1
|
Wang X, Cong Q, Feng C, Sun Z, Cai Z, Fan C, Pei L. Terbium Vanadate Nanowires-Based Electrochemical Sensors for Mercury Ions. Appl Biochem Biotechnol 2024; 196:6378-6394. [PMID: 38376741 DOI: 10.1007/s12010-024-04882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Terbium vanadate nanowires were synthesized via a facile chemical approach using sodium vanadate and terbium chloride. Morphology, structure, composition, and electrochemical characteristics of the terbium vanadate nanowires were investigated by different techniques. Terbium vanadate nanowires with single crystalline tetragonal TbVO4 phase possess smooth surface and flat tips. The length of the nanowires is longer than 5 μm, and diameter is 40-100 nm. Terbium vanadate nanowires modified electrode was used for trace-level mercury ions (Hg2+) detection. One well-defined stripping peak exists at - 0.34 V at the terbium vanadate nanowires modified electrode in 0.1 mM Hg2+ solution. Buffer solution pH value, deposition time, deposition potential, and standing time are pH = 1, 150 s, - 1.5 V, and 60 s, respectively. Detection limit for Hg2+ detection is 0.18 nM, and linear range is 0.01-100 μM. The proposed terbium vanadate nanowires modified electrode exhibits significant selectivity, stability, and reproducibility toward Hg2+. The usefulness of the developed sensor based on the terbium vanadate nanowires modified electrode was verified by Hg2+ detection in real samples.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Qianming Cong
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Chenxu Feng
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Zizhan Sun
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Zhengyu Cai
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| | - Chuangang Fan
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China
| | - Lizhai Pei
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
2
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Utilizing inner filter effect in resonance Rayleigh scattering technique: a case study with silver nanocubes as RRS probe and several analytes as absorbers. Mikrochim Acta 2022; 190:37. [PMID: 36571644 DOI: 10.1007/s00604-022-05609-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/03/2022] [Indexed: 12/27/2022]
Abstract
It was demonstrated that the mechanism of the inner filter effect (IFE) can emerge well in the resonance Rayleigh scattering (RRS) technique and be utilized as a new analytical method in the design of innovative IFE-based sensors. To prove this process, silver nanocubes (Ag NCs) with tunable extinction spectra were selected as RRS probes, and three analytes, doxorubicin (DOX), sunitinib (SUN), and Alizarin Red S (ARS), were considered as the typical absorbers. In addition, in the presence of SUN as a typical analyte, the quenching of the RRS signal of Ag NCs, with λmax of 419 nm, was linear in the range 0.01 to 2.5 µM of SUN. The limit of detection (LOD) was 0.0025 µM. The introduced method was then used to develop a dual-signal assay for the ratiometric determination of Al3+ ions. The suggested dual-signal assay was based on the color changes of ARS caused by Al3+ and the IFE between ARS and Ag NCs. The obtained results showed that the two characteristics of response sensitivity and linear dynamic range are very satisfactory for sensing Al3+ ions. The findings of this study demonstrate that the newly developed IFE mechanism can be employed as an attractive and highly efficient analytical technique for measuring different analytes.
Collapse
|
4
|
Zhi S, Li C, Jiang Z. A novel liquid crystal resonance Rayleigh scattering spectral probe for determination of trace Cr 6. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121306. [PMID: 35526442 DOI: 10.1016/j.saa.2022.121306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Hexavalent chromium (Cr6+) has strong oxidizing property and toxicity. It has been identified as a carcinogen with obvious carcinogenic effect by the International Anti-cancer Research Center. Therefore, it has a great significance to establish a simple and sensitive method for Cr6+. In the solution, liquid crystal (LC) trans, trans-4-(3,4-difluorophenyl)-4'-n-pentylbicyclohexyl (DP) exhibits strong resonance Rayleigh scattering (RRS) effect due to formation DP nanoparticles. It was used firstly as nanoprobe, to establish a simple and sensitive RRS energy transfer (RRS-ET) method for the determination of trace Cr6+ in water samples. The Cr6+ reacts with diphenylcarbazide (DCB) to produce purple complex. It is adsorbed on the nanoprobe surface, the purple complex as energy receptor and DP as energy donor to produce RRS-ET phenomenon, to make the RRS signal of 370 nm decreasing. In the range of 3-30 nmol/L Cr6+, with the increase of concentration, the RRS signal decreased linearly at 370 nm, with a detection limit of 0.49 nmol/L. This new RRS-ET method was applied to the determination of Cr6+ in water samples, with recovery of 96.0-104.7% and the relative standard deviation (RSD) of 4.44-9.98%.
