1
|
Sebuyoya R, Sevcikova S, Yusuf B, Bartosik M. Integrating isothermal amplification techniques and LNA-based AI-assisted electrochemical bioassay for analysis of KRAS G12V point mutation. Talanta 2025; 288:127709. [PMID: 39961243 DOI: 10.1016/j.talanta.2025.127709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
The KRAS mutation is a crucial biomarker for determining targeted cancer therapies, making its accurate and cost-effective detection vital for precision oncology. However, current methodologies, such as next-generation sequencing (NGS) or PCR-based methods, are often expensive and technically complex, limiting their accessibility. Here, we present a novel bioassay for KRAS G12V mutation analysis that combines rolling circle amplification (RCA) with locked nucleic acid (LNA)-modified magnetic beads, electrochemical detection using carbon electrode chips, and AI-assisted analysis via a logistic regression classifier. Our platform demonstrated exceptional selectivity in distinguishing the KRAS G12V mutation from wild-type (wt) sequences, enabling analysis <1 % of mutated DNA in a wt sample. We validated the bioassay on 7 cancer cell lines and 11 patient-derived samples, achieving results that perfectly correlated with NGS data. This innovative approach simplifies the workflow, reduces costs, and offers high sensitivity and specificity, making it a promising tool for clinical diagnostics and personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Ravery Sebuyoya
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Sarka Sevcikova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Bolaji Yusuf
- Faculty of Information Technology, Brno University of Technology, Bozetechova 1/2, 612 00, Brno, Czech Republic
| | - Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
2
|
Nguyen SH, Vu PKT, Tran MT. Absorbance biosensors-based hybrid [Formula: see text] nanosheets for Escherichia coli detection. Sci Rep 2023; 13:10235. [PMID: 37353545 PMCID: PMC10290106 DOI: 10.1038/s41598-023-37395-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023] Open
Abstract
Detecting Escherichia coli is essential in biomedical, environmental, and food safety applications. In this paper, we have developed a simple, rapid, sensitive, and selective E. coli DNA sensor based on the novel hybrid-type [Formula: see text] and [Formula: see text] nanosheets. The sensor uses the absorbance measurement to distinguish among the DNA of E. coli, Vibrio proteolyticus, and Bacillus subtilis when implemented in conjunction with [Formula: see text]-probes. Our experiments showed that the absorbance increased when sensors detected E. coli DNA, whereas it decreased when sensors detected V. proteolyticus and B. subtilis DNA. To the best of authors' knowledge, there are no reports using the novel hybrid-[Formula: see text] and [Formula: see text] materials for differentiating three types of DNA using cost-effective and rapid absorbance measurements. In addition, the label-free E. coli DNA biosensor exhibited a linear response in the range of 0 fM to 11.65 fM with a limit of detection of 2 fM. The effect of [Formula: see text]-probes on our sensors' working performance is also investigated. Our results will facilitate further research in pathogen detection applications, which have not been fully developed yet.
