1
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R. Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Crit Rev Microbiol 2022; 48:784-812. [PMID: 35196464 DOI: 10.1080/1040841x.2022.2035314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tuberculosis (TB) infection is one of the leading causes of death in the world. According to WHO reports 2019, the average rate of decrease in global TB incidences was only 1.6% per year from 2000 to 2018, besides that the global decline in TB deaths was just 11%. Therefore, the dire need for early detection of the pathogen for the successful diagnosis of TB seems justified. Mycobacterium tuberculosis secretory proteins have gained more attention as TB biomarkers, for the early diagnosis and treatment of TB. Here in this review, we elaborate on the recent advancements made in the field of piezoelectric, magnetic, optical, and electrochemical biosensors, in addition to listing their merits and setbacks. Additionally, this review also discusses the construction of biosensors through modern integrated technologies, such as combinations of analytical chemistry, molecular biology, and nanotechnology. Integrated technologies enhance the detection for perceiving highly selective, specific, and sensitive signals to detect M. tuberculosis. Furthermore, this review highlights the recent challenges and scope of improvement in numerous biosensors developed for rapid, specific, selective, and sensitive detection of tuberculosis to reduce the TB burden and successful treatment.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Amity University of Rajasthan, Jaipur, India
| |
Collapse
|
2
|
Wu T, Wang Q, Peng X, Guo Y. Facile Synthesis of Gold/Graphene Nanocomposites for Simultaneous Determination of Sunset Yellow and Tartrazine in Soft Drinks. ELECTROANAL 2021. [DOI: 10.1002/elan.202100464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingxuan Wu
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 China
| | - Qi Wang
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 China
| | - XiuYing Peng
- Department of Environmental and Safety Engineering Taiyuan Institute of Technology Taiyuan 030008 China
| | - Yujing Guo
- Institute of Environmental Science Shanxi University Taiyuan 030006 China
| |
Collapse
|
3
|
Animesh S, Singh YD. A Comprehensive Study on Aptasensors For Cancer Diagnosis. Curr Pharm Biotechnol 2021; 22:1069-1084. [PMID: 32957883 DOI: 10.2174/1389201021999200918152721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the most devastating disease in the present scenario, killing millions of people every year. Early detection, accurate diagnosis, and timely treatment are considered to be the most effective ways to control this disease. Rapid and efficient detection of cancer at their earliest stage is one of the most significant challenges in cancer detection and cure. Numerous diagnostic modules have been developed to detect cancer cells early. As nucleic acid equivalent to antibodies, aptamers emerge as a new class of molecular probes that can identify cancer-related biomarkers or circulating rare cancer/ tumor cells with very high specificity and sensitivity. The amalgamation of aptamers with the biosensing platforms gave birth to "Aptasensors." The advent of highly sensitive aptasensors has opened up many new promising point-of-care diagnostics for cancer. This comprehensive review focuses on the newly developed aptasensors for cancer diagnostics.
Collapse
Affiliation(s)
- Sambhavi Animesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yengkhom D Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| |
Collapse
|
4
|
Škugor Rončević I, Krivić D, Buljac M, Vladislavić N, Buzuk M. Polyelectrolytes Assembly: A Powerful Tool for Electrochemical Sensing Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3211. [PMID: 32517055 PMCID: PMC7313698 DOI: 10.3390/s20113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
The development of sensing coatings, as important sensor elements that integrate functionality, simplicity, chemical stability, and physical stability, has been shown to play a major role in electrochemical sensing system development trends. Simple and versatile assembling procedures and scalability make polyelectrolytes highly convenient for use in electrochemical sensing applications. Polyelectrolytes are mainly used in electrochemical sensor architectures for entrapping (incorporation, immobilization, etc.) various materials into sensing layers. These materials can often increase sensitivity, selectivity, and electronic communications with the electrode substrate, and they can mediate electron transfer between an analyte and transducer. Analytical performance can be significantly improved by the synergistic effect of materials (sensing material, transducer, and mediator) present in these composites. As most reported methods for the preparation of polyelectrolyte-based sensing layers are layer-by-layer and casting/coating methods, this review focuses on the use of the latter methods in the development of electrochemical sensors within the last decade. In contrast to many reviews related to electrochemical sensors that feature polyelectrolytes, this review is focused on architectures of sensing layers and the role of polyelectrolytes in the development of sensing systems. Additionally, the role of polyelectrolytes in the preparation and modification of various nanoparticles, nanoprobes, reporter probes, nanobeads, etc. that are used in electrochemical sensing systems is also reviewed.