Collapse
Affiliation(s)
- Shengfu Zhi
- School of Public Health, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin 541006, China
| | - Chongning Li
- School of Public Health, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin 541006, China.
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin 541006, China.
| |
Collapse
|
5
|
Resonance Rayleigh scattering method for highly sensitive detection of copper ions in water based on salicylaldeoxime-copper (Ⅱ) - 2-methylimidazole Supramolecular. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Gheitaran R, Afkhami A, Madrakian T. PVP-coated silver nanocubes as RRS probe for sensitive determination of Haloperidol in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121025. [PMID: 35184030 DOI: 10.1016/j.saa.2022.121025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Polyol synthesis of silver nanocubes (Ag NCs) under dark conditions yielded nanoparticles with high uniformity and purity, as well as edge lengths of 42 nm with good stability and scattering cross-section. These nanoparticles were characterized by SEM, TEM, and Uv-vis spectroscopy. The presence of polyvinylpyrrolidone (PVP) as a capping agent on the surface of Ag NCs, as well as its satisfactory interaction level with Haloperidol (Hp) as an antipsychotic drug, has led to the use of these nanoparticles as Resonance RayleighScattering (RRS) probe to measure Hp. Indeed, Hp resulted in reducing the RRS signal of Ag NCs, and this change in RRS intensity was linear in the range of 10.0 to 800.0 µg L-1 of Hp. The limits of detection (LOD) and quantification (LOQ) were found to be 1.5 and 5.0 µg L-1, respectively. The influence of interfering species was studied, and it was found that the suggested method has good selectivity and can be used to monitor Hp in actual samples. As a result, this RRS probe operated well in determining Hp in pharmaceutical and human plasma samples with satisfactory recovery.
Collapse
Affiliation(s)
- Rasoul Gheitaran
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran.
| | | |
Collapse
|
7
|
Gao ZF, Zheng LL, Dong LM, Li JZ, Shen Y, Chen P, Xia F. Label-Free Resonance Rayleigh Scattering Amplification for Lipopolysaccharide Detection and Logical Circuit by CRISPR/Cas12a-Driven Guanine Nanowire Assisted Non-Cross-Linking Hybridization Chain Reaction. Anal Chem 2022; 94:6371-6379. [DOI: 10.1021/acs.analchem.2c00848] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhong Feng Gao
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, People’s Republic of China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Lin Lin Zheng
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, People’s Republic of China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Lu Ming Dong
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Jin Ze Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People’s Republic of China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| |
Collapse
|
8
|
Al-Onazi WA, Abdel-Lateef MA. Catalytic oxidation of O-phenylenediamine by silver nanoparticles for resonance Rayleigh scattering detection of mercury (II) in water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120258. [PMID: 34384994 DOI: 10.1016/j.saa.2021.120258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, a facile nanoparticle catalytic sensor for resonance Rayleigh scattering quantification of mercury (II) ion was developed. The developed approach is relied on the selective inhibition of the peroxidase-like activity of polyvinylpyrrolidone-stabilized silver nanoparticles (PVP-Ag-NPs) by mercury (II) ions. The synthesized PVP-Ag-NPs oxidize the aqueous solution of O-Phenylenediamine (colorless) to 2,3-phenazinediamine (bright yellow) and their resonance Rayleigh scattering (RRS) activity was completely suppressed. When mercury (II) was introduced, the RRS activity of PVP-Ag-NPs was turned on combined with a reduction of the intensity of the yellow color. The enhancement in the RRS intensity was related to the concentration of mercury (II) in the linear range of 10-2000 nM. The smaller size (4.5 nm), the large surface area and the uniform size (PDI = 0.379) of the synthesized PVP-Ag-NPs offered a higher chance for interaction between mercury (II) and PVP-Ag-NPs with the advantages of high sensitivity (LOD = 4 nM) and excellent selectivity for mercury (II) detection over several metals and anions.
