1
|
Lee K, Cho EG, Choi Y, Kim Y, Lee JH, Hong S. Characterization and Specific Detection of Lactobacillus paracasei-Derived Extracellular Vesicles Using Anti-p40-Modified Au Thin Film. Pharmaceutics 2025; 17:654. [PMID: 40430944 PMCID: PMC12115234 DOI: 10.3390/pharmaceutics17050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic use. However, methods for specific detection and quantitative evaluation of Lp-EVs are still limited. This study aims to develop a surface plasmon resonance (SPR)-based sensor system for the precise and selective detection of Lp-EVs. Methods: Anti-p40 antibodies were immobilized on gold thin films to construct an SPR sensing platform. The overexpression of the p40 protein on Lp-EVs was confirmed using flow cytometry and Western blotting. For functional evaluation, Lp-EVs were applied to an artificial skin membrane mounted on a Franz diffusion cell, followed by SPR-based quantification and fluorescence imaging to assess their skin penetration behavior. Results: The developed SPR sensor demonstrated high specificity and a detection limit of 0.12 µg/mL, with a linear response range from 0.1 to 0.375 µg/mL. It successfully discriminated Lp-EVs from other bacterial EVs. In the skin diffusion assay, Lp-EVs accumulated predominantly in the epidermal layer without penetrating into the dermis, likely due to their negative surface charge and interaction with the hydrophobic epidermal lipid matrix. Fluorescence imaging confirmed this epidermal confinement, which increased over 24 h. Conclusions: This study presents a sensitive and selective SPR-based platform for detecting Lp-EVs and demonstrates their potential for targeted epidermal delivery. These findings support the use of Lp-EVs in skin-focused therapeutic and cosmetic applications. Future studies will explore strategies such as microneedle-assisted delivery to enhance transdermal penetration and efficacy.
Collapse
Affiliation(s)
- Kyeongmin Lee
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| | - Eun-Gyung Cho
- Consumer Health 2 Center, CHA Biomedical Research Institute, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi, Republic of Korea; (E.-G.C.); (Y.K.); (J.H.L.)
- H&B Science Center, CHA Meditech Co., Ltd., Seongnam 13488, Gyeonggi, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea
| | - Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea;
- Department of BigData, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Yunsik Kim
- Consumer Health 2 Center, CHA Biomedical Research Institute, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi, Republic of Korea; (E.-G.C.); (Y.K.); (J.H.L.)
| | - Jin Hee Lee
- Consumer Health 2 Center, CHA Biomedical Research Institute, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi, Republic of Korea; (E.-G.C.); (Y.K.); (J.H.L.)
| | - Surin Hong
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| |
Collapse
|
2
|
Vandezande W, Dillen A, Lammertyn J, Roeffaers MBJ. FO-SPR Model for Full-Spectrum Signal Analysis of Back-reflecting FO-SPR Sensors to Monitor MOF Deposition. ACS Sens 2024; 9:2110-2121. [PMID: 38622791 DOI: 10.1021/acssensors.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In this study, we explore the full-spectrum capabilities of fiber-optic surface plasmon resonance (FO-SPR) for analyzing heterogeneous samples with increased comprehensiveness. Our approach involves refining a literature-derived FO-SPR model to more precisely reflect experimental data obtained using a back-reflecting sensor configuration. Key enhancements in our model include adjustments to the thickness and permittivity of the gold SPR-active layer on the FO-SPR sensor as well as improvements to the angular distribution of light within the system. We apply this optimized model to the investigation of the deposition process of a metal-organic framework (MOF), specifically ZIF-8, using FO-SPR. By closely examining the temporal variations in the FO-SPR signal during MOF layer formation, we simultaneously determine the evolving thickness and refractive index (RI) of the MOF layer, offering a dual-parameter analysis. Our results demonstrate that a full-spectrum analysis of the FO-SPR signal can extract critical information from samples exhibiting radial heterogeneity. This advancement significantly enhances the quantitative assessment of various phenomena that alter the refractive index in the sensor's domain, such as adsorption and binding processes. This work thus represents a significant step forward in the field of FO-SPR sensor technology, promising broad applications in areas requiring the precise detection and analysis of complex samples.