Collapse
Affiliation(s)
- Ivana Škugor Rončević
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Denis Krivić
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Maša Buljac
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Nives Vladislavić
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Marijo Buzuk
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| |
Collapse
|
5
|
Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q. Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta 2020; 187:179. [PMID: 32076868 DOI: 10.1007/s00604-020-4128-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
Small molecules are key targets in molecular biology, environmental issues, medicine and food industry. However, small molecules are challenging to be detected due to the difficulty of their recognition, especially in complex samples, such as in situ in cells or animals. The emergence of graphene/aptamer probes offers an excellent opportunity for small molecule quantification owing to their appealing attributes such as high selectivity, sensitivity, and low cost, as well as the potential for probing small molecules in living cells or animals. This paper (with 130 refs.) will review the application of graphene/aptamer probes for small molecule detection. We present the recent progress in the design and development of graphene/aptamer probes enabling highly specific, sensitive and rapid detection of small molecules. Emphasis is placed on the success in their development and application for monitoring small molecules in living cells and in vivo systems. By discussing the key advances in this field, we wish to inspire more research work of the development of graphene/aptamer probes for both on-site or in situ detection of small molecules and its applications for investigating the functions of small molecules in cells in a dynamic way. Graphical abstract Graphene/aptamer probes can be used to construct different platforms for detecting small molecules with high specificity and sensitivity, both in vitro and in situ in living cells and animals.
Collapse
Affiliation(s)
- Yi Dong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Xiaoya Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jiangtao Feng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Medical, Sichuan University, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Zhao X, Wang W, Liu L, Hu Y, Xu Z, Liu L, Wu N, Li N. Microstructure evolution of sandwich graphite oxide/interlayer-embedded Au nanoparticles induced from γ-rays for carcinoembryonic antigen biosensor. NANOTECHNOLOGY 2019; 30:495501. [PMID: 31443101 DOI: 10.1088/1361-6528/ab3e1e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the capability of inducing small particle sizes of supported metal in graphite oxide (GO), the γ-ray irradiation method applied for preparing graphite oxide-gold (GO-Au) nanocomposites as electrochemical immunosensors has attracted specific attention recently. To study the accurate factors influencing the precise morphology and final performance of the prepared composites in the γ-irradiation system, we proposed a facile method to investigate the evolution of the GO structure, size and dispersion of Au nanoparticles (AuNPs) produced with the addition of isopropyl alcohol to the system. The GO-Au nanocomposites were characterized by Fourier transform infrared spectroscopy, x-ray diffraction spectra, Raman spectra, x-ray photoelectron spectroscopy and high resolution transmission electron microscopy. These nanocomposites with sandwich morphology exhibited an excellent immunosensor performance with a low detection limit of 15.8 pg ml-1 (S/N = 3) and a wide linear range from 1 to 40 ng ml-1 for detecting carcinoembryonic antigens. The enhanced biosensing performance is attributed to the synergistic effect of γ-irradiation and the precise structure of GO, which endows the smaller size and more uniform distribution of AuNPs on the GO as well as the good signal amplification capability. Furthermore, adopting the γ-irradiation method and use of GO as a precursor is propitious for application in large-scale production because of its high-efficiency and high-yielding characteristics.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019; 271:101991. [PMID: 31376639 DOI: 10.1016/j.cis.2019.101991] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
The exceptional electrical, thermal, optical and mechanical properties have made two dimensional sp2 hybridized graphene a material of choice in both academic as well as industrial research. In the last few years, researchers have devoted their efforts towards the development of graphene/polymer, graphene/metal nanoparticle and graphene/ceramic nanocomposites. These materials display excellent mechanical, electrical, thermal, catalytic, magnetic and optical properties which cannot be obtained separately from the individual components. Fascinating physical and chemical properties are displayed by noble metal nanomaterials and thus they represent model building blocks for modifying nanoscale structures for diverse applications extending from catalysis, optics to nanomedicine. Insertion of noble metal (Au, Ag) nanoparticles (NPs) into chemically derived graphene is thus of primary importance to open new avenues for both materials in various fields where the specific properties of each material act synergistically to provide hybrid materials with exceptional performances. This review attempts to summarize the different synthetic procedures for the preparation of Ag and Au NPs/reduced graphene oxide (rGO) composites. The synthesis processes of metal NPs/rGO composites are categorised into in-situ and ex-situ techniques. The in-situ approach consists of simultaneous reduction of metal salts and GO to obtain metal NPs/rGO nanocomposite materials, while in the ex-situ process, the metal NPs of desired size and shape are first synthesized and then transferred onto the GO or rGO matrix. The application of the Ag NPs and Au NPs/rGO composite materials in the area of biomedical (drug delivery and photothermal therapy) and biosensing are the focus of this review article.
