1
|
Wang Y, Sun J, Wang C, Qu L, Zhang L, Li Y, Song RB, Li Z. Target-Responsive Regulation of Bacteria-Surface Magnetic Element for Self-Powered Analysis of Aflatoxin B1 in Microbial Fuel Cell. Anal Chem 2025; 97:8484-8490. [PMID: 40223324 DOI: 10.1021/acs.analchem.5c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The limitation of the sensing mode greatly restricts the detectable species and detection specificity of microbial fuel cell-based self-powered biosensors (MFC-SPBs). Herein, we develop a bacterial quantity change-based sensing mode for MFC-SPBs, in which the Fe3O4@Au content modified on exoelectrogenic bacteria is designed to correlate with analyte concentration for regulating the bacterial numbers absorbed onto the magnetic auxiliary anode. The polydopamine and Au nanoparticles comodified bacteria are attached with complementary DNA for hybridization with aptamer-modified Fe3O4@Au nanospheres. When aflatoxin B1 (AFB1) is used as the model analyte, its appearance can cause the liberation of Fe3O4@Au nanospheres from bacteria due to aptamer recognition. Furthermore, introduced exonuclease I can achieve a recycling amplification effect, intensifying the release of Fe3O4@Au nanospheres. With the decrease in bacteria-surface Fe3O4 content, bacteria that can be adsorbed onto the anode in a magnetic field will be reduced, leading to a decrease in the performance of MFC-SPBs. The results show that the developed MFC-SPBs can quantitatively determine AFB1 with a limit of detection of 5 nM (S/N = 3). Also, the MFC-SPBs show good detection specificity and can assess AFB1 in peanut samples. Considering the good specificity and species diversity of aptamers, we believe that this developed sensing mode will receive wide attention in the field of MFC-SPBs.
Collapse
Affiliation(s)
- Yuxin Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Sun
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Cui Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Institute of Food and Salt Industry Inspection, Technology, Zhengzhou 450003, China
| | - Lin Zhang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yapiao Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Rong-Bin Song
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Institute of Food and Salt Industry Inspection, Technology, Zhengzhou 450003, China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Zeng X, Tong X, Chen J, Chen Q, Lai R, Xu Q, Wang D, Zhou X, Shao Y. Fluorogenic target competitors for developing label-free and sensitive folding-unswitching aptamer sensors. Anal Chim Acta 2024; 1329:343237. [PMID: 39396299 DOI: 10.1016/j.aca.2024.343237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aptamers have aroused tremendous applications in sensors, drug deliveries, diagnosis, and therapies. In particular, target-induced global structure switching of aptamers has been widely used to develop selective sensors. However, fluorophore and/or quencher modification, sequence elongation, and nano-interface adsorption are required to design such global structure-switching aptamer sensors (SSAS) in order to signal target binding events. Accordingly, these requirements make SSAS at a high cost and expense of sensors' sensitivity. In this aspect, efforts should be made to overcome these drawbacks of SSAS. RESULTS Herein, we tried to develop label-free folding-unswitching aptamer sensors (FUAS) by searching fluorogenic target competitors. Using adenine nucleoside/nucleotide as the proof-of-concept model targets, we screened out berberine (BER) from natural isoquinoline alkaloids (having rings comparable to targets) as the best fluorogenic target competitor. Binding of BER at the conserved nucleotides of intact aptamer foldings turned on this fluorogenic target competitor' fluorescence. Targets then competed with this fluorogenic target competitor over the same conserved nucleotides to cause its release in favor of a resultant fluorescence change. We found that the developed FUAS are much more sensitive than the previously reported SSAS. The FUAS were successfully applied to assays of ATP and adenosine deaminase in serums, and to screening of the adenosine deaminase's inhibitor, verifying the reliability and applicability of this FUAS platform in variant fields. SIGNIFICANCE We demonstrate that by designing fluorogenic target competitors, FUAS can be alternatively developed in a label-free manner and with a higher sensitivity than the previously developed SSAS. This work opens a new way to develop high-performance aptamer-based sensors. Furthermore, our developed FUAS should inspire more interest for wide applications incluidng target-triggered drug deliveries when therapeutic fluorogenic target competitors are used.
Collapse
Affiliation(s)
- Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiufang Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Jiahui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiyao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
3
|
Lin Y, Tao X, Gao S, Li N, Dai Z. Highly sensitive and stable fluorescent aptasensor based on an exonuclease III-assisted amplification strategy for ATP detection. Anal Biochem 2023:115210. [PMID: 37329966 DOI: 10.1016/j.ab.2023.115210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Fluctuations in intracellular adenosine triphosphate (ATP) concentration are closely associated with some cancer diseases. Thus, it is a worthwhile undertaking to predict sickness by monitoring changes in ATP levels. However, the detection limits of current fluorescent aptamer sensors for ATP detection are in the range of nmol L-1 to μmol L-1. It has become crucial to employ amplification strategies to increase the sensitivity of fluorescent aptamer sensors. In the current paper, a duplex hybrid aptamer probe was developed based on exonuclease III (Exo III)-catalyzed target recycling amplification for ATP detection. The target ATP forced the duplex probe configuration to change into a molecular beacon that can be hydrolyzed with Exo III to achieve the target ATP cycling to amplify the fluorescence signal. Significantly, many researchers ignore that FAM is a pH-sensitive fluorophore, leading to the fluorescence instability of FAM-modified probes in different pH buffers. The negatively charged ions on the surface of AuNPs were replaced by new ligands bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) to improve the drawback of FAM instability in alkaline solutions in this work. The aptamer probe was designed to eliminate the interference of other similar small molecules, showing specific selectivity and providing ultra-sensitive detection of ATP with detection limits (3σ) as low as 3.35 nM. Such detection limit exhibited about 4-500-fold better than that of the other amplification strategies for ATP detection. Thus, a relatively general high sensitivity detection system can be established according to the wide target adaptability of aptamers, which can form specific binding with different types of targets.
Collapse
Affiliation(s)
- Yushuang Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xuejiao Tao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Suhan Gao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Nan Li
- School of Chemistry, Tiangong University, Tianjin, 300387, China.
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
4
|
Shan Y, Zhang D, Luo Z, Li T, Qu H, Duan X, Jiang Y. Advances in chilling injury of postharvest fruit and vegetable: Extracellular ATP aspects. Compr Rev Food Sci Food Saf 2022; 21:4251-4273. [PMID: 35876655 DOI: 10.1111/1541-4337.13003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.
Collapse
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Function of Graphene Oxide as the “Nanoquencher” for Hg2+ Detection Using an Exonuclease I-Assisted Biosensor. Int J Mol Sci 2022; 23:ijms23116326. [PMID: 35683005 PMCID: PMC9180964 DOI: 10.3390/ijms23116326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Graphene oxide is well known for its excellent fluorescence quenching ability. In this study, positively charged graphene oxide (pGO25000) was developed as a fluorescence quencher that is water-soluble and synthesized by grafting polyetherimide onto graphene oxide nanosheets by a carbodiimide reaction. Compared to graphene oxide, the fluorescence quenching ability of pGO25000 is significantly improved by the increase in the affinity between pGO25000 and the DNA strand, which is introduced by the additional electrostatic interaction. The FAM-labeled single-stranded DNA probe can be almost completely quenched at concentrations of pGO25000 as low as 0.1 μg/mL. A simple and novel FAM-labeled single-stranded DNA sensor was designed for Hg2+ detection to take advantage of exonuclease I-triggered single-stranded DNA hydrolysis, and pGO25000 acted as a fluorescence quencher. The FAM-labeled single-stranded DNA probe is present as a hairpin structure by the formation of T–Hg2+–T when Hg2+ is present, and no fluorescence is observed. It is digested by exonuclease I without Hg2+, and fluorescence is recovered. The fluorescence intensity of the proposed biosensor was positively correlated with the Hg2+ concentration in the range of 0–250 nM (R2 = 0.9955), with a seasonable limit of detection (3σ) cal. 3.93 nM. It was successfully applied to real samples of pond water for Hg2+ detection, obtaining a recovery rate from 99.6% to 101.1%.