Collapse
Affiliation(s)
- Wouter Vandezande
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, University of Leuven, Celestijnenlaan 200F, Post Box 2454, 3001 Leuven, Belgium
| | - Annelies Dillen
- Department of Biosystems, Biosensors group, University of Leuven, Willem de Croylaan 42, Post Box 2428, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors group, University of Leuven, Willem de Croylaan 42, Post Box 2428, 3001 Leuven, Belgium
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, University of Leuven, Celestijnenlaan 200F, Post Box 2454, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Qu JH, Leirs K, Maes W, Imbrechts M, Callewaert N, Lagrou K, Geukens N, Lammertyn J, Spasic D. Innovative FO-SPR Label-free Strategy for Detecting Anti-RBD Antibodies in COVID-19 Patient Serum and Whole Blood. ACS Sens 2022; 7:477-487. [PMID: 35061357 PMCID: PMC8806028 DOI: 10.1021/acssensors.1c02215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
The ongoing COVID-19 pandemic has emphasized the urgent need for rapid, accurate, and large-scale diagnostic tools. Next to this, the significance of serological tests (i.e., detection of SARS-CoV-2 antibodies) also became apparent for studying patients' immune status and past viral infection. In this work, we present a novel approach for not only measuring antibody levels but also profiling of binding kinetics of the complete polyclonal antibody response against the receptor binding domain (RBD) of SARS-CoV-2 spike protein, an aspect not possible to achieve with traditional serological tests. This fiber optic surface plasmon resonance (FO-SPR)-based label-free method was successfully accomplished in COVID-19 patient serum and, for the first time, directly in undiluted whole blood, omitting the need for any sample preparation. Notably, this bioassay (1) was on par with FO-SPR sandwich bioassays (traditionally regarded as more sensitive) in distinguishing COVID-19 from control samples, irrespective of the type of sample matrix, and (2) had a significantly shorter time-to-result of only 30 min compared to >1 or 4 h for the FO-SPR sandwich bioassay and the conventional ELISA, respectively. Finally, the label-free approach revealed that no direct correlation was present between antibody levels and their kinetic profiling in different COVID-19 patients, as another evidence to support previous hypothesis that antibody-binding kinetics against the antigen in patient blood might play a role in the COVID-19 severity. Taking all this into account, the presented work positions the FO-SPR technology at the forefront of other COVID-19 serological tests, with a huge potential toward other applications in need for quantification and kinetic profiling of antibodies.
Collapse
Affiliation(s)
- Jia-Huan Qu
- Department of Biosystems, Biosensors Group,
KU Leuven, Willem de Croylaan 42, 3001 Leuven,
Belgium
| | - Karen Leirs
- Department of Biosystems, Biosensors Group,
KU Leuven, Willem de Croylaan 42, 3001 Leuven,
Belgium
| | - Wim Maes
- PharmAbs, KU Leuven,
Herestraat 49, Box 820, 3000 Leuven, Belgium
| | - Maya Imbrechts
- PharmAbs, KU Leuven,
Herestraat 49, Box 820, 3000 Leuven, Belgium
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and
Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU
Leuven, 3000 Leuven, Belgium
- Department of Laboratory Medicine and National
Reference Centre for Respiratory Pathogens, University Hospitals
Leuven, 3000 Leuven, Belgium
| | - Nick Geukens
- PharmAbs, KU Leuven,
Herestraat 49, Box 820, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group,
KU Leuven, Willem de Croylaan 42, 3001 Leuven,
Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group,
KU Leuven, Willem de Croylaan 42, 3001 Leuven,
Belgium
| |
Collapse
|
4
|
Wei Z, Lan Y, Zhang C, Jia J, Niu W, Wei Y, Fu S, Yun K. A label-free Exonuclease I-assisted fluorescence aptasensor for highly selective and sensitive detection of silver ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119927. [PMID: 34020384 DOI: 10.1016/j.saa.2021.119927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Based on the specific interaction of Ag+ and cytosine-cytosine (C-C) base mismatch and using berberine (Ber) as the fluorescent probe and Exonuclease I (Exo I) as the background fluorescence reducing tool, a label-free Exo I-assisted fluorescence aptamer sensing platform was established for the detection of silver ions with high sensitivity and selectivity. Exo I reduced the fluorescence background of the Ber/Ag+-aptamer complex to a level similar to that of Ber itself in the absence of Ag+. After introducing Ag+ into the sensing system, it induces the aptamer rich in base C to form C-Ag+-C i-motif structure which are resistant to degradation mediated by Exo I. The concentration of Ber, Ag+-aptamer, Exo I and the temperature and reaction time for Exo I were all optimized. Under the optimal experimental conditions, the detection limit of Ag+ was 4.4 nM and the linear range was from 0.0059 μM to 235.48 μM with a coefficient of determination (R2) > 0.99. Moreover, the proposed strategy had been successfully applied to the detection of Ag+ in tap water and human serum with a good recovery ranging from 88.4% to 106.9%.