Collapse
Affiliation(s)
- Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India.
| | - Surya P Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aravind K Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
8
|
Yang SY, Wang YF, Yue Y, Bian SW. Flexible polyester yarn/Au/conductive metal-organic framework composites for yarn-shaped supercapacitors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Upconversion fluorescent aptasensor for bisphenol A and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons. Mikrochim Acta 2019; 186:151. [PMID: 30712105 DOI: 10.1007/s00604-019-3266-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023]
Abstract
This study describes an upconversion fluorescent aptasensor based on black phosphorus nanohybrids and self-assembled DNA tetrahedrons dual-amplification strategy for rapid detection of the environmental estrogens bisphenol A (BPA) and 17β-estradiol (E2). Tetrahedron complementary DNAs (T-cDNAs) were self-assembled in an oriented fashion on a 2D nanohybrid composed of black phosphorus (BP) and gold to give a materials of architecture BP-Au@T-cDNAs. In parallel, core-shell upconversion nanoparticles were modified with aptamers (UCNPs@apts) and used as capture probes. On complementary pairing, the BP-Au@T-cDNA quench the fluorescence of UCNPs@apts (measured at an excitation wavelength 808 nm and at main emission peaks at 545 nm and 805 nm.) Compared with single-stranded probes based on black phosphorus and gold, the dual-amplification strategy increases quenching efficiency by nearly 25%-30% and reduces capture time to 10 min. This is due to the higher optical absorption of 2D nanohybrid and the reduction of steric hindrance by T-cDNAs. Exposure to BPA or E2 cause the release of UCNPs@apts from the BP-Au@T-cDNAs due to stronger binding between aptamer and analyte. Hence, fluorescence recovers at 545 nm for BPA and 805 nm for E2. Based on these findings, a dually amplified aptamer assay was constructed that covers the 0.01 to 100 ng mL-1 BPA concentration range, and the 0.1 to 100 ng mL-1 E2 concentration range. The detection limits are 7.8 pg mL-1 and 92 pg mL-1, respectively. This method was applied to the simultaneous determination of BPA and E2 in spiked samples of water, food, serum and urine. Graphical abstract Schematic presentation of novel quenching probes designed by tetrahedron complementary DNAs oriented self-assembled on the surface of black phosphorus/gold nanohybrids. Combined with aptamer-modified upconversion nanoparticles, a dual-amplification self-assembled fluorescence nanoprobe was constructed for simultaneous detection of BPA and E2.
Collapse
|
10
|
Wang L, Wu A, Wei G. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst 2019. [PMID: 29528071 DOI: 10.1039/c8an00081f] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene-based nanomaterials have been widely utilized to fabricate various biosensors for environmental monitoring, food safety, and biomedical diagnostics. The combination of aptamers with graphene for creating biofunctional nanocomposites improved the sensitivity and selectivity of fabricated biosensors due to the unique molecular recognition and biocompatibility of aptamers. In this review, we highlight recent advances in the design, fabrication, and biomedical sensing application of graphene-based aptasensors within the last five years (2013-current). The typical studies on the biomedical fluorescence, colorimetric, electrochemical, electrochemiluminescence, photoelectrochemical, electronic, and force-based sensing of DNA, proteins, enzymes, small molecules, ions, and others are demonstrated and discussed in detail. More attention is paid to a few key points such as the conjugation of aptamers with graphene materials, the fabrication strategies of sensor architectures, and the importance of aptamers on improving the sensing performances. It is expected that this work will provide preliminary and useful guidance for readers to understand the fabrication of graphene-based biosensors and the corresponding sensing mechanisms in one way, and in another way will be helpful to develop novel high performance aptasensors for biological analysis and detection.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P. R. China.
