. Graphical abstract This review focuses on the recent developments in electrochemical biosensors based on the use of nanomaterials for the detection of metabolic biomarkers. It covers the critical metabolites for some diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Leila Samandari
- Department of Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| |
Collapse
|
12
|
Li J, He G, Wang B, Shi L, Gao T, Li G. Fabrication of reusable electrochemical biosensor and its application for the assay of α-glucosidase activity. Anal Chim Acta 2018; 1026:140-146. [PMID: 29852990 DOI: 10.1016/j.aca.2018.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/24/2018] [Accepted: 04/12/2018] [Indexed: 01/21/2023]
Abstract
A reusable biosensor has been fabricated in this work for the assay of α-glucosidase activity and the inhibitor screening. In this design, the aptamer of ATP is split as split aptamer 1 (Apt 1) and split aptamer 2 (Apt 2), and Apt 2 can link gold nanoparticles (AuNPs) modified with Apt 1 and 4-aminophenyl-α-d-glucopyranoside (pAPG). Consequently, the functional AuNPs can be immobilized onto the surface of gold electrode, allowing for salt-induced regeneration. In the presence of α-glucosidase, the glycosyl of pAPG is cut off, and the electroactive phenolic hydroxyls appear to give a strong current signal. Furthermore, the biosensor can be recovered very easily by incubating it in water to dissociate the AuNPs modified with Apt 1 and pAPG. So, a new biosensor for α-glucosidase activity detection and inhibitor screening is developed based on enzyme-activated signal generation and recovery. The biosensor may also exhibit good sensitivity for α-glucosidase determination with the detection limit 0.005 U/mL and can be reused by water-washing regeneration with good repeatability. Meanwhile this biosensor can also be utilized for inhibitor screening, which may have potential for clinical applications.
Collapse
Affiliation(s)
- Jinlong Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; Department of Laboratory Medicine, The Second Affiliated Hospital of Southeast University, Nanjing, 210003, PR China
| | - Guangwu He
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Bei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Tao Gao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Nucleic acid-based electrochemical nanobiosensors. Biosens Bioelectron 2018; 102:479-489. [DOI: 10.1016/j.bios.2017.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
|
14
|
Modh H, Scheper T, Walter JG. Aptamer-Modified Magnetic Beads in Biosensing. SENSORS 2018; 18:s18041041. [PMID: 29601533 PMCID: PMC5948603 DOI: 10.3390/s18041041] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 01/27/2023]
Abstract
Magnetic beads (MBs) are versatile tools for the purification, detection, and quantitative analysis of analytes from complex matrices. The superparamagnetic property of magnetic beads qualifies them for various analytical applications. To provide specificity, MBs can be decorated with ligands like aptamers, antibodies and peptides. In this context, aptamers are emerging as particular promising ligands due to a number of advantages. Most importantly, the chemical synthesis of aptamers enables straightforward and controlled chemical modification with linker molecules and dyes. Moreover, aptamers facilitate novel sensing strategies based on their oligonucleotide nature that cannot be realized with conventional peptide-based ligands. Due to these benefits, the combination of aptamers and MBs was already used in various analytical applications which are summarized in this article.
Collapse
Affiliation(s)
- Harshvardhan Modh
- Institute of Technical Chemistry, Leibniz University of Hannover, Hannover 30167, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Hannover 30167, Germany.