Collapse
Affiliation(s)
- Zhiwen Wei
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China.
| | - Yifeng Lan
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Chao Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Juan Jia
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Weifen Niu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yanli Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Shanlin Fu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China; Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China.
| |
Collapse
|
5
|
Zhang L, Wang Y, Guo Y, Chen H, Yu W, Zhang Z, Xie G. A comprehensive system for detecting rare single nucleotide variants based on competitive DNA probe and duplex-specific nuclease. Anal Chim Acta 2021; 1166:338545. [PMID: 34023002 DOI: 10.1016/j.aca.2021.338545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Single nucleotide variants (SNVs) have emerged as increasingly important biomarkers, particularly in the diagnosis and prognosis of cancers. However, most SNVs are rarely detected in blood samples from cancer patients as they are surrounded by abundant concomitant wild-type nucleic acids. Herein, we design a system that features a combination of competitive DNA probe system (CDPS) and duplex-specific nuclease (DSN) that we referred to as CAD. A theoretical model was established for the CAD system based on reaction networks. Guided by the theoretical model, we found that a minor loss in sensitivity significantly improved the specificity of the system, thus creating a theoretical discrimination factor (DF) > 100 for most conditions. This non-equivalent tradeoff between sensitivity and specificity provides a new concept for the analysis of rare DNA-sequence variants. As a demonstration of practicality, we applied as-proposed CAD system to identify low variant allele frequency (VAF) in a synthetic template (0.1% VAF) and human genomic DNA (1% VAF). This work promises complete guidance for the design of enzyme-based nucleic acid analysis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yufeng Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, PR China
| | - Huajian Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wen Yu
- Clinical Laboratory of Chongqing University Cancer Hospital, Chongqing, 400016, PR China
| | - Zhang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
6
|
Hai H, Chen C, Chen D, Li P, Shan Y, Li J. A sensitive electrochemiluminescence DNA biosensor based on the signal amplification of ExoIII enzyme-assisted hybridization chain reaction combined with nanoparticle-loaded multiple probes. Mikrochim Acta 2021; 188:125. [PMID: 33723966 DOI: 10.1007/s00604-021-04777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
An electrochemiluminescence (ECL) DNA biosensor based on ExoIII exonuclease assistance and hybridization chain reaction (HCR) amplification technology has been constructed. ExoIII exonuclease and triple-helix DNA molecular switch are used in detecting a target in circulation. By combining HCR with AuNPs@DNA, a novel signal probe is built, which enables multiple signal amplification and the high-sensitive detection of transgenic rice BT63 DNA. The Fe3O4@Au solution is added to a magneto-controlled glassy carbon electrode, and sulfhydryl-modified capture DNA (CP) is immobilized on Fe3O4@Au through the Au-S bond. Mercaptoethanol is added to close sites and prevent the nonspecific adsorption of CP on the magnetron glassy carbon electrode. A target DNA is added to a constructed triple-helix DNA molecular centrifuge tube for reaction. Owing to base complementation and the reversible switching of the triple-helix DNA molecular state, the target DNA turns on the triple-helix DNA molecular switch and hybridizes with a long-strand recognition probe (RP) to form a double-stranded DNA (dsDNA). Exonuclease ExoIII is added to specifically recognize and cut the dsDNA and to release the target DNA. The target DNA strand then circulates back completely to open the multiple triple-helix DNA molecular switch, releasing a large number of signal transduction probes (STP). To hybridize with CP, a large amount of STP is added to the electrode. Finally, a AuNPs@DNA signal probe is added to hybridize with STP. H1 and H2 probes are added for the hybridization chain reaction and the indefinite extension of the primer strand on the probe. Then, tris-(bipyridyl)ruthenium(II) is added for ECL signal detection with PBS-tri-n-propylamine as the base solution. In the concentration range 1.0 × 10-16 to 1.0 × 10-8 mol/L of the target DNA, good linear relationship was achieved with the corresponding ECL signal. The detection limit is 3.6 × 10-17 mol/L. The spiked recovery of the rice samples range from 97.2 to 101.5%. The sensor is highly sensitive and has good selectivity, stability, and reproducibility. A novel electrochemiluminescence biosensor with extremely higher sensitivity was prepared for the determination of ultra-trace amount transgenic rice BT63 DNA. The sensitivity was significantly improved by multiple signal enhancements. Firstly, a large number of signal transduction probes are released when the triple-helix DNA molecular switch unlock after recycles assisted by ExoIII exonuclease under target BT63 DNA; and then the signal transduction probes hybridize with the signal probes of AuNPs@(DNA-HCR) produced through hybridization chain reaction. Finally, the signal probes which were embedded with a large amount of electrochemiluminescence reagent produce high luminescence intensity. The detection limit was 3.6 × 10-17 mol/L, which is almost the most sensitive methods reported.