| | | | | |
Collapse
|
11
|
Wang HT, Liu YN, Kang XH, Wang YF, Yang SY, Bian SW, Zhu Q. Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns. J Colloid Interface Sci 2018; 532:527-535. [DOI: 10.1016/j.jcis.2018.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/27/2022]
|
12
|
Ensafi AA, Akbarian F, Heydari-Soureshjani E, Rezaei B. A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite. Biosens Bioelectron 2018; 122:25-31. [PMID: 30236805 DOI: 10.1016/j.bios.2018.09.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 01/14/2023]
Abstract
In this study, a sensitive aptasensor based on three-dimensional reduced graphene oxide-modified gold nanoparticles (3D-rGO/AuNPs) was fabricated for the determination of arsenite (As(III)). The 3D-rGO/AuNPs was fully characterized with various techniques. The 5'-thiolate aptamer was first self-assembled on a glassy carbon electrode (GCE) that it's modified with 3D-rGO/AuNPs via Au-S covalent bonding. In the presence of As(III), the G-quadruplex interaction was formed between a single-stranded DNA and the target, which produced a hindrance for electron transfer. Consequently, the electrochemical impedance spectroscopy signals of a GCE modified with 3D-rGO/AuNPs was increased. In order to improve the response of the designing aptasensor, the effect of the various parameters was optimized. Under the optimal conditions, the aptasensor has an extraordinarily low detection limit of 1.4 × 10-7 ng mL-1 toward As(III) with a dynamic range of 3.8 × 10-7 3.0 × 10-4 ng mL-1. The 3D-rGO/AuNPs aptasensor displayed superior selectivity and reproducibility with an acceptable recovery for determination of As(III) in real water samples.
Collapse
Affiliation(s)
- Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - F Akbarian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - E Heydari-Soureshjani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - B Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
13
|
Choi H, Choi B, Kim GJ, Kim HU, Kim H, Jung HS, Kang S. Fabrication of Nanoreaction Clusters with Dual-Functionalized Protein Cage Nanobuilding Blocks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801488. [PMID: 30066359 DOI: 10.1002/smll.201801488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Fabrication of functional nanostructures is a prominent issue in nanotechnology, because they often exhibit unique properties that are different from the individual building blocks. Protein cage nanoparticles are attractive nanobuilding blocks for constructing nanostructures due to their well-defined symmetric spherical structures, polyvalent nature, and functional plasticity. Here, a lumazine synthase protein cage nanoparticle is genetically modified to be used as a template to generate functional nanobuilding blocks and covalently display enzymes (β-lactamase) and protein ligands (FKBP12/FRB) on its surface, making dual-functional nanobuilding blocks. Nanoreaction clusters are subsequently created by ligand-mediated alternate deposition of two complementary building blocks using layer-by-layer (LbL) assemblies. 3D nanoreaction clusters provide enhanced enzymatic activity compared with monolayered building block arrays. The approaches described here may provide new opportunities for fabricating functional nanostructures and nanoreaction clusters, leading to the development of new protein nanoparticle-based nanostructured biosensor devices.
Collapse
Affiliation(s)
- Hyukjun Choi
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Bongseo Choi
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Gwang Joong Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hansol Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Sebyung Kang
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
14
|
Chen Y, Li Y, Deng D, He H, Yan X, Wang Z, Fan C, Luo L. Effective immobilization of Au nanoparticles on TiO2 loaded graphene for a novel sandwich-type immunosensor. Biosens Bioelectron 2018; 102:301-306. [DOI: 10.1016/j.bios.2017.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
|
15
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Maleki A, Hejazi M, Mokhtarzadeh A, de la Guardia M. Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Al-Ani LA, AlSaadi MA, Kadir FA, Hashim NM, Julkapli NM, Yehye WA. Graphene- gold based nanocomposites applications in cancer diseases; Efficient detection and therapeutic tools. Eur J Med Chem 2017; 139:349-366. [PMID: 28806615 DOI: 10.1016/j.ejmech.2017.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer.