Collapse
Affiliation(s)
- Son Hai Nguyen
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, 100000 Vietnam
| | - Phan Kim Thi Vu
- College of Engineering and Computer Science, VinUniversity, Hanoi, 100000 Vietnam
| | - Mai Thi Tran
- College of Engineering and Computer Science, VinUniversity, Hanoi, 100000 Vietnam
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, 100000 Vietnam
| |
Collapse
|
3
|
Bao J, Ding K, Zhu Y. An electrochemical biosensor for detecting DNA methylation based on AuNPs/rGO/g-C 3N 4 nanocomposite. Anal Biochem 2023; 673:115180. [PMID: 37146956 DOI: 10.1016/j.ab.2023.115180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
DNA methylation as a ubiquitously regulation is closely associated with cell proliferation and differentiation. Growing data shows that aberrant methylation contributes to disease incidence, especially in tumorigenesis. The approach for identifying DNA methylation usually depends on treatment of sodium bisulfite, which is time-consuming and conversion-insufficient. Here, with a special biosensor, we establish an alternative approach for detecting DNA methylation. The biosensor is consisted of two parts, which are gold electrode and nanocomposite (AuNPs/rGO/g-C3N4). Nanocomposite was fabricated by three components, which are gold nanoparticles (AuNPs), reduced graphene oxide (rGO) and graphite carbon nitride (g-C3N4). For methylated DNA detection, the target DNA was captured by probe DNA immobilized on the gold electrode surface through thiolating process and subjected to hybrid with anti-methylated cytosine conjugated to nanocomposite. When the methylated cytosines in target DNA were recognized by anti-methylated cytosine, a change of electrochemical signals will be observed. With different size of target DNAs, the concentration and methylation level were tested. It is shown that in short size methylated DNA fragment, the linear range and LOD of concentration is 10-7M-10-15M and 0.74 fM respectively; in longer size methylated DNA, the linear range of methylation proportion and LOD of copy number is 3%-84% and 103 respectively. Also, this approach has a high sensitivity and specificity as well as anti-disturbing ability.
Collapse
Affiliation(s)
- Junming Bao
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Kejian Ding
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| | - Yunfeng Zhu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| |
Collapse
|
4
|
Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem 2023; 415:1065-1085. [PMID: 36289102 DOI: 10.1007/s00216-022-04388-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.
Collapse
|
5
|
Adampourezare M, Hasanzadeh M, Seidi F. Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects. RSC Adv 2022; 12:25786-25806. [PMID: 36199327 PMCID: PMC9460980 DOI: 10.1039/d2ra03630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation as one of the most important epigenetic modifications has a critical role in regulating gene expression and drug resistance in treating diseases such as cancer. Therefore, the detection of DNA methylation in the early stages of cancer plays an essential role in disease diagnosis. The majority of routine methods to detect DNA methylation are very tedious and costly. Therefore, designing easy and sensitive methods to detect DNA methylation directly and without the need for molecular methods is a hot topic issue in bioscience. Here we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation. In addition, various types of labeled and label-free reactions along with the application of molecular methods and optical biosensors have been surveyed. Also, the effect of nanomaterials on the sensitivity of detection methods is discussed. Furthermore, a comprehensive overview of the advantages and disadvantages of each method are provided. Finally, the use of microfluidic devices in the evaluation of DNA methylation and DNA damage analysis based on smartphone detection has been discussed. Here, we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation.![]()
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Araiza-Olivera D, Gutierrez-Aguilar M, Espinosa-García AM, García-García JA, Tapia-Orozco N, Sánchez-Pérez C, Palacios-Reyes C, Escárcega D, Villalón-López DN, García-Arrazola R. From bench to bedside: Biosensing strategies to evaluate endocrine disrupting compounds based on epigenetic events and their potential use in medicine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103450. [PMID: 32622887 DOI: 10.1016/j.etap.2020.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between endocrine system disorders and health risks due to chemical environmental compounds has become a growing concern in recent years. Involuntary exposure to endocrine disruptors (EDCs) is associated with the worldwide increase of diseases such as cancer, obesity, diabetes, and neurocortical disorders. EDCs are compounds that target the nuclear hormonereceptors (NHR) leading to epigenetic changes. Consequently, the use of biosensing strategies based on epigenetic events have a great potential to provide outstanding information about the exposition of EDCs and their evaluation in human health. This review addresses the novel trends in biosensing EDCs evaluation based on DNA methylation assays associated with different human diseases.