Collapse
Affiliation(s)
- Hong Hai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Ciping Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Dongli Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Peijun Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Yang Shan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.,Hunan Institute of Agriculture Product Processing, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
7
|
Yildizhan Y, Vajrala VS, Geeurickx E, Declerck C, Duskunovic N, De Sutter D, Noppen S, Delport F, Schols D, Swinnen JV, Eyckerman S, Hendrix A, Lammertyn J, Spasic D. FO-SPR biosensor calibrated with recombinant extracellular vesicles enables specific and sensitive detection directly in complex matrices. J Extracell Vesicles 2021; 10:e12059. [PMID: 33664936 PMCID: PMC7902528 DOI: 10.1002/jev2.12059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well-characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO-SPR) bioassay. In this context, EV binding on the FO-SPR probes was achieved only with EV-specific antibodies (e.g. anti-CD9 and anti-CD63) but not with non-specific anti-IgG. To increase detection sensitivity, we tested six different combinations of EV-specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti-CD9/Banti-CD81 and anti-CD63/Banti-CD9), resulting in 103 and 104 times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti-CD63/Banti-CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti-EpCAM antibody on the FO-SPR surface. The obtained results combined with FO-SPR real-time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis.
Collapse
Affiliation(s)
- Yagmur Yildizhan
- Department of Biosystems Biosensors group, KU Leuven Leuven Belgium
| | | | - Edward Geeurickx
- Department of Human Structure and Repair Laboratory of Experimental Cancer Research Ghent University Ghent Belgium
| | - Charles Declerck
- Department of Biosystems Biosensors group, KU Leuven Leuven Belgium
| | | | - Delphine De Sutter
- VIB Center for Medical Biotechnology & Department of Biomolecular Medicine Ghent University Ghent
| | - Sam Noppen
- Department of Microbiology Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute KU Leuven Leuven Belgium
| | | | - Dominique Schols
- Department of Microbiology Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute KU Leuven Leuven Belgium
| | - Johannes V Swinnen
- Department of Oncology Laboratory of Lipid Metabolism and Cancer KU Leuven Leuven Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology & Department of Biomolecular Medicine Ghent University Ghent
| | - An Hendrix
- Department of Human Structure and Repair Laboratory of Experimental Cancer Research Ghent University Ghent Belgium
| | - Jeroen Lammertyn
- Department of Biosystems Biosensors group, KU Leuven Leuven Belgium
| | - Dragana Spasic
- Department of Biosystems Biosensors group, KU Leuven Leuven Belgium
| |
Collapse
|
8
|
Peeters B, Safdar S, Daems D, Goos P, Spasic D, Lammertyn J. Solid-Phase PCR-Amplified DNAzyme Activity for Real-Time FO-SPR Detection of the MCR-2 Gene. Anal Chem 2020; 92:10783-10791. [PMID: 32638586 DOI: 10.1021/acs.analchem.0c02241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The polymerase chain reaction (PCR) has been the gold standard molecular analysis technique for decades and has seen quite some evolution in terms of reaction components, methodology, and readout mechanisms. Nucleic acid enzymes (NAzymes) have been used to further exploit the applications of PCR, but so far the work was limited to the colorimetric G-quadruplex or fluorescent substrate cleaving NAzymes. In this study, a solid-phase, fiber optic surface plasmon resonance (FO-SPR) technique is presented as an alternative readout for PCR utilizing NAzymes. First, the surface cleavage activity of DNAzyme-extended