| | | |
Collapse
|
15
|
Zhou W, Ding J, Liu J. Splitting a DNAzyme enables a Na +-dependent FRET signal from the embedded aptamer. Org Biomol Chem 2018; 15:6959-6966. [PMID: 28792040 DOI: 10.1039/c7ob01709j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes have been reported, and a Na+ aptamer was identified from the NaA43 and Ce13d DNAzymes. These DNAzymes and the embedded aptamer have been used for Na+ detection. In this work, we studied the Na+-dependent folding of the Ce13d DNAzyme using fluorescence resonance energy transfer (FRET). When a FRET donor and an acceptor were respectively labeled at the ends of the DNAzyme, Na+ failed to induce an obvious end-to-end distance change, suggesting a rigid global structure. To relax this rigidity, the Ce13d DNAzyme was systematically split at various sites on both the enzyme and the substrate strands. The Na+ binding activity of the split structures was characterized by 2-aminopurine fluorescence, enzymatic activity, Tb3+-sensitized luminescence, and DMS footprinting. Among the various constructs, the only one that retained Na+ binding was the split at the cleavage site, and this construct was further labeled with two dyes near the split site. This FRET result showed Na+-dependent folding with a Kd of 26 mM Na+. This study provides important structural information related to Na+ binding to this new aptamer, which might also be useful for future work in biosensor design.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | | | | |
Collapse
|
16
|
Chen Z, Li H, Jia W, Liu X, Li Z, Wen F, Zheng N, Jiang J, Xu D. Bivalent Aptasensor Based on Silver-Enhanced Fluorescence Polarization for Rapid Detection of Lactoferrin in Milk. Anal Chem 2017; 89:5900-5908. [PMID: 28467701 DOI: 10.1021/acs.analchem.7b00261] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here we report a novel type of bivalent aptasensor based on silver-enhanced fluorescence polarization (FP) for detection of lactoferrin (Lac) in milk powder with high sensitivity and specificity. The novel two split aptamers were obtained from the aptamer reported in our previous SELEX (systematic evolution of ligands by exponential enrichment) selection, and their minimal structural units were optimized on the basis of their affinity and specificity. Also, dual binding sites of split aptamers were verified. The bivalent aptamers were modified to be linked with signal-molecule fluorescein isothiocyanate (FITC) and enhancer silver decahedral nanoparticles (Ag10NPs). The split aptamers could bind to different sites of Lac and assemble into a split-aptamers-target complex, narrowing the distance between Ag10NPs and FITC dye. As a result, Ag10NPs could produce a mass-augmented and metal-enhanced fluorescence (MEF) effect. In general, ternary amplification based on Ag10NPs, split aptamers, and the MEF effect all contributed to the significant increase of FP values. It was proved that the sensitivity of this assay was about 3 orders of magnitude over traditional aptamer-based homogeneous assays with a detection limit of 1.25 pM. Furthermore, this design was examined by actual milk powder with rapid and high-throughout detection.
Collapse
Affiliation(s)
- Zhu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Wenchao Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Xiaohui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Zhoumin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Fang Wen
- Ministry of Agriculture-Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Nan Zheng
- Ministry of Agriculture-Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, P.R. China
| | - Jindou Jiang
- Dairy Quality Supervision and Testing Center, Ministry of Agriculture, Harbin 150090, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210046, China
| |
Collapse
|
17
|
Melaine F, Coilhac C, Roupioz Y, Buhot A. A nanoparticle-based thermo-dynamic aptasensor for small molecule detection. NANOSCALE 2016; 8:16947-16954. [PMID: 27714066 DOI: 10.1039/c6nr04868d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Small molecules (MW < 1000 Da) represent a large class of biomarkers of interest. Recently, a new class of biosensors has been emerging thanks to the recognition properties of aptamers, short DNA or RNA single strands, selected against such small molecular targets. Among them, an adenosine-specific aptamer has been largely described and used due to its remarkable affinity to this small target (KD = 6 μM). In this paper, we achieved the proof-of-principle of an aptasensor based on the thermodynamic follow-up of adenosine binding with engineered split-aptamer sequences. The detection is carried out by surface plasmon resonance imaging of split-aptamer micro-arrays, while signal amplification is ensured by gold nanoparticles (AuNPs). This original approach based on DNA sequence engineering and AuNP conjugation enabled us to reach limits of detection (LOD) 200 times lower than the KD measured in solution with the native aptamer (LOD = 30 nM).