Collapse
|
6
|
Huang Y, Wang X, Wu S, Shen J, Ma W, Yang S, Fa H, Yang M, Hou C. Novel nitrogen-doped carbon dots for "turn-on" sensing of ATP based on aggregation induced emission enhancement effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121044. [PMID: 35220051 DOI: 10.1016/j.saa.2022.121044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this work, a nitrogen-doped carbon dots (CDs) was successfully synthesized by hydrothermal synthesis of polyethylenimine (PEI) and citric acid. The as-prepared CDs suffered from aggregation-caused quenching (ACQ) with a high concentration, but after adding adenosine triphosphate (ATP), the CDs aggregated. The generation of aggregates caused the rotation of the surface groups on CDs and reduced the non-radiation decay. The QY of CDs in water was 9.25 %, and increased to 16.60 % and 63.38% in the addition of 100 and 1000 μM ATP. And then, the enhancement of the radiation rate led to the aggregation induced enhancement effect (AIEE). Moreover, we also found that the proportion of precursors for CDs synthesis was a key factor in the occurrence of AIEE. Therefore, such CDs would be excellent candidates as fluorescent probes for the label-free detection of ATP. Our proposed method exhibited simple and easy preparation of nanoprobe, quick response (3 min), wide range of linear rage (1-2000 μM) and eco-friendly. In addition, the method performed successfully as a "turn-on" sensor for detection of ATP in the tablet with a recovery of 100.1~106.9% and RSD below 3.5%.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Shangming Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jinhui Shen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Wenhao Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
7
|
Yan X, Zhao K, Yang Y, Qiu A, Zhang X, Liu J, Zha C, Mai X, Ai F, Zheng X. Utilizing dual carriers assisted by enzyme digestion chemiluminescence signal enhancement strategy simultaneously detect tumor markers CEA and AFP. ANAL SCI 2022; 38:889-897. [PMID: 35403957 DOI: 10.1007/s44211-022-00109-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
To measure two tumor biomarkers, alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), a dual-carrier CL sensor with restriction enzyme digestion (Exo I) and aptamer technology utilizing gold nanoparticles (hydroxylamine amplification) and horseradish peroxidase (HRP) as the CL signal enhancement in the sensing strategy was formed. These nanoparticles and nano-enzyme were precisely detected and tagged to the appropriate position attributable to the particular recognition of biotin and streptavidin. In this sensing strategy, target markers were further enriched and recognized sensitively by CL following enrichment, and matching strong chemical signals were collected under luminol catalysis, allowing for marker identification. For CEA (0.1-80 ng/mL) and AFP (2-500 ng/mL), the proposed method has a large linear range, with detection limits of 36.6 pg/mL and 0.94 ng/mL, respectively.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Kun Zhao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yunting Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Aojun Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xinlei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Jie Liu
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Chengyi Zha
- Department of Pharmacy, The 3rd People's Hospital, Jingdezhen, 333000, China
| | - Xi Mai
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Fanrong Ai
- School of Mechanical & Electrical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
8
|
Lan Y, Wei Y, Wei Y, Wang L, Dong C. Versatile Triple-Output Molecular Logic Gate for Cysteine and Silver (I) in Foods and the Environment Based on I-Motif DNA Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3608-3617. [PMID: 35289171 DOI: 10.1021/acs.jafc.1c07469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA-based molecular logic gates have been developed rapidly but most of them have a single output mode. This study is to develop a triple-output label-free fluorescent DNA-based multifunctional molecular logic gate with berberine as a fluorescent signal and a Ag+-aptamer as a recognition matrix. The Ag+-aptamer has been identified to switch from a random coil to an i-motif structure of C-Ag+-C from a Ag+-induced responsive conformational change. As a fluorescent probe, berberine is ultrasensitive to the changes of microenvironments, and the binding to i-motif DNA's more rigid structure causes a significant increase in fluorescence, anisotropy, and lifetime. The addition of cysteine to the berberine/C-Ag+-C system disintegrates the i-motif DNA structure because of the strong coordination between Ag+ and cysteine, and then the triple-output signals are almost retrieved. Given this, a highly sensitive triple-output molecular logic gate for the analyses of Ag+ and cysteine is constructed with high specificity. Moreover, this simple and cost-effective molecular logic gate has been applied for the detection of cysteine and Ag+ in various real environmental samples including river water, PM2.5, soil, and food samples with satisfactory recoveries from 89.83 to 106.04%.
Collapse
Affiliation(s)
- Yifeng Lan
- Shanxi Laboratory for Yellow River, Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Yuxin Wei
- Shanxi Laboratory for Yellow River, Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Yanli Wei
- Shanxi Laboratory for Yellow River, Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Li Wang
- Shanxi Laboratory for Yellow River, Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Shanxi Laboratory for Yellow River, Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
9
|
Zheng G, Zhao L, Yuan D, Li J, Yang G, Song D, Miao H, Shu L, Mo X, Xu X, Li L, Song X, Zhao Y. A genetically encoded fluorescent biosensor for monitoring ATP in living cells with heterobifunctional aptamers. Biosens Bioelectron 2022; 198:113827. [PMID: 34861524 DOI: 10.1016/j.bios.2021.113827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Visualizing the dynamics of ATP in living cells is key to understanding cellular energy metabolism and related diseases. However, the live-cell applications of current methods are still limited due to challenges in biological compatibility and sensitivity to pH. Herein, a novel label-free fluorescent " turn-on " biosensor for monitoring ATP in living bacterias and mammalian cells was developed. This biosensor (Broc-ATP) employed heterobifunctional aptamers to detect ATP with high sensitivity in vitro. In our system, a very useful tandem method was established by combining four Broc-ATPs with 3 × F30 three-way junction scaffold to construct an intracellular biosensor that achieves sufficient fluorescence to respond to intracellular ATP. This intracellular biosensor can be used for sensitive and specific dynamic imaging of ATP in mammalian cells. Hence, this genetically encoded biosensor provides a robust and efficient tool for the detection of intracellular ATP dynamics and 3 × F30 tandem method expands the application of heterobifunctional aptamers in mammalian cells.
Collapse
Affiliation(s)
- Guoliang Zheng
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Liang Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Deyu Yuan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jia Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Gang Yang
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Danxia Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Linjuan Shu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
10
|
He JL, Jiang BY, Zhou WJ, Yuan R, Xiang Y. Target Recycling Transcription of Lighting-Up RNA Aptamers for Highly Sensitive and Label-Free Detection of ATP. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Shariati M, Vaezjalali M, Sadeghi M. Ultrasensitive and easily reproducible biosensor based on novel doped MoS 2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum. Anal Chim Acta 2021; 1156:338360. [PMID: 33781462 DOI: 10.1016/j.aca.2021.338360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
An ultrasensitive field-effect transistor (FET) for hepatitis B virus deoxyribonucleic acid (HBV DNA) detection in label free approach and easily reproducible setup was reported. The fabricated FET biosensor was materialized by ZnO doped MoS2 nanowires (NWs). This report introduced a novel structure of the MoS2 in bio-sensing approach. Because of unique electrical and structural properties of MoS2, HBV biosensor could demonstrate the high sensitivity and showed the detection limit of 1 fM. The MoS2 NWs fabrication was materialized through ZnO based vapor-liquid-solid (VLS) technique. The fabricated device could measure the DNA targets in a linear concentration range from 0.5 pM to 50 μM. The dynamic response time of FET biosensor was 25 s. The functionality of the NWs biosensor for label-free measurements could be repeated for several times without any significant malfunction and biosensor could retain 96% of its initial response after eight weeks maintenance. The HBV biosensor showed high selectivity by discrimination the complementary DNA oligonucleotides from non-complementary and the mismatch (1, 2 and 3 bases) oligonucleotides. The materialized platform was desirably reproduced for HBV concentrations in human serum. The specificity of the biosensor was evaluated against several different types of DNAs and the fabricated device showed the outstanding performance. In order to optimize the device functionality, the biosensor was checked for two different human samples and device could distinguish the samples from each other in the same manner.