amplicons (DNAzyme-amps) is established, followed by optimization of the PCR conditions, which are required for compatibility with the FO-SPR system. Next, by integrating the complement of a 10-23 DNAzyme into the primer pair, PCR-amplified DNAzyme-amps were generated, tested, and validated on qPCR for the detection of the antimicrobial resistance gene MCR-2. Once validated, this primer concept was developed as a one-step assay, driven by PCR-amplified DNAzymes, for FO-SPR-based sensitive and specific detection. Using gold nanoparticle labeled RNA-DNA hybrid strands as substrate for the DNAzyme, PCR-amplified DNAzyme-amps generated in the presence of MCR-2 gene were monitored in real-time, which resulted in an experimental limit of detection of 4 × 105 copy numbers or 6.6 fM. In addition, the DNAzyme-based FO-PCR assay was able to discriminate between the MCR-1 and MCR-2 genes, to further prove the specificity of this assay. Henceforth, this DNAzyme-based fiber optic PCR assay provides a universally applicable, real-time system for the detection of virtually any target NA, in a specific and sensitive manner.
Collapse
Affiliation(s)
- Bernd Peeters
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Leuven B-3001, Belgium
| | - Saba Safdar
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Leuven B-3001, Belgium
| | - Devin Daems
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Leuven B-3001, Belgium
| | - Peter Goos
- Department of Biosystems, Biostatistics Group, KU Leuven, Kasteelpark Arenberg 30, Leuven B-3001, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Leuven B-3001, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Leuven B-3001, Belgium
| |
Collapse
|
9
|
Özgür E, Saylan Y, Bereli N, Türkmen D, Denizli A. Molecularly imprinted polymer integrated plasmonic nanosensor for cocaine detection. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1211-1222. [PMID: 32238027 DOI: 10.1080/09205063.2020.1751524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A molecularly imprinted polymeric nanofilm was prepared for cocaine detection and applied to plasmonic nanosensor for real-time kinetic, selectivity and reusability analyses. The sensing polymeric surface was fabricated by synthesizing a selective and specific nanofilm on the gold plasmonic nanosensor surface. After characterization experiments with atomic force microscopy, ellipsometer, and contact angle measurements, the kinetic studies of cocaine detection in aqueous solutions in a wide concentration range between 0.2-100 μg/mL were applied to plasmonic nanosensor system at 24 °C with a low limit of detection (0.1 μg/L) and quantification values (0.3 μg/L) and the results showed that this molecularly imprinted polymeric nanofilm integrated plasmonic nanosensor is providing a model for the fastest, most accurate and most precise identification of the cocaine molecule which constitutes a large part of the workload of forensic laboratories.
Collapse
Affiliation(s)
- Erdoğan Özgür
- Department of Chemistry, Hacettepe University, Ankara, Turkey.,Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Deniz Türkmen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
11
|
Abstract
Advances in nucleic acid sequencing and genotyping technologies have facilitated the discovery of an increasing number of single-nucleotide variations (SNVs) associated with disease onset, progression, and response to therapy. The reliable detection of such disease-specific SNVs can ensure timely and effective therapeutic action, enabling precision medicine. This has driven extensive efforts in recent years to develop novel methods for the fast and cost-effective analysis of targeted SNVs. In this Review, we highlight the most recent and significant advances made toward the development of such methodologies.