Collapse
Affiliation(s)
- D Araiza-Olivera
- Department of Chemistry and Biomolecules, Institute of Chemistry, UNAM, Mexico.
| | | | - A M Espinosa-García
- Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - J A García-García
- Department of Education, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - N Tapia-Orozco
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Sánchez-Pérez
- Institute of Applied Sciences and Technology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Palacios-Reyes
- Laboratory of Genetics and Molecular Diagnostics, Juarez Hospital of Mexico, Mexico City, Mexico.
| | - D Escárcega
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, calle del Puente 222, Ejidos de Huipulco, Tlalpan 14380, Mexico City, Mexico.
| | - Demelza N Villalón-López
- Instituto Politénico Nacional-Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Prolongación de Carpio y Plande Ayala, colonia Casco de Santo Tomás. Del, Miguel Hidalgo, 11350, Mexico.
| | - R García-Arrazola
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| |
Collapse
|
7
|
Mukama O, Nie C, Habimana JDD, Meng X, Ting Y, Songwe F, Al Farga A, Mugisha S, Rwibasira P, Zhang Y, Zeng L. Synergetic performance of isothermal amplification techniques and lateral flow approach for nucleic acid diagnostics. Anal Biochem 2020; 600:113762. [PMID: 32387190 DOI: 10.1016/j.ab.2020.113762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The advancement in developing sensitive, rapid, and specific sensing tools is crucial in diagnostics and biotechnological applications. Although various isothermal amplification approaches exist for the detection and identification of nucleic acids, post-amplicon analysis is still based on traditional methods such as gel electrophoresis, colorimetry, turbidity, which could be non-specific and inconvenient. Thus, this review will first elaborate various isothermal amplification techniques (principle, merits, and demerits) and their potentials when combined with lateral flow approach for point-of-care nucleic acid diagnostics. Different methods for monitoring carryover contamination resulting from amplification product contamination will be discussed. Then, we will present recent advances in diagnostics with both target pre-amplification and CRISPR-Cas systems, which exhibit collateral cleavage of target nucleic acid and a reporter single strand nucleic acid within the vicinity. When the reporter is fluorophore-labeled, it provides a detectable signal by fluorescence or lateral flow biosensors. Lastly, we will discuss how CRISPR-Cas system based diagnostics could be more effective, affordable and portable for on-site detection.
Collapse
Affiliation(s)
- Omar Mukama
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Department of Biology, College of Science and Technology, University of Rwanda, Avenue de L'armée, P.O. Box: 3900, Kigali, Rwanda; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Chengrong Nie
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China.
| | - Jean de Dieu Habimana
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Xiaogao Meng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuan Ting
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fanuel Songwe
- Department of Applied Biosciences and Biotechnology, Faculty of Science and Technology, Midlands State University (MSU), Zimbabwe
| | - Ammar Al Farga
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Samson Mugisha
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de L'armée, P.O. Box: 3900, Kigali, Rwanda
| | - Peter Rwibasira
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de L'armée, P.O. Box: 3900, Kigali, Rwanda
| | - Yinghui Zhang
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China.
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
8
|
Feng Q, Wang M, Qin L, Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sens 2019; 4:2615-2622. [PMID: 31507174 DOI: 10.1021/acssensors.9b00720] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly sensitive and selective biosensing system was designed to analyze DNA methylation using a dual-signal readout technique in combination with the signal amplification of supersandwich DNA structure. Through the ingenious design of target-triggered cascade of hybridization chain reaction, one target DNA could initiate the formation of supersandwich structure with multiple signal probes. As a result, one-to-multiple amplification effect was achieved, which conferred high sensitivity to target molecular recognition. Based on probe 1 labeled with ferrocene and probe 2 modified with methylene blue, the target DNA was clearly recognized by two electrochemical signals at independent potentials, which was helpful for the acquisition of more accurate detection results. Taking advantage of bisulfite conversion, the methylation status of cytosine (C) was changed to nucleic acid sequence status, which facilitated the hybridization-based detection without enzymatic reaction. Consequently, the methylated DNA was detected at the femtomolar level with satisfactory analytical parameters. The proposed system was effectively used to assess methylated DNA in human blood serum samples, illuminating the possibility of the sensing platform for applications in disease diagnosis and biochemistry research.