Collapse
Affiliation(s)
- Mohsen Shariati
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran.
| |
Collapse
|
13
|
Wei Y, Zhou Y, Wei Y, Dong C, Wang L. A fluorescent aptasensor based on berberine for ultrasensitive detection of bisphenol A in tap water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1816-1822. [PMID: 33885638 DOI: 10.1039/d1ay00180a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The residues of bisphenol A (BPA) in food packaging and water systems have a potential impact on human health; therefore, its analysis and detection have drawn scientists' attention. In this work, based on the change in fluorescence intensity resulting from the conformational switch of a berberine/BPA-aptamer system in the presence and absence of BPA, an ultra-sensitive fluorescence aptasensing system is proposed, in which BPA-aptamer is employed as the identification unit and berberine as the fluorescent probe. Various factors affecting the detection of BPA, including the concentration of the fluorescent probe, BPA-aptamer, BPA, pH, system stability time and other experimental conditions, were investigated in detail. Under the optimal experimental conditions, the fluorescence intensity of the sensing system of berberine/BPA-aptamer exhibited a good linear correlation with the BPA concentration in the range of 0-1300 μM with a LOD of 32 nM. The proposed fluorescent sensing system also exhibited excellent recoveries of 92.4-102.3% in tap water samples and showed good application prospects for the analysis and detection of BPA.
Collapse
Affiliation(s)
- Yuxin Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yangyang Zhou
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yanli Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Li Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
14
|
Chen S, Zhao J, Yang X, Zhao S, Liu YM. A novel intracellular signal amplification strategy for the quantification of ATP in single cells by microchip electrophoresis with laser-induced fluorescence detection. Chem Commun (Camb) 2021; 56:6579-6582. [PMID: 32400773 DOI: 10.1039/d0cc02072a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intracellular signal amplification strategy was developed for the quantification of ATP in single cells by microchip electrophoresis with laser-induced fluorescence detection. By using the method proposed, intracellular ATP levels in single HeLa, HepG2 and HL-7702 cells were found to be in the range of 30-150, 30-140, and 19-120 fmol per cell, respectively.
Collapse
Affiliation(s)
- Shengyu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China. and Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St, Jackson, MS 39217, USA.
| | - Xing Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St, Jackson, MS 39217, USA.
| |
Collapse
|
15
|
Zhao YT, Chen XX, Jiang WL, Li Y, Fei J, Li CY. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47840-47847. [PMID: 32981314 DOI: 10.1021/acsami.0c13003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is mainly produced in mitochondria and plays an important role in lots of pathological processes such as colitis. Unfortunately, to date, few suitable fluorescence probes have been developed for monitoring the ATP level in colitis. Herein, a fluorescence nanoprobe named NIR@ZIF-90 is proposed and prepared by encapsulating a rhodamine-based near-infrared (NIR) dye into zeolitic imidazolate frameworks (ZIF-90). The nanoprobe is nonfluorescent because the emission of NIR is suppressed by the encapsulation, while in the presence of ATP, the framework of ZIF-90 is dissembled to release NIR and thus NIR fluorescence at 750 nm is observed. The nanoprobe shows high sensitivity to ATP with a 72-fold increase and excellent selectivity to ATP over other nucleotides. Moreover, with low cytotoxicity and good mitochondria-targeted ability, NIR@ZIF-90 is used to image ATP in colorectal cancer cells (HCT116). In addition, due to the NIR emission, the nanoprobe is further employed to successfully monitor the ATP level in a colitis mouse model. To the best of our knowledge, the nanoprobe is the first example to study colitis in vivo with the guidance of ATP, which will provide an efficient tool for understanding colitis.
Collapse
Affiliation(s)
- Yi-Ting Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xi-Xi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
16
|
Wang G, Li J, He Y, Liu J, Yu M, Wang G. Establishment of a universal and sensitive plasmonic biosensor platform based on the hybridization chain reaction (HCR) amplification induced by a triple-helix molecular switch. Analyst 2020; 145:3864-3870. [PMID: 32270806 DOI: 10.1039/d0an00249f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we established a universal and sensitive plasmonic sensing strategy for biomolecule assays by coupling the hybridization chain reaction (HCR) strategy and a triple-helix molecular switch. Upon the recognition of the target, a single-stranded DNA as a universal trigger (UT) was released from the triple-helix molecular switch (THMS). Thus, the HCR process can be triggered between two hairpins M1 and M2, resulting in the aggregation of gold nanoparticles (AuNPs) via the hybridization between the tail sequence on M1 (or M2) and a DNA-AuNP probe with a dramatic change in the absorbance at 521 nm. More specifically, the strategy, which was conducted by the introduction of target-specific recognition of THMS and universalized by virtue of altering the aptamer or DNA sequence without changing the triple-helix structure, enables simple design for multiple target detection. By taking advantage of THMS, this strategy could enable stable and sensitive detection of a variety of targets including nucleic acids, small molecules and proteins, which may possess great potential for practical applications.
Collapse
Affiliation(s)
- Ganglin Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Bansal D, Gupta R. Selective sensing of ATP by hydroxide-bridged dizinc(ii) complexes offering a hydrogen bonding cavity. Dalton Trans 2020; 48:14737-14747. [PMID: 31549128 DOI: 10.1039/c9dt02404b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work illustrates the highly selective fluorescence detection of ATP in the presence of other competing anions, such as AMP, ADP, PPi and other phosphates by using a set of hydroxide-bridged dizinc(ii) complexes offering a cavity lined with hydrogen bonds and other interactive forces. ATP, as a whole, was recognized by the synergic combination of Zn-phosphate bonding, ππ stacking between the adenine ring of ATP and the pyridine ring of the dizinc complex and hydrogen bonding interactions that modulate the cavity structure of the dizinc complexes.
Collapse
Affiliation(s)
- Deepak Bansal
- Department of Chemistry, University of Delhi, Delhi - 110 007, India.
| | | |
Collapse
|
18
|
Li Y, Liu B, Huang Z, Liu J. Engineering base-excised aptamers for highly specific recognition of adenosine. Chem Sci 2020; 11:2735-2743. [PMID: 34084332 PMCID: PMC8157715 DOI: 10.1039/d0sc00086h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors. For practical reasons, it is important to distinguish adenosine from ATP, although this has yet to be achieved despite extensive efforts made on selection of new aptamers. We herein report a strategy of excising an adenine nucleotide from the backbone of a one-site adenosine aptamer, and the adenine-excised aptamer allowed highly specific binding of adenosine. Cognate analytes including AMP, ATP, guanosine, cytidine, uridine, and theophylline all failed to bind to the engineered aptamer according to the SYBR Green I (SGI) fluorescence spectroscopy and isothermal titration calorimetry (ITC) results. Our A-excised aptamer has two binding sites: the original aptamer binding site in the loop and the newly created one due to base excision from the DNA backbone. ITC demonstrated that the A-excised aptamer strand can bind to two adenosine molecules, with a Kd of 14.8 ± 2.1 μM at 10 °C and entropy-driven binding. Since the wild-type aptamer cannot discriminate adenosine from AMP and ATP, we attributed this improved specificity to the excised site. Further study showed that these two sites worked cooperatively. Finally, the A-excised aptamer was tested in diluted fetal bovine serum and showed a limit of detection of 46.7 μM adenosine. This work provides a facile, cost-effective, and non-SELEX method to engineer existing aptamers for new features and better applications. The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors.![]()
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
19
|
Proximity-enabled bidirectional enzymatic repairing amplification for ultrasensitive fluorescence sensing of adenosine triphosphate. Anal Chim Acta 2020; 1104:156-163. [PMID: 32106947 DOI: 10.1016/j.aca.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
A novel fluorescence sensing strategy for ultrasensitive and highly specific detection of adenosine triphosphate (ATP) has been developed by the combination of the proximity ligation assay with bidirectional enzymatic repairing amplification (BERA). The strategy relies on proximity binding-triggered the release of palindromic tail that initiates bidirectional cyclic enzymatic repairing amplification reaction with the aid of polymerase and two DNA repairing enzymes, uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). A fluorescence-quenched hairpin probe with a palindromic tail at the 3' end is skillfully designed that functions as not only the recognition element, primer, and polymerization template for BERA but also the indicator for fluorescence signal output. On the basis of the amplification strategy, this biosensor displays excellent sensitivity and selectivity for ATP detection with an outstanding detection limit of 0.81 pM. Through simultaneously enhancing the target response signal value and reducing nonspecific background, this work deducted the background effect, and showed high sensitivity and reproducibility. Moreover, our biosensor also shows promising potential in real sample analysis. Therefore, the proximity-enabled BERA strategy indeed creates a simple and valuable fluorescence sensing platform for ATP identification and related disease diagnosis and biomedical research.