Collapse
Affiliation(s)
- Feriel Melaine
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| | - Clothilde Coilhac
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| | - Yoann Roupioz
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| | - Arnaud Buhot
- Université Grenoble Alpes, INAC, SPrAM, F-38000 Grenoble, France. and CEA, INAC, SPrAM, F-38000 Grenoble, France and CNRS, SPrAM, F-38000 Grenoble, France
| |
Collapse
|
18
|
Yang J, Zhu J, Pei R, Oliver JA, Landry DW, Stojanovic MN, Lin Q. Integrated Microfluidic Aptasensor for Mass Spectrometric Detection of Vasopressin in Human Plasma Ultrafiltrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:5190-5196. [PMID: 28090219 PMCID: PMC5228624 DOI: 10.1039/c5ay02979a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a microfluidic aptamer-based biosensor for detection of low-molecular-weight biomarkers in patient samples. Using a microfluidic device that integrates aptamer-based specific analyte extraction, isocratic elution, and detection by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we demonstrate rapid, sensitive and label-free detection of arginine vasopressin (AVP) in human plasma ultrafiltrate. AVP molecules in complex matrices are specifically captured by an aptamer that is immobilized on microbeads via affinity binding in a microchamber. After the removal of unbound, contaminating molecules through washing, aptamer-AVP complexes are thermally disrupted via on-chip temperature control. Released AVP molecules are eluted with purified water and transferred to a separate microchamber, and deposited onto a single spot on a MALDI plate via repeated, piezoelectrically actuated ejection, which enriches AVP molecules over the spot area. This integrated on-chip sample processing enables the quantitative detection of low-abundance AVP by MALDI-TOF mass spectrometry in a rapid and label-free manner. Our experimental results show the detection of AVP in human plasma ultrafiltrate as low as physiologically relevant picomolar concentrations via aptamer-based selective preconcentration, demonstrating the potential of our approach as a rapid (~ 1hr), sensitive clinical AVP assay.
Collapse
Affiliation(s)
- J. Yang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, United States
| | - J. Zhu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, United States
| | - R. Pei
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - J. A. Oliver
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - D. W. Landry
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - M. N. Stojanovic
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Q. Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, United States
| |
Collapse
|
19
|
|
20
|
Hou T, Li W, Zhang L, Li F. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling. Analyst 2016; 140:5748-53. [PMID: 26165638 DOI: 10.1039/c5an01176k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, a highly sensitive and versatile homogeneous electrochemical biosensing strategy is proposed, based on the split aptamer-incorporated DNA three-way junction and the exonuclease (Exo) III-assisted target recycling. The aptamer of adenosine triphosphate (ATP, chosen as the model analyte) is split into two fragments and embedded in single-stranded DNA1 and DNA2, respectively. ATP specifically binds with the split aptamers, bringing DNA1 and DNA2 close to each other, thus inducing the DNA three-way junction formation through the partial hybridization among DNA1, DNA2 and the methylene blue-labelled MB-DNA. Subsequently, MB-DNA is specifically digested by Exo III, releasing a MB-labelled mononucleotide, as well as a DNA1-ATP-DNA2 complex, which acts as the recycled target and hybridizes with another intact MB-DNA to initiate the subsequent cycling cleavage process. As a result, large amounts of MB-labelled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ATP assay. To the best of our knowledge, it is the first example to successfully incorporate split aptamers into DNA three-way junctions and to be adopted in a homogeneous electrochemical assay. In addition to high sensitivity, this strategy also exhibits the advantages of simplicity and convenience, because it is carried out in a homogeneous solution, and sophisticated electrode modification processes are avoided. By simply changing the sequences of the split aptamer fragments, this versatile strategy can be easily adopted to assay a large spectrum of targets. Due to its advantages of high sensitivity, excellent selectivity, versatility and simple operation, the as-proposed approach has great potential to be applied in biochemical research and clinical practices.
Collapse
Affiliation(s)
- Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | | | | | | |
Collapse
|
21
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
22
|
Abstract
In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.
Collapse
Affiliation(s)
- Shixing Chen
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China.
| | | | | | | |
Collapse
|
23
|
Qian Y, Gao F, Du L, Zhang Y, Tang D, Yang D. A novel label-free and enzyme-free electrochemical aptasensor based on DNA in situ metallization. Biosens Bioelectron 2015; 74:483-90. [PMID: 26176208 DOI: 10.1016/j.bios.2015.06.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 01/03/2023]
Abstract
In this work, we presented a novel label-free and enzyme-free electrochemical aptasensor based on DNA in situ silver metallization as effective electrochemical label. Molecular beacon 2 (MB2, Peptide nucleic acid) was first immobilized on the gold electrode (AuE) through Au-S bond. In the presence of thrombin, the thrombin binding aptamer (MB1) preferred to form thrombin/aptamer complex in lieu of aptamer-DNA duplex, resulting in the 8-17 DNAzyme liberating from the caged structure and hybridization with the MB2, the MB2 will replace and free the target thrombin when it hybridizes with MB1. The released target thrombin can participate in the next hybridization process with MB1. Eventually, each target thrombin went through many cycles, resulting in numerous MB1 confining close to the AuE, which leaded to the surface became negatively charged and allowed the absorption of silver ions on the DNA skeleton. After chemical reduction by hydroquinone, the formed silver nanoparticles could be afforded a signal trace for electrochemical stripping analysis of target thrombin. Through introducing a hybridization chain reaction to increase the DNA length, the current signal was further amplified, achieved the detection of thrombin with a linear range from 1.0×10(-16) to 1.0×10(-11) M and a detection limit of 37 aM. In addition, the signal amplification is realized without using any enzymes or sophisticated label process, and the sensing strategy is completely non-labeled. The success in the present biosensor served as a significant step towards the development of monitoring ultratrace thrombin in clinical detection.