Collapse
Affiliation(s)
- Qiumei Feng
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengying Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Li Qin
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
9
|
Liu H, Luo J, Li Y, Zhu Q, Fang L, Huang H, Deng J, Zhang S, Huang J, Liang W, Zheng J. A novel photoelectrochemical strategy based on quenching effect of CdS quantum dots on PTB7 as photoelectroactive material for methylated DNA detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Huang J, Zhang S, Mo F, Su S, Chen X, Li Y, Fang L, Huang H, Deng J, Liu H, Yang X, Zheng J. An electrochemical DNA biosensor analytic technique for identifying DNA methylation specific sites and quantify DNA methylation level. Biosens Bioelectron 2018; 127:155-160. [PMID: 30597434 DOI: 10.1016/j.bios.2018.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/28/2022]
Abstract
We herein developed a novel electrochemical biosensor to detect DNA methylation level, and to quantitatively analyze multiple methylated sites. Graphene oxide was modified with anti-5-methylcytosine antibody to specifically bind CpG methylation sites, and horseradish peroxidase (HRP)-labeled IgG secondary antibody was bound to the former antibody. In buffer containing H2O2 and hydroquinone, HRP-IgG catalyzed the oxidation of hydroquinone into benzoquinone over H2O2, thereby generating electrochemical reduction signals. The number of 5-methylcytosine was directly proportional to current signal, thereby allowing accurate quantification of methylation level. We also analyzed monomethylated target sequences with different sites. After different methylated sites were captured by the probe, the steric hindrance differences between -CH3 hydrophobic sphere and the electrode surface were induced. The peak current decreased with reducing distance from the electrode surface, so DNA methylation sites were identified by measuring corresponding peak current responses. With a low detection limit (1 fM), this DNA biosensor was suitable for ultrasensitive DNA methylation detection. The linear detection range was 10-15 M to 10-8 M. Meanwhile, this method had high specificity, stability and repeatability, thus being widely applicable to the clinical detection of DNA methylation.
Collapse
Affiliation(s)
- Jian Huang
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Shu Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Fei Mo
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Shasha Su
- Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Xi Chen
- Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Yan Li
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Lichao Fang
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Hui Huang
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jun Deng
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Huamin Liu
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xiaoli Yang
- Department of laboratory medicine, the General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China.
| | - Junsong Zheng
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
11
|
Bhattacharjee R, Moriam S, Umer M, Nguyen NT, Shiddiky MJA. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 2018; 143:4802-4818. [PMID: 30226502 DOI: 10.1039/c8an01348a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as in the initiation and progression of various diseases like cancer. Over the past few decades, an enormous amount of research has been carried out for the quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, the low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinder their application in routine clinical screening. Thus, as an alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost-effective, portable, and simple to operate. On the other hand, biosensors with optical readouts enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts into bisulfite free DNA methylation analysis is paving the way for the translation of this important biomarker into standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| | | | | | | | | |
Collapse
|
12
|
Liu H, Luo J, Fang L, Huang H, Deng J, Huang J, Zhang S, Li Y, Zheng J. An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation. Biosens Bioelectron 2018; 121:47-53. [DOI: 10.1016/j.bios.2018.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
|
13
|
Syedmoradi L, Esmaeili F, Norton ML. Towards DNA methylation detection using biosensors. Analyst 2018; 141:5922-5943. [PMID: 27704092 DOI: 10.1039/c6an01649a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates. To overcome these obstacles, great efforts have been made toward the development of reliable sensor devices to solve these limitations, providing sensitive, fast and cost-effective measurements. The use of biosensors for DNA methylation biomarkers has increased in recent years, because they are portable, simple, rapid, and inexpensive which offers a straightforward way to detect methylated biomarkers. In this review, we give an overview of the conventional techniques for the detection of DNA methylation and then will focus on recent advances in biosensor based methylation detection that eliminate bisulfite conversion and PCR amplification.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
14
|