Collapse
Affiliation(s)
- Alireza Abi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afsaneh Safavi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
12
|
Yuan H, Ji W, Chu S, Liu Q, Qian S, Guang J, Wang J, Han X, Masson JF, Peng W. Mercaptopyridine-Functionalized Gold Nanoparticles for Fiber-Optic Surface Plasmon Resonance Hg 2+ Sensing. ACS Sens 2019; 4:704-710. [PMID: 30785267 DOI: 10.1021/acssensors.8b01558] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a highly toxic heavy metal ion, divalent mercuric ion (Hg2+) is one of the most widely diffused and hazardous environmental pollutants. In this work, a simple, portable, and inexpensive fiber-optic sensor based on surface plasmon resonance (SPR) effect was developed for Hg2+ detection, which takes advantage of 4-mercaptopyridine (4-MPY)-functionalized Au nanoparticles (Au NPs/4-MPY) as a signal amplification tag. Based on the coordination between Hg2+ and nitrogen in the pyridine moiety, we developed the sensor by self-assembling 4-MPY on Au film surfaces to capture Hg2+ and then introducing Au NPs/4-MPY to generate a plasmonic coupling structure with the configuration of nanoparticle-on-mirror. The coupling between localized SPR increased changes in SPR wavelength, which allowed highly sensitive Hg2+ sensing in aqueous solution. The sensor exhibited superior selectivity for Hg2+ detection compared with other common metal ions in water. The sensor's Hg2+ detection limit is 8 nM under optimal conditions. Furthermore, we validated the sensor's practicality for Hg2+ detection in tap water samples and demonstrated its potential application for environmental water on-site monitoring.
Collapse
|
13
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
14
|
Peeters B, Daems D, Van der Donck T, Delport F, Lammertyn J. Real-Time FO-SPR Monitoring of Solid-Phase DNAzyme Cleavage Activity for Cutting-Edge Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6759-6768. [PMID: 30682241 DOI: 10.1021/acsami.8b18756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10-23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme-inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.
Collapse
Affiliation(s)
- Bernd Peeters
- Department of Biosystems, Biosensors Group , KU Leuven , Willem de Croylaan 42 , B-3001 Leuven , Belgium
| | - Devin Daems
- Department of Biosystems, Biosensors Group , KU Leuven , Willem de Croylaan 42 , B-3001 Leuven , Belgium
| | - Tom Van der Donck
- Department of Materials Engineering , KU Leuven , Kasteelpark Arenberg 44 , B-3001 Leuven , Belgium
| | - Filip Delport
- FOx Biosystems NV , Veldstraat 120 , B-9140 Temse , Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group , KU Leuven , Willem de Croylaan 42 , B-3001 Leuven , Belgium
| |
Collapse
|
15
|
Luo Y, Hu S, Wang H, Chen Y, Dong J, Jiang Z, Xiong X, Zhu W, Qiu W, Lu H, Guan H, Zhong Y, Yu J, Zhang J, Chen Z. Sensitivity-enhanced surface plasmon sensor modified with MoSe 2 overlayer. OPTICS EXPRESS 2018; 26:34250-34258. [PMID: 30650850 DOI: 10.1364/oe.26.034250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this work, a sensitivity-enhanced surface plasmon resonance (SPR) sensor, which is integrated with MoSe2 as modification overlayer, is proposed and investigated. The sensor is constructed by physically depositing MoSe2 onto the surface of a conventional SPR sensor based on Krestchman configuration. Thanks to the commendable properties of MoSe2 including high carrier mobility, high refractive index (RI), large surface area, and so forth, adding an overlayer within a certain thickness can effectively improve the RI sensitivity. Experimental results show that, with the increased number of deposition cycles-which positively correlates with the duty ratio and the MoSe2 overlayer's thickness-the sensitivity at first increases, and then declines. The highest sensitivity of 2524.8 nm/RIU is achieved experimentally, which corresponds to the 2 deposition cycles. This shows an improvement of 36.3%, compared with the case without the MoSe2 modification. The ease of fabrication, efficiency of performance enhancement, and great potentials (such as the large surface area of MoSe2 for linking abundant functional groups) allow the method presented in this paper to contribute to the development of performance-enhanced SPR sensors for the biological, chemical, and medical fields.