Collapse
Affiliation(s)
- Lina A Al-Ani
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammed A AlSaadi
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farkaad A Kadir
- Division of Human Biology, Faculty of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Najihah M Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurhidayatullaili M Julkapli
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wageeh A Yehye
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
18
|
Bai L, Chen Y, Bai Y, Chen Y, Zhou J, Huang A. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 2017; 133:11-19. [PMID: 28414975 DOI: 10.1016/j.biomaterials.2017.04.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (MTB) is still a major threat to global public health. However, the existing methods for MTB detection are usually complicated and time consuming with unsatisfactory sensitivity and specificity. In this work, a relatively simple and ultrasensitive electrochemical aptasensor based on novel signal generation and amplification was constructed for the determination of MTB antigen MPT64. The coil-like fullerene (C60)-doped polyaniline (C60-PAn) nanohybrids with large surface area, abundant active groups and excellent electric performance were synthesized and used both as new redox nanoprobe and catalyst for the generation and amplification of electrochemical signal for the first time. Then gold nanoparticles decorated C60-PAn nanocomposites (GNPs-C60-PAn) were labeled with signal aptamer to form the tracer label. After the sandwich reaction of target MPT64 antigen between capture aptamer and the tracer label, a distinguishing detection signal of C60-PAn would be observed. Moreover, the detection signal could be enormously enhanced towards the efficient electrocatalytic oxidation of ascorbic acid based on C60-PAn, resulting in further improvement of the sensitivity. With the excellent redox and electrocatalytic activity of C60-PAn, a wide detection linear range from 0.02 to 1000 pg/mL was obtained with a detection limit of 20 fg/mL for MPT64. The proposed aptasensor showed high selectivity to target antigen compared with possible interfering substances. More importantly, it also exhibited excellent specificity and sensitivity for MPT64 detection in serum samples of tuberculosis patients, which provided a rapid and efficient detection method for MTB infection.
Collapse
Affiliation(s)
- Lijuan Bai
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuhan Chen
- Department of Respiratory Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Bai
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yongjie Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jing Zhou
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Zhejiang, China.
| |
Collapse
|
19
|
Zhang X, Jiang Y, Huang C, Shen J, Dong X, Chen G, Zhang W. Functionalized nanocomposites with the optimal graphene oxide/Au ratio for amplified immunoassay of E. coli to estimate quality deterioration in dairy product. Biosens Bioelectron 2017; 89:913-918. [DOI: 10.1016/j.bios.2016.09.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022]
|
20
|
Zaidi SA. Cancer Biomarker Immunosensing Monitoring Strategies via Graphene Surface-Engineered Materials. NEXT GENERATION POINT-OF-CARE BIOMEDICAL SENSORS TECHNOLOGIES FOR CANCER DIAGNOSIS 2017:59-81. [DOI: 10.1007/978-981-10-4726-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
22
|
Tello A, Cao R, Marchant MJ, Gomez H. Conformational Changes of Enzymes and Aptamers Immobilized on Electrodes. Bioconjug Chem 2016; 27:2581-2591. [PMID: 27748603 DOI: 10.1021/acs.bioconjchem.6b00553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conformation constitutes a vital property of biomolecules, especially in the cases of enzymes and aptamers, and is essential in defining their molecular recognition ability. When biomolecules are immobilized on electrode surfaces, it is very important to have a control on all the possible conformational changes that may occur, either upon the recognition of their targets or by undesired alterations. Both enzymes and aptamers immobilized on electrodes are susceptible to conformational changes as a response to the nature of the charge of the surface and of the surrounding environment (pH, temperature, ionic strength, etc.). The main goal of this review is to analyze how the conformational changes of enzymes and aptamers immobilized on electrode surfaces have been treated in reports on biosensors and biofuel cells. This topic was selected due to insufficient information found on the actual conformational changes involved in the function of these bioelectrochemical devices despite its importance.