Collapse
Affiliation(s)
- Yong Qian
- (a)Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang, 330013, Jiangxi, China.; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, 221004 Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, 221004 Xuzhou, China.
| | - Lili Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, 221004 Xuzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, 221004 Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, 221004 Xuzhou, China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, 221004 Xuzhou, China
| |
Collapse
|
24
|
Feng L, Lyu Z, Offenhäusser A, Mayer D. Multi-level logic gate operation based on amplified aptasensor performance. Angew Chem Int Ed Engl 2015; 54:7693-7. [PMID: 25959438 DOI: 10.1002/anie.201502315] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/09/2022]
Abstract
Conventional electronic circuits can perform multi-level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon-based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer-based multi-level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer-target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer-linked redox probes and solution-phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi-level logic operation, which has the potential to simplify an otherwise complex diagnosis to a "yes" or "no" decision.
Collapse
Affiliation(s)
- Lingyan Feng
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Zhaozi Lyu
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Andreas Offenhäusser
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Dirk Mayer
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany).
| |
Collapse
|
25
|
Logisches Mehrschrittgatter auf Basis eines Aptamersensors mit verstärktem Sensorsignal. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay. Anal Chim Acta 2015; 869:74-80. [DOI: 10.1016/j.aca.2015.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/21/2022]
|
27
|
Abstract
An ability to detect and quantify protein molecules, harbingers of specific pathologies, potentially underpins both early disease diagnosis and an assessment of treatment efficacy. However, the specific detection of a particular protein biomarker in a complex environment is by no means an easy task and requires a progressive improvement in sensor technology. The high surface area, volume, electrical conductance, atomic level thickness and apparent biocompatibility of graphene makes it potentially an exceedingly powerful transducer of biorecognition events; the demands of its application in biosensing, and progress to date are reviewed herein.
Collapse
|
28
|
Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens Bioelectron 2015; 68:763-770. [PMID: 25682505 DOI: 10.1016/j.bios.2015.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022]
Abstract
We report a novel strategy for high specific and simultaneous detection of multiple tumor-related proteins in cancer cells based on the activated fluorescence signal, which is triggered by specific-binding-induced conformation alteration of the designed activatable aptamer probe. The activatable aptamer probe consists two fragments: a target-protein-recognized aptamer sequence for specifically recognizing the protein, and an extending spacer making the aptamer in hairpin structure to enable the close proximity of quencher to fluorophore, which is labeled at 5'- and 3'-terminus, respectively, of the probes. Before interaction with cell, the fluorescence of the probe is quenched due to fluorescent resonance energy transfer (FRET) between the fluorophore and quencher. After interaction events, the fluorescence signal is activated through specific binding of the probe with target protein in cell, causing the conformation alteration and forcing the separation of fluorophore from the quencher. We achieve simultaneous detection of multiple tumor-related proteins in cells by designing the different activatable aptamer probes with various fluorophore/quencher combinations. Moreover, it can also achieve a high detection sensitivity (for example, detecting MCF-7 cells at a low abundance of ~(10±5) cells mL(-1)) and specific discrimination of the subtype of cancers. The advantage of this approach is that it has high detection sensitivity because of the significant suppression of background with use of the designed activatable aptamer probe. In addition, it has ability of avoiding false signals arising due to the nonspecific adsorption of interferents because it operates via monitoring the activated fluorescence signals of the designed activatable aptamer probe.