Collapse
|
20
|
Xue N, Wu S, Li Z, Miao X. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification. Anal Chim Acta 2019; 1104:117-124. [PMID: 32106942 DOI: 10.1016/j.aca.2019.12.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/28/2019] [Indexed: 11/18/2022]
Abstract
Abnormal concentration of adenosine triphosphate (ATP) is directly asscociate with several diseases. Thus, sensitive detection of ATP is essential to early diagnosis of disease. Herein, we described an ultrasensitive strategy for ATP detection by using positively charged gold nanorods ((+)AuNRs) as an efficient fluorescence quenching platform, coupled with exonuclease Ⅲ (Exo Ⅲ) assisted target recycling amplification. To construct the sensor, DNA template that contained ATP aptamer was used for the formation of Ag nanoclusters signal probe (DNA/AgNCs), the structure of it could change to duplex after the interaction of it with ATP. Such DNA template or duplex DNA product could electrostatically adsorb onto (+)AuNRs surface, resulting in the quenching of the fluorescence signal due to the vicinity of AgNCs to (+)AuNRs. With the addition of Exo Ⅲ, DNA duplex could be hydrolyzed and released from (+)AuNRs surface, leading to the recovery of a strong fluorescent signal, while ATP could be regenerated for next target recycling. Combing the good fluorescence quenching ability of (+)AuNRs and the Exo Ⅲ assisted signal amplification, a low detection limit of 26 pM was achieved for ATP detection. Notably, the proposed method can be successfully applied for detecting ATP in serum samples, indicating a potential application value in early cancer diagnosis.
Collapse
Affiliation(s)
- Ning Xue
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shujie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
21
|
Shamsipur M, Molaei K, Molaabasi F, Hosseinkhani S, Taherpour A, Sarparast M, Moosavifard SE, Barati A. Aptamer-Based Fluorescent Biosensing of Adenosine Triphosphate and Cytochrome c via Aggregation-Induced Emission Enhancement on Novel Label-Free DNA-Capped Silver Nanoclusters/Graphene Oxide Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46077-46089. [PMID: 31718135 DOI: 10.1021/acsami.9b14487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four fluorescent DNA-stabilized fluorescent silver nanoclusters (DNA-AgNCs) were designed and synthesized with differences in lengths of cytosine-rich DNA strand (as the stabilizing agent) and target-specific strand DNA aptamers for adenosine triphosphate (ATP) and cytochrome c (Cyt c). After their nanohybrid formation with graphene oxide (GO), it was unexpectedly found that, depending on the composition of the base and length of the strand DNA aptamer, the fluorescence intensity of three of the nanohybrids significantly enhanced. Our experimental observations and quantum mechanical calculations provided an insight into the mechanisms underlying the behavior of DNA-AgNCs/GO nanohybrids. The enhanced fluorescence was found to be attributed to the aggregation-induced emission enhancement (AIE) characteristic of the DNA-AgNCs adsorbed on the GO surface, as confirmed evidently by both fluorescence and transmission electron microscopies. The AIE is a result of hardness and oxidation properties of GO, which lead to enhanced argenophilic interaction and thus to increased Ag(I)-DNA complex shell aggregation. Consequently, two of the DNA-AgNCs/GO nanohybrids were successfully extended to construct highly selective, sensitive, label-free, and simple aptasensors for biosensing of ATP (LOD = 0.42 nM) and Cyt c (LOD = 2.3 nM) in lysed Escherichia coli DH5 α cells and mouse embryonic stem cells, respectively. These fundamental findings are expected to significantly influence the designing and engineering of new AgNCs/GO-based AIE biosensors.
Collapse
Affiliation(s)
- Mojtaba Shamsipur
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Karam Molaei
- Department of Chemistry , Tarbiat Modares University , Tehran 14115-111 , Iran
| | - Fatemeh Molaabasi
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center , Motamed Cancer Institute, ACECR , Tehran 15179-64311 , Iran
| | - Saman Hosseinkhani
- Department of Biochemistry , Tarbiat Modares University , Al Ahmad Street , Tehran 14115-175 , Iran
| | - Avat Taherpour
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Morteza Sarparast
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Seyyed Ebrahim Moosavifard
- Department of Advanced Medical Sciences & Technologies, School of Medicine , Jahrom University of Medical Sciences (JUMS) , Jahrom 74148-46199 , Iran
| | - Ali Barati
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| |
Collapse
|
22
|
Li X, Zhang H, Zhao Y, Lian L, Wang X, Gao W, Zhu B, Lou D. Design and Synthesis of Ag Nanocluster Molecular Beacon for Adenosine Triphosphate Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2786156. [PMID: 31737403 PMCID: PMC6815610 DOI: 10.1155/2019/2786156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
This study presents a fluorescence method for detecting adenosine triphosphate (ATP) based on a label-free Ag nanocluster molecular beacon (MB) with high sensitivity. The sensor contains a hairpin-shaped MB, two short single-stranded DNA strands, and T4 DNA ligase. The MB consists of three parts, which are the template DNA sequence for synthesizing Ag nanoclusters at the 5' end, the middle DNA with a hairpin-shaped structure, and the guanine base-rich DNA sequence at the 3' end. The sensor exhibits high fluorescence intensity in the absence of ATP. However, when the probe is used for ATP detection, the two short DNA sequences in the sensor would form a long sequence by enzymatic ligation reaction; this long sequence opens the hairpin-shaped structure of the MB and decreases the fluorescence of the system. Under optimal analytical conditions, a clear linear relationship is observed between ATP concentration and fluorescence intensity in the range of 0.1-10 μM. The interference presented by other small molecules during ATP detection is evaluated, and results confirm the good selectivity of the proposed sensor. Compared with traditional methods, the sensor is label free, easy to operate, inexpensive, and highly sensitive.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Ying Zhao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Xiyue Wang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Wenxiu Gao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Bo Zhu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| |
Collapse
|
23
|
Man T, Lai W, Xiao M, Wang X, Chandrasekaran AR, Pei H, Li L. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosens Bioelectron 2019; 147:111742. [PMID: 31672389 DOI: 10.1016/j.bios.2019.111742] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) as one of the effective tools for sensitive and selective detection of biomolecules has attracted tremendous attention. Here, we construct a versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy (PIERS) effect for ultrasensitive detection of multiple analytes. In our PIERS sensor, we exploit the molecular recognition capacity of aptamers and the high affinity of aptamers with analyte to trigger TiO2@AgNP substrates binding with Raman tag-labeled gold nanoparticles probes via analyte, thus forming sandwich complexes. Additionally, combining plasmonic nanoparticles with photo-activated substrates allows PIERS sensor to achieve increased sensitivity beyond the normal SERS effect upon ultraviolet irradiation. Accordingly, the PIERS can be implemented for analysis of multiple analytes by designing different analyte aptamers, and we further demonstrate that the constructed PIERS sensor can serve as a versatile detection platform for sensitively analyzing various biomolecules including small molecules (adenosine triphosphate (ATP), limit of detection (LOD) of 0.1 nM), a biomarker (thrombin, LOD of 50 pM), and a drug (cocaine, LOD of 5 nM). Therefore, this versatile biomolecular detection platform based on PIERS effect for ultrasensitive detection of multiple analytes holds great promise to be a practical tool.