Collapse
Affiliation(s)
- Alejandra Tello
- Universidad Andres Bello , Bionanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, República 239, Santiago, Chile
| | - Roberto Cao
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso , Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - María José Marchant
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso , Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - Humberto Gomez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso , Avenida Universidad 330, Curauma, Valparaíso, Chile
| |
Collapse
|
23
|
Pham TSH, Fu L, Mahon P, Lai G, Yu A. Fabrication of β-Cyclodextrin-Functionalized Reduced Graphene Oxide and Its Application for Electrocatalytic Detection of Carbendazim. Electrocatalysis (N Y) 2016. [DOI: 10.1007/s12678-016-0320-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Roushani M, Shahdost-Fard F. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:128-135. [PMID: 27524004 DOI: 10.1016/j.msec.2016.05.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 11/18/2022]
Abstract
In the present study, we report a selective electrochemical aptasensor for the ultrasensitive detection of an anti-inflammatory drug, ibuprofen (IBP). The proposed system was achieved by the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes/ionic liquid/chitosan (MWCNTs/IL/Chit) nanocomposite and the covalent immobilization of the IBP specific aptamer (Apt) onto the modified electrode surface followed by methylene blue (MB) intercalated onto the Apt as the electrochemical redox marker. Upon the incubation of the IBP as a target in the proposed aptasensor, the peak current of MB decreases due to the formation of the Apt-IBP complex and the displacement of MB from the immobilized Apt onto the modified electrode surface. The nanocomposite not only increases the electrode surface area and accelerate the electron transfer kinetics but also it provides a highly stable matrix to enhance the loading amount of the Apt DNA sequence. Through differential pulse voltammetry (DPV) experiments, it was found that the proposed aptasensor could detect the IBP with a linear range (70pM up to 6μM) and the detection limit (LOD) as low as 20pM. The results showed that the aptasensor had good sensitivity, stability, reproducibility, and specificity to detect the IBP. The proposed aptasensor was successfully applied for measuring the IBP concentration in real samples. Based on our experiments we can say that the present method proposes new horizons for the development of other aptasensors for diagnostic application in biosensing.
Collapse
|
25
|
Xiong M, Rong Q, Meng HM, Zhang XB. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens Bioelectron 2016; 89:212-223. [PMID: 27017520 DOI: 10.1016/j.bios.2016.03.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/20/2016] [Accepted: 03/17/2016] [Indexed: 02/02/2023]
Abstract
Two-dimensional graphitic carbon nitride nanosheets (CNNSs) with planar graphene-like structure have stimulated increasingly research interest in recent years due to their unique physicochemical properties. CNNSs possess superior stability, high fluorescence quantum yield, low-toxicity, excellent biocompatibility, unique electroluminescent and photoelectrochemical properties, which make them appropriate candidates for biosensing. In this review, we first introduce the preparation and unique properties of CNNSs, with emphasis on their superior properties for biosensing. Then, recent advances of CNNSs in photoelectrochemical biosensing, electrochemiluminescence biosensing and fluorescence biosensing are highlighted. An additional attention is paid to the marriage of CNNSs and nucleic acids, which exhibits great potentials in both biosensing and intracellular imaging. Finally, current challenges and opportunities of this 2D material are outlined. Inspired by the unique properties of CNNSs and their advantages in biological applications, we expect that more attention will be drawn to this promising 2D material and extensive applications can be found in bioanalysis and diseases diagnosis.
Collapse
Affiliation(s)
- Mengyi Xiong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Qiming Rong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Hong-Min Meng
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Hunan University, Changsha 410082, People's Republic of China; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, Henan 453007, People's Republic of China; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Xinxiang, Henan 453007, People's Republic of China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Hunan University, Changsha 410082, People's Republic of China.
| |
Collapse
|
26
|
An impedimetric aptasensor based on water soluble cadmium telluride (CdTe) quantum dots (QDs) for detection of ibuprofen. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
28
|
Li T, Liu Z, Wang L, Guo Y. Gold nanoparticles/Orange II functionalized graphene nanohybrid based electrochemical aptasensor for label-free determination of insulin. RSC Adv 2016. [DOI: 10.1039/c6ra00329j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanocomposites, gold nanoparticles on Orange II functionalized graphene (AuNPs/O-GNs), were developed to modify the electrode surface for anchoring an insulin binding aptamer.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Zhiguang Liu
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Li Wang
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yujing Guo
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
29
|
Wang Y, Zhou L, Wang S, Li J, Tang J, Wang S, Wang Y. Sensitive and selective detection of Hg2+ based on an electrochemical platform of PDDA functionalized rGO and glutaraldehyde cross-linked chitosan composite film. RSC Adv 2016. [DOI: 10.1039/c6ra10075a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, a uniform PDDA-functionalized graphene composite film (GA–CS@PDDA-rGO) was utilized for detection of trace Hg2+ by using glutaraldehyde cross-linked chitosan (GA–CS) as a Hg2+-chelating adsorbent and film-forming agent.