Collapse
|
16
|
Zhou C, Zou H, Sun C, Ren D, Chen J, Li Y. Signal amplification strategies for DNA-based surface plasmon resonance biosensors. Biosens Bioelectron 2018; 117:678-689. [DOI: 10.1016/j.bios.2018.06.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
|
17
|
Hu F, Xu J, Chen Y. Surface Plasmon Resonance Imaging Detection of Sub-femtomolar MicroRNA. Anal Chem 2017; 89:10071-10077. [DOI: 10.1021/acs.analchem.7b02838] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Feichi Hu
- Key Laboratory of Analytical Chemistry for Living Biosystems; CAS
Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiying Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems; CAS
Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems; CAS
Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Science, Beijing 100190, China
| |
Collapse
|
18
|
Gibriel AA, Adel O. Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: Detection and applications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:66-90. [PMID: 28927538 PMCID: PMC7108312 DOI: 10.1016/j.mrrev.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Genetic variants have been reported to cause several genetic diseases. Various genotyping assays have been developed for diagnostic and screening purposes but with certain limitations in sensitivity, specificity, cost effectiveness and/or time savings. Since the discovery of ligase chain reaction (LCR) in the late nineties, it became one of the most favored platforms for detecting these variants and also for genotyping low abundant contaminants. Recent and powerful modifications with the integration of various detection strategies such as electrochemical and magnetic biosensors, nanoparticles (NPs), quantum dots, quartz crystal and leaky surface acoustic surface biosensors, DNAzyme, rolling circle amplification (RCA), strand displacement amplification (SDA), surface enhanced raman scattering (SERS), chemiluminescence and fluorescence resonance energy transfer have been introduced to both LCR and ligation based amplifications to enable high-throughput and inexpensive multiplex genotyping with improved robustness, simplicity, sensitivity and specificity. In this article, classical and up to date modifications in LCR and ligation based amplifications are critically evaluated and compared with emphasis on points of strength and weakness, sensitivity, cost, running time, equipment needed, applications and multiplexing potential. Versatile genotyping applications such as genetic diseases detection, bacterial and viral pathogens detection are also detailed. Ligation based gold NPs biosensor, ligation based RCA and ligation mediated SDA assays enhanced detection limit tremendously with a discrimination power approaching 1.5aM, 2aM and 0.1fM respectively. MLPA (multiplexed ligation dependent probe amplification) and SNPlex assays have been commercialized for multiplex detection of at least 48 SNPs at a time. MOL-PCR (multiplex oligonucleotide ligation) has high-throughput capability with multiplex detection of 50 SNPs/well in a 96 well plate. Ligase detection reaction (LDR) is one of the most widely used LCR versions that have been successfully integrated with several detection strategies with improved sensitivity down to 0.4fM.
Collapse
Affiliation(s)
- Abdullah A Gibriel
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; Center for Drug Research & Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt.
| | - Ola Adel
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; Center for Drug Research & Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
19
|
Daems D, Knez K, Delport F, Spasic D, Lammertyn J. Real-time PCR melting analysis with fiber optic SPR enables multiplex DNA identification of bacteria. Analyst 2017; 141:1906-11. [PMID: 26881275 DOI: 10.1039/c5an02342d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fiber optic surface plasmon resonance (FO-SPR) technology was developed that enables simultaneous quantification and identification of multiple DNA targets on the same platform. The bioassay was based on the hybridization/melting of DNA-coated Au nanoparticles on the FO-SPR sensor when targets are present. The multiplex concept was successfully demonstrated on two related bacteria and for detection of multiple mutations in sequences. In conclusion, FO-SPR technology shows a great potential as a next generation in vitro diagnostics tool.
Collapse
Affiliation(s)
- D Daems
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - K Knez
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - F Delport
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - D Spasic
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - J Lammertyn
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| |
Collapse
|
20
|
Liu FW, Ding ST, Lin EC, Lu YW, Jang JSR. Automated melting curve analysis in droplet microfluidics for single nucleotide polymorphisms (SNP) genotyping. RSC Adv 2017. [DOI: 10.1039/c6ra26484k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An integrated microchip platform with automated analysis capability for DNA melting curves is developed for Single Nucleotide Polymorphism (SNP) genotyping applications.