Collapse
Affiliation(s)
- Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | | | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
24
|
Ratajczak K, Lukasiak A, Grel H, Dworakowska B, Jakiela S, Stobiecka M. Monitoring of dynamic ATP level changes by oligomycin-modulated ATP synthase inhibition in SW480 cancer cells using fluorescent "On-Off" switching DNA aptamer. Anal Bioanal Chem 2019; 411:6899-6911. [PMID: 31407049 PMCID: PMC6834760 DOI: 10.1007/s00216-019-02061-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Adenosine triphosphate (ATP) is the main energy source in cells and an important biomolecule participating in cellular reactions in living organisms. Since the ATP level changes dynamically reflecting the development of a debilitating disease or carcinogenesis, we have focused in this work on monitoring of the oligomycin (OMC)-modulated ATP synthase inhibition using a fluorescent-switching DNA aptamer designed for the detection of ATP (Apt(ATP)), as the model for studies of dynamic ATP level variation. The behavior of the ATP aptamer has been characterized using fluorescence spectroscopy. The Intramolecular fluorescence resonance energy transfer (iFRET) operates in the proposed aptamer from the FAM dye moiety to guanines of the aptamer G-quadruplex when the target ATP is present and binds to the aptamer changing its conformation. The iFRET process enables the detection of ATP down to the limit of detection, LOD = 17 μM, without resorting to any extra chemi-amplification schemes. The selectivity coefficients for relevant interferent triphosphates (UTP, GTP, and CTP) are low for the same concentration as that of ATP. We have demonstrated an efficient transfection of intact cells and OMC-treated SW480 colon cancer cells with Apt(ATP), using microscopic imaging, iFRET measurements, and cell viability testing with MTT method. The applicability of the switching DNA aptamer for the analysis of real samples, obtained by lysis of SW480 cells, was also tested. The proposed Apt(ATP) may be considered as a viable candidate for utilization in measurements of dynamic ATP level modulation in cells in different stages of cancer development and testing of new drugs in pharmacological studies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Agnieszka Lukasiak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Beata Dworakowska
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
25
|
Umar MI, Ji D, Chan CY, Kwok CK. G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications. Molecules 2019; 24:E2416. [PMID: 31262059 PMCID: PMC6650947 DOI: 10.3390/molecules24132416] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023] Open
Abstract
Guanine (G)-quadruplexes (G4s) are unique nucleic acid structures that are formed by stacked G-tetrads in G-rich DNA or RNA sequences. G4s have been reported to play significant roles in various cellular events in both macro- and micro-organisms. The identification and characterization of G4s can help to understand their different biological roles and potential applications in diagnosis and therapy. In addition to biophysical and biochemical methods to interrogate G4 formation, G4 fluorescent turn-on ligands can be used to target and visualize G4 formation both in vitro and in cells. Here, we review several representative classes of G4 fluorescent turn-on ligands in terms of their interaction mechanism and application perspectives. Interestingly, G4 structures are commonly identified in DNA and RNA aptamers against targets that include proteins and small molecules, which can be utilized as G4 tools for diverse applications. We therefore also summarize the recent development of G4-containing aptamers and highlight their applications in biosensing, bioimaging, and therapy. Moreover, we discuss the current challenges and future perspectives of G4 fluorescent turn-on ligands and G4-containing aptamers.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Danyang Ji
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Sang F, Zhang X, Liu J, Yin S, Zhang Z. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:122-127. [PMID: 30928837 DOI: 10.1016/j.saa.2019.03.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
A facile and rapid colorimetric approach was described for selective and sensitive determination of adenosine triphosphate (ATP) based on a hairpin aptamer probe and the anti-aggregation of AuNPs. Poly(diallyldimethylammonium chloride) (PDDA) can induce the aggregation of AuNPs due to the electrostatic interaction causing a red to blue color change. Upon the addition of ATP, aptamer-based hairpin probe is opened and releases flexible ssDNA ends. The released flexible ssDNA ends can interact with PDDA and prevent PDDA-induced AuNPs aggregation. Thus, a visible color change from blue to red and a decrease in the absorption ratio (A610/A520) are observed. Under the optimal conditions, the hairpin aptamer-based colorimetric assay exhibits high sensibility and selectivity for the detection of ATP with a detection limit of 1.7nM. Moreover, this assay is successfully used in the rapid determination of ATP in spiked human serum samples with good recoveries in the range of 102.88 to 104.07%.
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China.
| | - Xue Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Jia Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Suyao Yin
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Zhizhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| |
Collapse
|
27
|
A label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection based on aggregation-induced emission probe. Anal Biochem 2019; 578:60-65. [PMID: 31095938 DOI: 10.1016/j.ab.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Based on Aggregation-Induced Emission (AIE), the development of a label-free, simple and sensitive fluorometric aptasensor for adenosine triphosphate (ATP) detection is described. With ATP present, the aptamers will combine with ATP and the conformation of the aptamer will switch from a random coil to an antiparallel G-quadruplex, which impedes the digestion by exonuclease I (Exo I). Addition of 4,4 -(1E,1E)-2,2-(anthracene-9,10-diyl) bis (ethene-2,1-diyl) bis (N,N, N-trimethyl-benzenaminium iodide) (DSAI) into the solution will cause aggregation of DSAI on the surface of the aptamer/ATP complex and consequently give rise to strong emission. Additionally, a good linear relationship was observed under optimized conditions between the fluorescence intensities and the logarithm of ATP concentrations (R2 = 0.9908). The established aptamer sensor was highly sensitive and exhibited a low limit of detection of 32.8 nM, with superior specificity for ATP. It was also used in the quantification of ATP levels in human serum samples and demonstrated satisfactory recoveries in the scope of 93.2%-107.6%. The cellular ATP assay results indicated that the developed method can be used for monitoring ATP concentrations in cell extracts without the interference of other substances in the cells. This method offers several advantages such as simplicity, rapidity, low cost and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
|
28
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
29
|
Jiang G, Zhu W, Chen Q, Shi A, Wu Y, Zhang G, Li X, Li Y, Fan X, Wang J. A new tetraphenylethylene based AIE sensor with light-up and tunable measuring range for adenosine triphosphate in aqueous solution and in living cells. Analyst 2018; 142:4388-4392. [PMID: 29116261 DOI: 10.1039/c7an01336a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An AIE based tetraphenylethylene derivative (TPPTPE) was synthesized for light-up sensing of ATP in aqueous solution. The measuring range for ATP can be tuned by varying the concentration of the TPPTPE. A one-step straightforward quantitative analysis of the ATP level in cell lysates can be realized using the TPPTPE. Moreover, the TPPTPE can be used for monitoring apyrase activity in aqueous solution and detecting ATP both in living cancer cell lines and in living normal cell lines.
Collapse
Affiliation(s)
- Guoyu Jiang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ueno S, Shioya M, Ichiki T. Fluorometric Measurement of Adenosine 5'-Triphosphate Using Exonuclease V Activity. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shingo Ueno
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion
- Department of Materials Engineering, School of Engineering, The University of Tokyo
| | - Mika Shioya
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion
| | - Takanori Ichiki
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion
- Department of Materials Engineering, School of Engineering, The University of Tokyo
| |
Collapse
|
31
|
Fan YY, Mou ZL, Wang M, Li J, Zhang J, Dang FQ, Zhang ZQ. Chimeric Aptamers-Based and MoS 2 Nanosheet-Enhanced Label-Free Fluorescence Polarization Strategy for Adenosine Triphosphate Detection. Anal Chem 2018; 90:13708-13713. [PMID: 30350952 DOI: 10.1021/acs.analchem.8b04107] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenosine triphosphate (ATP) as a primary energy source plays a unique role in the regulation of all cellular events. The necessity to detect ATP requires sensitive and accurate quantitative analytical strategies. Herein, we present our study of developing a MoS2 nanosheet-enhanced aptasensor for fluorescence polarization-based ATP detection. A bifunctional DNA strand was designed to consist of chimeric aptamers that recognize and capture ATP and berberine, a fluorescence enhancer. In the absence of ATP, the DNA strand bound to berberine will be hydrolyzed when Exonuclease I (Exo I) is introduced, releasing berberine as a result. In contrast, when ATP is present, ATP aptamer folds into a G-quadruplex structure; thus, the complex can resist degradation by Exo I to maintain berberine for fluorescent detection purpose. In addition, to magnify the fluorescence polarization (FP) signal, MoS2 nanosheets were also adopted in the system. This nanosheets-enhanced FP strategy is simple and facile which does not require traditional dye-labeled DNA strands and complex operation steps. The developed fluorescence polarization aptasensor showed high sensitivity for the quantification of ATP with a detection limit of 34.4 nM, performing well both in buffer solution and in biological samples.