Povedano E, Vargas E, Montiel VRV, Torrente-Rodríguez RM, Pedrero M, Barderas R, Segundo-Acosta PS, Peláez-García A, Mendiola M, Hardisson D, Campuzano S, Pingarrón JM. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci Rep 2018; 8:6418. [PMID: 29686400 PMCID: PMC5913137 DOI: 10.1038/s41598-018-24902-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system. The resulting amperometric biosensors demonstrated reproducibility throughout the entire protocol, sensitive determination with no need for using amplification strategies, and competitiveness with the conventional enzyme-linked immunosorbent assay methodology and the few electrochemical biosensors reported so far in terms of simplicity, sensitivity and assay time. The DNA sensor exhibited higher sensitivity and allowed the detection of the gene-specific methylations conversely to the immunosensor, which detected global DNA methylation. In addition, the DNA sensor demonstrated successful applicability for 1 h-analysis of specific methylation in two relevant tumor suppressor genes in spiked biological fluids and in genomic DNA extracted from human glioblastoma cells.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Eva Vargas
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Rodrigo Barderas
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto Peláez-García
- Department of Pathology, Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz IdiPAZ, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group and Molecular Pathology Section, INGEMM, Hospital Universitario La Paz IdiPAZ, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz IdiPAZ, Madrid, Spain.,Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
15
|
Zhou H, Liu J, Xu JJ, Zhang SS, Chen HY. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 2018; 47:1996-2019. [PMID: 29446429 DOI: 10.1039/c7cs00573c] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu-Sheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Campuzano S, Pingarrón JM. Electrochemical Sensing of Cancer-related Global and Locus-specific DNA Methylation Events. ELECTROANAL 2018. [DOI: 10.1002/elan.201800004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas; Universidad Complutense de Madrid; E-28040 Madrid Spain
| | - José M. Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas; Universidad Complutense de Madrid; E-28040 Madrid Spain
| |
Collapse
|
17
|
Chen F, Wang X, Cao X, Zhao Y. Accurate Electrochemistry Analysis of Circulating Methylated DNA from Clinical Plasma Based on Paired-End Tagging and Amplifications. Anal Chem 2017; 89:10468-10473. [PMID: 28810735 DOI: 10.1021/acs.analchem.7b02572] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating methylated DNA has been a new kind of cancer biomarker, yet its small fraction of trace total DNA from clinical samples impairs the accurate analysis. Though fluorescence methods based on quantitative methylation specific PCR (qMSP) have been adopted routinely, yet alternative electrochemistry assay of such DNA from clinical samples remains a great challenge. Herein, we report accurate electrochemistry analysis of circulating methylated DNA from clinical plasma samples based on a paired-end tagging and amplifications strategy. Two DNA primers each labeled with digoxigenin (Dig) and biotin are designed for the recognition and amplification of methylated DNA. Paired-end tagging amplicons and avidin-HRP molecules are successively captured on the electrode modified with Anti-Dig. Then HRP executes catalytic reaction to generate amplified signal. The design of paired-end tagging can readily integrate downstream electrochemical amplified reaction, and two heterogeneous amplifications enable high assay sensitivity. As little as 40 pg of methylated genomic DNA (∼10 genomic equivalents) is well identified, and our strategy can even distinguish as low as 1% methylation level. Tumor-specific methylated DNA is clearly detected in the plasma of 10 of 11 NSCLC patients. The high clinical sensitivity of 91% (10/11) indicates the good consistency with clinical diagnosis. Excellent spatial control of electrochemistry allows simpler detection of more methylation patterns compared to fluorescence methods. The developed electrochemical assay is a promising liquid biopsy tool for the analysis of tumor-specific circulating DNA.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Xuyao Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Xiaowen Cao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| |
Collapse
|
18
|
Yue S, Zhao T, Qi H, Yan Y, Bi S. Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise. Biosens Bioelectron 2017; 94:671-676. [DOI: 10.1016/j.bios.2017.03.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/12/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|
19
|
Hossain T, Mahmudunnabi G, Masud MK, Islam MN, Ooi L, Konstantinov K, Hossain MSA, Martinac B, Alici G, Nguyen NT, Shiddiky MJA. Electrochemical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 94:63-73. [PMID: 28259051 DOI: 10.1016/j.bios.2017.02.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Golam Mahmudunnabi
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mostafa Kamal Masud
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Md Nazmul Islam
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gursel Alici
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia.