Collapse
Affiliation(s)
- Yongxiang Wang
- School of Chemistry and Molecular Engineering
- East-China University of Science and Technology
- Shanghai
- China
| | - Lihui Zhou
- School of Chemistry and Molecular Engineering
- East-China University of Science and Technology
- Shanghai
- China
| | - Sen Wang
- School of Chemistry and Molecular Engineering
- East-China University of Science and Technology
- Shanghai
- China
| | - Jinxia Li
- School of Chemistry and Molecular Engineering
- East-China University of Science and Technology
- Shanghai
- China
| | - Jing Tang
- School of Chemistry and Molecular Engineering
- East-China University of Science and Technology
- Shanghai
- China
| | - Shaolei Wang
- School of Chemistry and Molecular Engineering
- East-China University of Science and Technology
- Shanghai
- China
| | - Ying Wang
- School of Chemistry and Molecular Engineering
- East-China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
30
|
Wang Z, Yu J, Gui R, Jin H, Xia Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens Bioelectron 2015; 79:136-49. [PMID: 26703992 DOI: 10.1016/j.bios.2015.11.093] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/21/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023]
Abstract
Carbon nanomaterials (CNMs) have attracted increasing attention due to their unique electrical, optical, thermal, mechanical and chemical properties. CNMs are extensively applied in electronic, optoelectronic, photovoltaic and sensing devices fields, especially in bioassay technology. These excellent properties significantly depend on not only the functional atomic structures of CNMs, but also the interactions with other materials, such as gold nanoparticles, SiO2, chitosan, etc. This review systematically summarizes applications of CNMs in electrochemical aptasensors (ECASs). Firstly, definition and development of ECASs are introduced. Secondly, different ways of ECASs about working principles, classification and construction of CNMs are illustrated. Thirdly, the applications of different CNMs used in ECASs are discussed. In this review, different types of CNMs are involved such as carbon nanotubes, graphene, graphene oxide, etc. Besides, the newly emerging CNMs and CNMs-based composites are also discoursed. Finally, we demonstrate the future prospects of CNMs-based ECASs, and some suggestions about the near future development of CNMs-based ECASs are highlighted.
Collapse
Affiliation(s)
- Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071, PR China.
| | - Jianbo Yu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071, PR China
| | - Rijun Gui
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071, PR China.
| | - Hui Jin
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071, PR China
| | - Yanzhi Xia
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071, PR China
| |
Collapse
|
31
|
Turcheniuk K, Boukherroub R, Szunerits S. Gold-graphene nanocomposites for sensing and biomedical applications. J Mater Chem B 2015; 3:4301-4324. [PMID: 32262773 DOI: 10.1039/c5tb00511f] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent developments in materials science and nanotechnology have propelled the development of a plethora of materials with unique chemical and physical properties for biomedical applications. Graphitic nanomaterials such as carbon nanotubes, fullerenes and, more recently, graphene oxide (GO) and reduced graphene oxide (rGO) have received a great deal of interest in this domain. Besides the exceptional physico-chemical features of these materials, another advantage is that they can be easily produced in good quantities. Moreover, the presence of abundant functional groups on their surface and good biocompatibility make them highly suitable for biomedical applications. Many research groups have utilized GO and rGO nanocargos to effectively deliver insoluble drugs, nucleic acids and other molecules into cells for bioimaging and therapeutic purposes. Gold nanostructures (Au NSs), on the other hand, have also attracted great attention owing to their applications in biomedical fields, organic catalysis, etc. Loading of GO and rGO sheets with Au NSs generates a new class of functional materials with improved properties and thus provides new opportunities in the use of such hybrid materials for catalytic biosensing and biomedical applications. This review article is aimed at providing an insight into the important features of gold-graphene nanocomposites, the current research activities related to the different synthetic routes to produce these nanocomposites, and their potential applications in sensing and biomedical therapy, notably photothermal therapy (PTT).
Collapse
Affiliation(s)
- Kostiantyn Turcheniuk
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN, UMR CNRS 8520), Université Lille1, Cité Scientifique, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | | | | |
Collapse
|