Collapse
Affiliation(s)
- Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China.,Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University) , Ministry of Education , Xi'an 710062 , China
| | - Zhao-Li Mou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China.,Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University) , Ministry of Education , Xi'an 710062 , China
| | - Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Fu-Quan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China.,Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University) , Ministry of Education , Xi'an 710062 , China
| |
Collapse
|
32
|
Ahn JK, Kim HY, Park KS, Park HG. A Personal Glucose Meter for Label-Free and Washing-Free Biomolecular Detection. Anal Chem 2018; 90:11340-11343. [PMID: 30152994 DOI: 10.1021/acs.analchem.8b02014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We developed a label-free and washing-free method for biomolecular detection using a personal glucose meter (PGM). ATP was selected as a model target, and cascade enzymatic reactions promoted by hexokinase and pyruvate kinase were adopted to link the amount of ATP to glucose that is detectable by a hand-held PGM. In principle, the presence of target ATP enables hexokinase to catalyze the conversion of glucose to glucose 6-phosphate by providing a phosphate group to glucose, and thus the amount of glucose is decreased in proportion to the amount of ATP. In addition, adenosine 5'-diphosphate (ADP), which is generated after hexokinase-catalyzed enzymatic reaction, is recovered to ATP by a pyruvate kinase enzyme. The regenerated ATP is again supplemented to catalyze multiple rounds of cascade enzymatic reactions, leading to signal amplification. As a result, the change of glucose amount that is inversely proportional to ATP amount is simply measured by a hand-held PGM. By employing this strategy, we successfully determined ATP down to 49 nM with high selectivity even in real samples such as tap water, human serum, and bovine urine. Importantly, the developed system does not require expensive modification and washing steps but is conveniently operated with a commercially available PGM, which would pave the way for the development of a simple and cost-effective sensing platform.
Collapse
Affiliation(s)
- Jun Ki Ahn
- Department of Chemical and Biomolecular Engineering, BK21+ Program , KAIST: Korea Advanced Institute of Science & Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering, BK21+ Program , KAIST: Korea Advanced Institute of Science & Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering , Konkuk University , Seoul 05029 , Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering, BK21+ Program , KAIST: Korea Advanced Institute of Science & Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| |
Collapse
|
33
|
Simultaneous Detection of Adenosine Triphosphate and Glucose Based on the Cu-Fenton Reaction. SENSORS 2018; 18:s18072151. [PMID: 29973531 PMCID: PMC6069456 DOI: 10.3390/s18072151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023]
Abstract
Both adenosine triphosphate (ATP) and glucose are important to human health, and their abnormal levels are closely related to angiocardiopathy and hypoglycaemia. Therefore, the simultaneous determination of ATP and glucose with a single test mode is highly desirable for disease diagnostics and early recognition. Herein, a new fluorescence on/off switch sensing platform is developed by carbon nanodots (CNDs) to detect ATP and glucose simultaneously. The fluorescence of CNDs can be quenched by Cu2+ and hydrogen peroxide (H₂O₂), due to the formation of hydroxyl radicals (·OH) produced in the Cu-Fenton reaction. Based on the high affinity of Cu2+ with ATP, the fluorescence of CNDs will recover effectively after adding ATP. Additionally, glucose can be efficiently catalyzed by glucose oxidase (GOx) to generate H₂O₂, so the platform can also be utilized to analyze glucose. Under optimum conditions, this sensing platform displays excellent sensitivity and the linear ranges are from 0.1 to 7 μM for ATP with a limit of detection (LOD) of 30.2 nM, and from 0.1 to 7 mM for glucose with a LOD 39.8 μM, respectively. Benefiting from the high sensitivity and selectivity, this sensing platform is successfully applied for simultaneous detection of ATP and glucose in human serum samples with satisfactory recoveries.
Collapse
|
34
|
Wang M, Yang L, Hu B, Liu J, He L, Jia Q, Song Y, Zhang Z. Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens Bioelectron 2018; 113:16-24. [PMID: 29709777 DOI: 10.1016/j.bios.2018.04.050] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022]
Abstract
We designed and constructed a novel aptasensor based on the porous nanostructured bimetallic NiFe-oxides embedded with the mesoporous carbon (represented by NiOxFeOy@mC) for sensitively detecting adenosine triphosphate (ATP), of which the porous NiOxFeOy@mC was derived from the hollow NiFe Prussian blue analogue (hollow NiFe PBA) by calcinating under high temperature. Owning to the excellent electrochemical activity originated from the metal oxides and mesoporous carbon and the strong binding interaction between the aptamer strands and the nanostructure hybrid, the formed porous NiOxFeOy@mC composite calcinated at 900 °C exhibited superior sensitivity toward ATP determination in comparison with other porous nanocubes obtained at 500 and 700 °C. The proposed aptasensor not only revealed a wide linear range from 5.0 fg·mL-1 to 5.0 ng mL-1 with a extremely low detection limit of 0.98 fg·mL-1 (1.62 fM) (S/N = 3), but also displayed high selectivity towards other interferences, good stability and reproducibility, and acceptable applicability. Therefore, this proposed approach provides a promising platform for ultra-sensitive detection of ATP, further having the potential applications on diagnosis of ATP-related diseases.
Collapse
Affiliation(s)
- Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Jiameng Liu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Qiaojuan Jia
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
35
|
Zhao Q, Zhang Z, Tang Y. A new conjugated polymer-based combination probe for ATP detection using a multisite-binding and FRET strategy. Chem Commun (Camb) 2018; 53:9414-9417. [PMID: 28787042 DOI: 10.1039/c7cc04293k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new conjugated polymer-based ratiometric combination probe was constructed for adenosine triphosphate detection by taking advantage of a multisite-binding and fluorescence resonance energy transfer strategy. The method is rapid and highly selective, which can clearly discriminate ATP from persistent interferents such as ADP, AMP, other nucleoside polyphosphates and nucleobases.
Collapse
Affiliation(s)
- Qi Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | | | | |
Collapse
|
36
|
Leng X, Li R, Wang Y, Wu Y, Tu Y, Pei Q, Cui X, Huang J, Liu S. Target-activated cascaded digestion amplification of exonuclease III aided signal-on and ultrasensitive fluorescence detection of ATP. NEW J CHEM 2018. [DOI: 10.1039/c7nj04657j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a rapid, one-step and ultrasensitive signal-on fluorescence sensing for the detection of adenosine triphosphate (ATP) based on target-activated cascaded digestion amplification with Exo III aid was developed.
Collapse
Affiliation(s)
- Xueqi Leng
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rongguo Li
- Jinan Maternity and Child Care Hospital
- Jinan 250022
- P. R. China
| | - Yu Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yunping Wu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yuqin Tu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Jiadong Huang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
| | - Su Liu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
37
|
Tian YF, Zhou W, Yin BC, Ye BC. Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:6038-6043. [PMID: 39825506 DOI: 10.1039/c7ay02096a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments. The first thiol-labeled segment (DNA1) of the aptamer was immobilized on silver-coated gold nanostar (AuNS@Ag) surfaces by an Au-S bond. The second thiol-labeled segment (DNA2) was linked via an Au-S bond to gold nanoparticles (AuNPs), which were also decorated with a Raman active reporter molecule, 4-mercaptobenzoic acid (4-MBA). In the presence of ATP, DNA2 associated with DNA1, leading to greatly enhanced 4-MBA Raman intensity. The enhance Raman signal was linearly related to the logarithm of the ATP concentration in the range from 1 pM to 1 nM, with a detection limit of ∼0.5 pM. In addition, the sensor featured an excellent selectivity to ATP over other interfering analogues of ATP (GTP, CTP, and UTP).