| |
Collapse
|
20
|
Feng C, Mao X, Yang Y, Zhu X, Yin Y, Li G. Rolling circle amplification in electrochemical biosensor with biomedical applications. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Digital quantification of gene methylation in stool DNA by emulsion-PCR coupled with hydrogel immobilized bead-array. Biosens Bioelectron 2016; 92:596-601. [PMID: 27829567 DOI: 10.1016/j.bios.2016.10.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/08/2016] [Accepted: 10/19/2016] [Indexed: 01/04/2023]
Abstract
Aberrations of gene methylation in stool DNA (sDNA) is an effective biomarker for non-invasive colorectal cancer diagnosis. However, it is challenging to accurately quantitate the gene methylation levels in sDNA due to the low abundance and degradation of sDNA. In this study, a digital quantification strategy was proposed by combining emulsion PCR (emPCR) with hydrogel immobilized bead-array. The assay includes following steps: bisulfite conversion of sDNA, pre-amplification by PCR with specific primers containing 5' universal sequences, emPCR of pre-amplicons with beaded primers to achieve single-molecular amplification and identification of hydrogel embedding beads coated with amplicons. The sensitivity and the specificity of the method are high enough to pick up 0.05% methylated targets from unmethylated DNA background. The successful detection of hypermethylated vimentin gene in clinical stool samples suggests that the proposed method should be a potential tool for non-invasive colorectal cancer screening.
Collapse
|
22
|
A MoS₂ Nanosheet-Based Fluorescence Biosensor for Simple and Quantitative Analysis of DNA Methylation. SENSORS 2016; 16:s16101561. [PMID: 27669248 PMCID: PMC5087350 DOI: 10.3390/s16101561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022]
Abstract
MoS2 nanomaterial has unique properties, including innate affinity with ss-DNA and quenching ability for fluorescence dyes. Here, we present the development of a simple fluorescence biosensor based on water-soluble MoS2 nanosheets and restriction endonuclease BstUI for methylation analysis of p16 promoter. The biosensing platform exhibited excellent sensitivity in detecting DNA with a linear range of 100 pM~20 nM and a detection limit of 140 pM. More importantly, our method could distinguish as low as 1% difference in methylation level. Compared with previous methylation analysis, our design is both time saving and simple to operate, avoiding the limitations of PCR-based assays without compromising performance.
Collapse
|
23
|
Production of dumbbell probe through hairpin cleavage-ligation and increasing RCA sensitivity and specificity by circle to circle amplification. Sci Rep 2016; 6:29229. [PMID: 27385060 PMCID: PMC4935871 DOI: 10.1038/srep29229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 11/23/2022] Open
Abstract
Dumbbell probe (DP) attracts increasing interests in rolling circle amplification (RCA). A universal DP production method through cleavage-ligation of hairpin was proposed and optimized. The production is characterized by restriction endonuclease (RE)-induced cleavage ends ligation. It has the advantage of phosphorylation-free, splint-free and purification-free. To optimize designing, we found that the position of RE cleavage sequence in the stem and the primer position in the loop affected the formation and amplification of DP obviously. Both sticky and blunt ends cleaved by RE produce DP efficiently. Moreover, we introduced this DP into circle to circle (C2C) RCA based on the same cleavage-ligation principle, and acquired high sensitivity. By combining a two-ligation design and the C2C strategy, specificity for detecting let-7 family members was increased extremely. Furthermore, coreaction of different steps facilitated convenient formation and amplification process of DP.