Collapse
|
29
|
Zhang S, Wang K, Li J, Li Z, Sun T. Highly efficient colorimetric detection of ATP utilizing a split aptamer target binding strategy and superior catalytic activity of graphene oxide–platinum/gold nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra13550h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The specific binding of ATP and its aptamer linked the split aptamer-modified GO/PDDA/PtAuNPs and magnetic beads together. Using magnetic separation, TMB was catalyzed into a colored product by nanocomposites, which enabled rapid detection of ATP.
Collapse
Affiliation(s)
- Siqi Zhang
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Kun Wang
- College of Sciences
- Northeastern University
- Shenyang
- China
- Department of Chemistry and Environmental Engineering
| | - Jiali Li
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Zhenyu Li
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Ting Sun
- College of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
30
|
Yu P, He X, Zhang L, Mao L. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay. Anal Chem 2014; 87:1373-80. [PMID: 25495279 DOI: 10.1021/ac504249k] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.
Collapse
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | |
Collapse
|
31
|
Zhang Y, Bo X, Nsabimana A, Munyentwali A, Han C, Li M, Guo L. Green and facile synthesis of an Au nanoparticles@polyoxometalate/ordered mesoporous carbon tri-component nanocomposite and its electrochemical applications. Biosens Bioelectron 2014; 66:191-7. [PMID: 25460901 DOI: 10.1016/j.bios.2014.11.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023]
Abstract
The one-pot synthesis of a well-defined Au nanoparticles@polyoxometalates/ordered mesoporous carbon (Au@POMs/OMC) tri-component nanocomposite is reported, which is facile, green and rapid. The polyoxometalates were used as both reductant and bridging molecules. The formation of these composite materials was verified by a comprehensive characterization using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectra, scanning electron microscopy, and transmission electron microscopy. The novel nanohybrids of Au@POMs/OMC can provide new features of electrocatalytic activities, because of the synergetic effects of Au nanoparticles and OMC materials. Most importantly, the amperometric measurements show that the Au@POMs/OMC nanohybrids have a high catalytic activity with a good sensitivity, long-term stability, wide linear range, low detection limit, and fast response towards acetaminophenol, H2O2, and NADH detection for application as an enzyme-free biosensor.
Collapse
Affiliation(s)
- Yufan Zhang
- Faculty of Chemistry, Northeast Normal University, 130024 Changchun, PR China
| | - Xiangjie Bo
- Faculty of Chemistry, Northeast Normal University, 130024 Changchun, PR China.
| | - Anaclet Nsabimana
- Faculty of Chemistry, Northeast Normal University, 130024 Changchun, PR China
| | - Alexis Munyentwali
- Faculty of Chemistry, Northeast Normal University, 130024 Changchun, PR China
| | - Ce Han
- Faculty of Chemistry, Northeast Normal University, 130024 Changchun, PR China
| | - Mian Li
- Faculty of Chemistry, Northeast Normal University, 130024 Changchun, PR China
| | - Liping Guo
- Faculty of Chemistry, Northeast Normal University, 130024 Changchun, PR China.
| |
Collapse
|
32
|
Toh SY, Citartan M, Gopinath SCB, Tang TH. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 2014; 64:392-403. [PMID: 25278480 DOI: 10.1016/j.bios.2014.09.026] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
The application of antibodies in enzyme-linked immunosorbent assay (ELISA) is the basis of this diagnostic technique which is designed to detect a potpourri of complex target molecules such as cell surface antigens, allergens, and food contaminants. However, development of the systematic evolution of Ligands by Exponential Enrichment (SELEX) method, which can generate a nucleic acid-based probe (aptamer) that possess numerous advantages compared to antibodies, offers the possibility of using aptamers as an alternative molecular recognition element in ELISA. Compared to antibodies, aptamers are smaller in size, can be easily modified, are cheaper to produce, and can be generated against a wide array of target molecules. The application of aptamers in ELISA gives rise to an ELISA-derived assay called enzyme-linked apta-sorbent assay (ELASA). As with the ELISA method, ELASA can be used in several different configurations, including direct, indirect, and sandwich assays. This review provides an overview of the strategies involved in aptamer-based ELASA.
Collapse
Affiliation(s)
- Saw Yi Toh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Subash C B Gopinath
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia; Department of Oral Biology & Biomedical Sciences and OCRCC, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|