Collapse
Affiliation(s)
- Ya-Fei Tian
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wen Zhou
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
38
|
A fluorescent "on-off-on" probe for sensitive detection of ATP based on ATP displacing DNA from nanoceria. Talanta 2017; 179:285-291. [PMID: 29310233 DOI: 10.1016/j.talanta.2017.09.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 12/11/2022]
Abstract
A simple, rapid, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed by using a FAM (carboxyfluorescein) labeled DNA (FAM-DNA). In this strategy, highly fluorescent FAM-DNA was used as a probe, and nanoceria (CeO2 NPs) acted as an efficient quencher. FAM-DNA attached to the surface of nanoceria through the coordination between the phosphate group of DNA and NP surface, which induced complete quenching in the FAM-DNA fluorescence due to a photo induced electron transfer (PET) process. It was found that ATP can readily displace adsorbed DNA from nanoceria surface because of the stronger coordination ability of ATP with nanoceria, and the nanoceria-based competitive binding resulted in over 7-fold fluorescence enhancement. Over a wide range from 0.1nM to 1.5μM, a good linear relationship between the fluorescence intensity and the concentration of ATP was obtained and the detection limit was estimated to be as low as 54pM. This method was successfully used to analyze ATP in a single drop of blood and human urine.
Collapse
|
39
|
Huang B, Geng Z, Yan S, Li Z, Cai J, Wang Z. Water-Soluble Conjugated Polymer as a Fluorescent Probe for Monitoring Adenosine Triphosphate Level Fluctuation in Cell Membranes during Cell Apoptosis and in Vivo. Anal Chem 2017; 89:8816-8821. [PMID: 28752761 DOI: 10.1021/acs.analchem.7b01212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adenosine triphosphate (ATP) is used as the energy source in cells and plays crucial roles in various cellular events. The cellular membrane is the protective barrier for the cytoplasm of living cells and involved in many essential biological processes. Many fluorescent probes for ATP have been successfully developed, but few of these probes were appropriate for visualizing ATP level fluctuation in cell membranes during the apoptotic cell death process. Herein, we report the synthesis of a new water-soluble cationic polythiophene derivative that can be utilized as a fluorescent sensor for detecting ATP in cell membranes. Poly((3-((4-methylthiophen-3-yl)oxy)propyl)triphenylphosphonium chloride) (PMTPP) exhibits high sensitivity and good selectivity to ATP, and the detection limit is 27 nM. The polymer shows low toxicity to live cells and excellent photostability in cell membranes. PMTPP was practically utilized for real-time monitoring of ATP levels in the cell membrane through fluorescence microscopy. We have demonstrated that the ATP levels in cell membranes increased during the apoptotic cell death process. The probe was also capable of imaging ATP levels in living mice.
Collapse
Affiliation(s)
- Binghuan Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zan Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Jun Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| |
Collapse
|
40
|
An aptamer-based PCR method coupled with magnetic immunoseparation for sensitive detection of Salmonella Typhimurium in ground turkey. Anal Biochem 2017. [PMID: 28645756 DOI: 10.1016/j.ab.2017.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aptamers are single-stranded oligonucleotide ligands that can bind to targets with high affinity and specificity. They have been widely studied in the field of diagnostics as alternatives to antibodies due to their favorable features such as easy labeling, temperature tolerance, lower cost and recognition of a wide variety of targets. In this study, an aptamer-based PCR method coupled with magnetic immunoseparation was developed to detect S. Typhimurium from ground turkey. Firstly, biotinylated polyclonal anti-S. Typhimurium antibody was immobilized on streptavidin-coated magnetic nanobeads to capture S. Typhimurium. Secondly, the aptamers were added and bound to the surface of S. Typhimurium after blocking the magnetic nanobeads with short ssDNA. Finally, the aptamers were released by heating and amplified by PCR. After optimization, this assay was able to detect 102 CFU/mL of S. Typhimurium in pure culture, and 103 CFU/mL of S. Typhimurium in ground turkey. This study demonstrated the feasibility and application of an aptamer-based PCR method coupled with magnetic immunoseparation for sensitive detection of S. Typhimurium in ground turkey.
Collapse
|
41
|
Ma DL, Wu C, Dong ZZ, Tam WS, Wong SW, Yang C, Li G, Leung CH. The Development of G-Quadruplex-Based Assays for the Detection of Small Molecules and Toxic Substances. Chem Asian J 2017; 12:1851-1860. [PMID: 28470784 DOI: 10.1002/asia.201700533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/12/2022]
Abstract
G-Quadruplexes can be induced to form guanine-rich DNA sequences by certain small molecules or metal ions. In concert with an appropriate signal transducer, such as a fluorescent dye or a phosphorescent metal complex, the ligand-recognition event can be transduced into a luminescent response. This focus review aims to highlight recent examples of aptamer-based and metal-mediated G-quadruplex assays for the detection of small molecules and toxic substances in the last three years. We discuss the mechanisms and features of the different assays and present an outlook and a perspective for the future of this field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Chun Wu
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Zhen-Zhen Dong
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Wing-Sze Tam
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Sze-Wan Wong
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| |
Collapse
|
42
|
Mashhadizadeh MH, Naseri N, Mehrgardi MA. A simple non-enzymatic strategy for adenosine triphosphate electrochemical aptasensor using silver nanoparticle-decorated graphene oxide. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1138-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Liu H, Ma C, Ning F, Chen H, He H, Wang K, Wang J. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 175:164-167. [PMID: 28038373 DOI: 10.1016/j.saa.2016.12.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
The present work demonstrates a simple, rapid and label-free ATP detection method using a fluorescent aptasensor that is based on G-quadruplex formation. In the absence of ATP, the Thioflavin T (ThT) dye binds to the G-rich ATP aptamer and forms an ATP aptamer/ThT G-quadruplex complex, which results in high fluorescence intensity. Upon addition of ATP, the ATP aptamer/ThT complex will be replaced by the formation of an ATP aptamer/ATP complex. During this process, separation of the ThT dye from the ATP aptamer/ThT complex decreases the fluorescence intensity of the reaction mixture dramatically. This fluorescence aptasensor is highly sensitive and rapid, with a detection limit of 18nM and a total reaction time of only 10min. Furthermore, this method is cost-effective and simple, removing the requirement for labeling the detection reagents with a fluorophore-quencher pair.