Collapse
|
24
|
Liu S, Zhang X, Zhao K. Methylation-specific electrochemical biosensing strategy for highly sensitive and quantitative analysis of promoter methylation of tumor-suppressor gene in real sample. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Kurita R, Yanagisawa H, Yoshioka K, Niwa O. Site-specific immunochemical methylation assessment from genome DNA utilizing a conformational difference between looped-out target and stacked-in nontarget methylcytosines. Biosens Bioelectron 2015; 70:366-71. [DOI: 10.1016/j.bios.2015.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023]
|
26
|
Cao JT, Wang H, Ren SW, Chen YH, Liu YM. Dual-signal amplification strategy for ultrasensitive chemiluminescence detection of PDGF-BB in capillary electrophoresis. Biomed Chromatogr 2015; 29:1866-70. [PMID: 26031509 DOI: 10.1002/bmc.3508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 China
| | - Hui Wang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 China
| | - Shu-Wei Ren
- Xinyang Central Hospital; Xinyang 464000 China
| | | | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 China
| |
Collapse
|
27
|
Mao Y, Liu M, Tram K, Gu J, Salena BJ, Jiang Y, Li Y. Optimal DNA templates for rolling circle amplification revealed by in vitro selection. Chemistry 2015; 21:8069-74. [PMID: 25877998 DOI: 10.1002/chem.201500994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 01/21/2023]
Abstract
Rolling circle amplification (RCA) has been widely used as an isothermal DNA amplification technique for diagnostic and bioanalytical applications. Because RCA involves repeated copying of the same circular DNA template by a DNA polymerase thousands of times, we hypothesized there exist DNA sequences that can function as optimal templates and produce more DNA amplicons within an allocated time. Herein we describe an in vitro selection effort conducted to search from a random sequence DNA pool for such templates for phi29 DNA polymerase, a frequently used polymerase for RCA. Diverse DNA molecules were isolated and they were characterized by richness in adenosine (A) and cytidine (C) nucleotides. The top ranked sequences exhibit superior RCA efficiency and the use of these templates for RCA results in significantly improved detection sensitivity. AC-rich sequences are expected to find useful applications for setting up effective RCA assays for biological sensing.
Collapse
Affiliation(s)
- Yu Mao
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada).,The Ministry-Province Jointly Constructed Base for State Key Laboratory, Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055 (P. R. China).,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055 (P. R. China)
| | - Meng Liu
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Kha Tram
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Jimmy Gu
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Yuyang Jiang
- The Ministry-Province Jointly Constructed Base for State Key Laboratory, Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055 (P. R. China).
| | - Yingfu Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada).
| |
Collapse
|
28
|
Liang D, You W, Yu Y, Geng Y, Lv F, Zhang B. A cascade signal amplification strategy for ultrasensitive colorimetric detection of BRCA1 gene. RSC Adv 2015. [DOI: 10.1039/c5ra01766a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of a colorimetric biosensor for breast cancer1 gene detection based on DNAzyme assistant DNA recycling and rolling circle amplification.
Collapse
Affiliation(s)
- Dong Liang
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Wei You
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Yang Yu
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Yao Geng
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- PR China
| | - Feng Lv
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| | - Bin Zhang
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital)
- Zhengzhou
- PR China
| |
Collapse
|
29
|
Zhu X, Feng C, Zhang B, Tong H, Gao T, Li G. A netlike rolling circle nucleic acid amplification technique. Analyst 2015; 140:74-8. [DOI: 10.1039/c4an01711k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An isothermal nucleic acid amplification technique termed as netlike rolling circle amplification is proposed. Dense and uniform network morphology of amplified products is first observed, suggesting the ultrahigh amplification efficiency.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P R China
| | - Chang Feng
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P R China
| | - Bin Zhang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P R China
| | - Hui Tong
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P R China
| | - Tao Gao
- State Key Laboratory of Pharmaceutical Biotechnology
- Department of Biochemistry
- Nanjing University
- Nanjing 210093
- P R China
| | - Genxi Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P R China
| |
Collapse
|