Collapse
Affiliation(s)
- F.-W. Liu
- Dept. of Bio-Industrial Mechatronics Engineering
- National Taiwan University
- Taipei
- Republic of China
| | - S.-T. Ding
- Dept. of Animal Science
- National Taiwan University
- Taipei
- Republic of China
| | - E.-C. Lin
- Dept. of Animal Science
- National Taiwan University
- Taipei
- Republic of China
| | - Y.-W. Lu
- Dept. of Bio-Industrial Mechatronics Engineering
- National Taiwan University
- Taipei
- Republic of China
| | - J.-S. R. Jang
- Dept. of Computer Science and Information Engineering
- National Taiwan University
- Taipei
- Republic of China
| |
Collapse
|
21
|
Ngavouka MDN, Capaldo P, Ambrosetti E, Scoles G, Casalis L, Parisse P. Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:220-227. [PMID: 26977379 PMCID: PMC4778512 DOI: 10.3762/bjnano.7.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/25/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND DNA hybridization is at the basis of most current technologies for genotyping and sequencing, due to the unique properties of DNA base-pairing that guarantee a high grade of selectivity. Nonetheless the presence of single base mismatches or not perfectly matched sequences can affect the response of the devices and the major challenge is, nowadays, to distinguish a mismatch of a single base and, at the same time, unequivocally differentiate devices read-out of fully and partially matching sequences. RESULTS We present here two platforms based on different sensing strategies, to detect mismatched and/or perfectly matched complementary DNA strands hybridization into ssDNA oligonucleotide monolayers. The first platform exploits atomic force microscopy-based nanolithography to create ssDNA nano-arrays on gold surfaces. AFM topography measurements then monitor the variation of height of the nanostructures upon biorecognition and then follow annealing at different temperatures. This strategy allowed us to clearly detect the presence of mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to distinguish, through the difference in hybridization kinetics, not only the presence of single, double or triple mismatches in the complementary sequence, but also the position of the mismatched base pair with respect to the electrode surface. CONCLUSION We demonstrate here two platforms based on different sensing strategies as sensitive and selective tools to discriminate mismatches. Our assays are ready for parallelization and can be used in the detection and quantification of single nucleotide mismatches in microRNAs or in genomic DNA.
Collapse
Affiliation(s)
- Maryse D Nkoua Ngavouka
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- University of Trieste, Via Valerio 9, Trieste, Italy
| | - Pietro Capaldo
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- University of Trieste, Via Valerio 9, Trieste, Italy
| | - Elena Ambrosetti
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- University of Trieste, Via Valerio 9, Trieste, Italy
| | - Giacinto Scoles
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
| |
Collapse
|
22
|
Lu J, Van Stappen T, Spasic D, Delport F, Vermeire S, Gils A, Lammertyn J. Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens Bioelectron 2015; 79:173-9. [PMID: 26706938 DOI: 10.1016/j.bios.2015.11.087] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 12/16/2022]
Abstract
Infliximab (IFX) is a therapeutic monoclonal antibody used for treating patients with inflammatory bowel disease (IBD). In order to improve therapeutic outcomes it is recommended to monitor IFX trough concentrations. Although ELISA is currently widely used for this purpose, this method is not suitable for single patient testing. In this paper we describe the development of a fast bioassay for determining IFX concentration in serum using an in-house developed fiber-optic surface plasmon resonance (FO-SPR) biosensor. Studies were first conducted to optimize covalent immobilization of the IFX-specific antibody on the sensor surface as well as to select an optimal blocking buffer for restraining the non-specific binding. In order to reach clinically relevant sensitivity for detecting IFX in patients' serum, the SPR signal was amplified by employing gold nanoparticles functionalized with another set of IFX specific antibodies. Using the optimized sandwich bioassay, calibration curves were made with series of IFX concentrations spiked in buffer and 100-fold diluted serum, reaching the limit of detection of 0.3 and 2.2ng/ml, respectively. The established bioassay was finally validated using five IFX treated IBD patients samples. Results from the FO-SPR platform were compared with an in-house developed, clinically validated ELISA resulting in excellent Pearson and intraclass correlation coefficient of 0.998 and 0.983, respectively. Furthermore, the assay time of the FO-SPR platform was significantly reduced compared to ELISA, demonstrating the potential of this platform to be used as a point-of-care diagnostic tool for improving therapeutic outcomes of IBD patients.
Collapse
Affiliation(s)
- Jiadi Lu
- BIOSYST-MeBioS, KU Leuven, Leuven, Belgium
| | - Thomas Van Stappen
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven, Belgium
| | | | - Filip Delport
- BIOSYST-MeBioS, KU Leuven, Leuven, Belgium; Fox Diagnostics, Leuven, Belgium
| | | | - Ann Gils
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
23
|
Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|