Collapse
Affiliation(s)
- Haisheng Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Changbei Ma
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China.
| | - Feng Ning
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Hanchun Chen
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Hailun He
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410081, China
| | - Jun Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
44
|
Ji D, Wang H, Ge J, Zhang L, Li J, Bai D, Chen J, Li Z. Label-free and rapid detection of ATP based on structure switching of aptamers. Anal Biochem 2017; 526:22-28. [PMID: 28315316 DOI: 10.1016/j.ab.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
In this work, an aptamer-based fluorescent strategy for label-free detection of ATP was developed by using Thioflavin T (ThT) as a fluorescence indicator, which can specifically bind with G-quadruplex DNAs to generate enhanced fluorescence intensity. In the absence of ATP, the folded structure of ATP aptamer allows the intercalation of ThT to produce strong fluorescence signal. However, upon ATP binding to the aptamer where ThT intercalated, the conformational change or distortion of the aptamer is large enough to cause much less intercalation of ThT and consequently drastic suppression of the fluorescence intensity. As such, the concentration of ATP could be identified very easily by observing fluorescence changes of this sensing system. This label-free assay could be accomplished very easily and quickly with a "mix-and-detect" detection method and exhibits high sensitivity to ATP with a detection limit of 33 nM in a wide range of 0.1-1000 μM. Furthermore, this proposed method is capable of detecting ATP in human serum and cell extracts. This method offers several advantages such as simplicity, rapidity, low cost, good stability and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
Affiliation(s)
- Danyang Ji
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongqi Wang
- Institute of Quality Standard and Testing Technology for Agroproducts, Henan Academy of Agricultural Science, Zhengzhou 450002, PR China
| | - Jia Ge
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Dongmei Bai
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Juan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhaohui Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
45
|
A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Talanta 2017; 168:279-285. [PMID: 28391854 DOI: 10.1016/j.talanta.2017.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
A simple and sensitive colorimetric aptasensor for rapid and facile detection of adenosine triphosphate (ATP) has been demonstrated here based on aptamer-based hairpin probes and unmodified gold nanoparticles (AuNPs). The hairpin probe is constructed by adding another five nucleotides to the 5'-end of an anti-ATP aptamer which can hybridize to nucleotides at the 3'-end of the aptamer, forming a hairpin-shaped structure. In the absence of ATP, the hairpin probes are rigid, and the AuNPs are susceptible to salt-induced aggregation. Conversely, upon binding with target ATP, the hairpin probes undergo conformational changes, forming aptamer-ATP complexes and exposing flexible ends which coat the surface of AuNPs to inhibit their aggregation in the high salt solution. Subsequently, a blue-to-red color change can be recognized by the naked eye. The aptasensor achieved selective responses toward ATP with a detection limit of 0.1μM, and exhibited high-quality detection performance in biological samples. In addition, this detection method is simple, rapid and cost-effective, holding great potential for further applications in point-of-care research.
Collapse
|
46
|
Gao X, Geng M, Li Y, Wang X, Yu HZ. Revealing and Resolving the Restrained Enzymatic Cleavage of DNA Self-Assembled Monolayers on Gold: Electrochemical Quantitation and ESI-MS Confirmation. Anal Chem 2017; 89:2464-2471. [PMID: 28192924 DOI: 10.1021/acs.analchem.6b04573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we report a combined electrochemical and ESI-MS study of the enzymatic hydrolysis efficiency of DNA self-assembled monolayers (SAMs) on gold, platform systems for understanding nucleic acid surface chemistry, and for constructing DNA-based biosensors. Our electrochemical approach is based on the comparison of the amounts of surface-tethered DNA nucleotides before and after exonuclease I (Exo I) incubation using electrostatically bound [Ru(NH3)6]3+ as redox indicators. It is surprising to reveal that the hydrolysis efficiency of ssDNA SAMs does not depend on the packing density and base sequence, and that the cleavage ends with surface-bound shorter strands (9-13 mers). The ex-situ ESI-MS observations confirmed that the hydrolysis products for ssDNA SAMs (from 24 to 56 mers) are dominated with 10-15 mer fragments, in contrast to the complete digestion in solution. Such surface-restrained hydrolysis behavior is due to the steric hindrance of the underneath electrode to the Exo I/DNA binding, which is essential for the occurrence of Exo I-catalyzed processive cleavage. More importantly, we have shown that the hydrolysis efficiency of ssDNA SAMs can be remarkably improved by adopting long alkyl linkers (locating DNA strands further away from the substrates).
Collapse
Affiliation(s)
- Xiaoyi Gao
- Department of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Mingxi Geng
- Department of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Yunchao Li
- Department of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Xinglin Wang
- Department of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
47
|
Tan KY, Li CY, Li YF, Fei J, Yang B, Fu YJ, Li F. Real-Time Monitoring ATP in Mitochondrion of Living Cells: A Specific Fluorescent Probe for ATP by Dual Recognition Sites. Anal Chem 2017; 89:1749-1756. [PMID: 28208302 DOI: 10.1021/acs.analchem.6b04020] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adenosine triphosphate (ATP) is mainly produced in the mitochondrion and used as a universal energy source for various cellular events. Various fluorescent probes for ATP have been established successfully, but most of them are not appropriate for monitoring the fluctuation of the mitochondrial ATP level. Herein, a fluorescent probe named Mito-Rh is first synthesized and used to recognize ATP in mitochondrion. In the probe, rhodamine, diethylenetriamine, and triphenylphosphonium are selected as fluorophore, reaction site, and mitochondrion-targeting group, respectively. Probe Mito-Rh shows high sensitivity to ATP with 81-fold fluorescence enhancement, and the detection range (0.1-10 mM) can match the concentration level of ATP in the mitochondrion. Moreover, Mito-Rh provides excellent selectivity toward ATP over other biological anions (ADP, AMP, GTP, CTP, UTP) owing to a concurrent effect of dual recognition sites (hydrogen bond and π-π stacking). In particular, the probe can localize in mitochondrion specifically and demonstrates utility in the real-time detection of mitochondrial ATP concentration changes.
Collapse
Affiliation(s)
- Kai-Yue Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Yong-Fei Li
- College of Chemical Engineering, Xiangtan University , Xiangtan 411105, P. R. China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, P. R. China
| | - Ya-Jun Fu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, P. R. China
| | - Fang Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, P. R. China
| |
Collapse
|
48
|
Li ZQ, Liao TC, Dong C, Yang JW, Chen XJ, Liu L, Luo Y, Liang YY, Chen WH, Zhou CQ. Specifically targeting mixed-type dimeric G-quadruplexes using berberine dimers. Org Biomol Chem 2017; 15:10221-10229. [DOI: 10.1039/c7ob02326j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Berberine dimer (1a) with the shortest polyether linker demonstrates highest binding affinity, selectivity and thermal stabilization towards mixed-type dimeric quadruplexes.
Collapse
|
49
|
DENG W, LIU C, HU Y, YU R, CHEN T, CHU X. A Novel Biosensor Based on Terminal Protection and Fluorescent Copper Nanoparticles for Detecting Potassium Ion. ANAL SCI 2017; 33:1369-1374. [DOI: 10.2116/analsci.33.1369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- WenJing DENG
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Chang LIU
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - YanLei HU
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - RuQin YU
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - TingTing CHEN
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Xia CHU
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| |
Collapse
|
50
|
Pinto V, Sousa P, Catarino SO, Correia-Neves M, Minas G. Microfluidic immunosensor for rapid and highly-sensitive salivary cortisol quantification. Biosens Bioelectron 2016; 90:308-313. [PMID: 27931005 DOI: 10.1016/j.bios.2016.11.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 01/20/2023]
Abstract
This paper presents a novel poly(dimethylsiloxane) (PDMS) microfluidic immunosensor that integrates a complementary metal-oxide-semiconductor (CMOS) optical detection system for a rapid and highly-sensitive quantification of salivary cortisol. The simple and non-invasive method of saliva sampling provides an interesting alternative to the blood, allowing a fast sampling at short intervals, relevant for many clinical diagnostic applications. The developed approach is based on the covalent immobilization of a coating antibody (Ab), a polyclonal anti-IgG, onto a treated PDMS surface. The coating Ab binds the capture Ab, an IgG specific for cortisol, allowing its correct orientation. Horseradish peroxidase (HRP)-labelled cortisol is added to compete with the cortisol in the sample, for the capture Ab binding sites. The HRP-labelled cortisol, bonded to the capture Ab, is measured through the HRP enzyme and the tetramethylbenzidine (TMB) substrate reaction. The cortisol quantification is performed by colorimetric detection of HRP-labelled cortisol, through optical absorption at 450nm, using a CMOS silicon photodiode as the photodetector. Under the developed optimized conditions presented here, e.g., microfluidic channels geometry, immobilization method and immunoassay conditions, the immunosensor shows a linear range of detection between 0.01-20ng/mL, a limit of detection (LOD) of 18pg/mL and an analysis time of 35min, featuring a great potential for point-of-care applications requiring continuous monitoring of the salivary cortisol levels during a circadian cycle.
Collapse
Affiliation(s)
- V Pinto
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - P Sousa
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - S O Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - M Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - G Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|