Collapse
Affiliation(s)
- Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
9
|
Xu X, Du C, Ren Z, Zhang M, Ma L. Conformational Change and Activity Enhancement of Rabbit Muscle Lactate Dehydrogenase Induced by Polyethyleneimine. ACS OMEGA 2021; 6:10859-10865. [PMID: 34056239 PMCID: PMC8153759 DOI: 10.1021/acsomega.1c00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
For a better understanding on the interaction between polyethyleneimine (PEI) and proteins, spectroscopic studies including UV-vis absorption, resonance Rayleigh scattering, fluorescence, and circular dichroism were conducted to reveal the conformational change of rabbit muscle lactate dehydrogenase (rmLDH) and related to the bioactivity of the enzyme. Regardless of the electrostatic repulsion, PEI could bind on the surface of rmLDH, a basic protein, via hydrogen binding of the dense amine groups and hydrophobic interaction of methyl groups. The competitive binding by PEI led to a reduction of the binding efficiency of rmLDH toward β-nicotinamide adenine dinucleotide, the coenzyme, and sodium pyruvate, the substrate. However, the complex formation with PEI induced a less ordered conformation and an enhanced surface hydrophobicity of rmLDH, facilitating the turnover of the enzyme and generally resulting in an increased activity. PEI of higher molecular weight was more efficient to induce alteration in the conformation and catalytic activity of the enzyme.
Collapse
Affiliation(s)
| | | | | | | | - Lin Ma
- .
Phone: +86-771-3233718. Fax: +86-0771-3233718
| |
Collapse
|
10
|
Sun Z, Song M, Zou W, Su Z, Bai Y. Resonance Rayleigh scattering spectra study on the interactions of chito-oligosaccharides with acid blue 119 and their analytical applications. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
A new strategy for determination of trace PO43− using CNDAu as resonance Rayleigh scattering and fluorescence dual-mode probe. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Qasem M, Kurdi RE, Patra D. Selective resonance Rayleigh scattering spectroscopic determination of persulfate using cetyl trimethylammonium bromide capped cuo nanograins. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
The Field Monitoring Experiment of the Roof Strata Movement in Coal Mining Based on DFOS. SENSORS 2020; 20:s20051318. [PMID: 32121274 PMCID: PMC7085630 DOI: 10.3390/s20051318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022]
Abstract
Mining deformation of roof strata is the main cause of methane explosion, water inrush, and roof collapse accidents amid underground coal mining. To ensure the safety of coal mining, the distributed optical fiber sensor (DFOS) technology has been applied in the 150,313 working face by Yinying Coal Mine in Shanxi Province, north China to monitor the roof strata movement, so as to grasp the movement law of roof strata and make it serve for production. The optical fibers are laid out in the holes drilled through the overlying strata on the roadway roof and BOTDR technique is utilized to carry out the on-site monitoring. Prior to the on-site test, the coupling test of the fiber strain in the concrete anchorage, the calibration test of the fiber strain coefficient of the 5-mm steel strand (SS) fiber, and the test of the strain transfer performance of the SS fiber were carried out in the laboratory. The approaches for fiber laying-out in the holes and fiber's spatial positioning underground the coal mine have been optimized in the field. The indoor test results show that the high-strength SS optical fiber has a high strain transfer performance, which can be coupled with the concrete anchor with uniform deformation. This demonstrated the feasibility of SS fiber for monitoring strata movement theoretically and experimentally; and the law of roof strata fracturing and collapse is obtained from the field test results. This paper is a trial to study the whole process of dynamic movement of the deformation of roof strata. Eventually the study results will help Yinying Coal Mine to optimize mining design, prevent coal mine accidents, and provide detailed test basis for DFOS monitoring technique of roof strata movement.
Collapse
|
14
|
He Q, Zhang Q, Cao W, Yin T, Zhao S, Yin X, Zhao H, Tao W. Detecting trace of mercury ions in water using photoacoustic method enhanced by gold nanospheres. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review. Mikrochim Acta 2019; 186:667. [PMID: 31485856 DOI: 10.1007/s00604-019-3755-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/10/2019] [Indexed: 01/08/2023]
Abstract
This review (with 116 refs.) summarizes the state of the art in resonance Rayleigh scattering (RRS)-based analytical methods. Following an introduction into the fundamentals of RRS and on the preparation of metal nanoparticles, a first large section covers RRS detection methods based on the use of gold nanoparticles, with subsections on proteins (albumin, bovine serum albumin and ovalbumin, glycoproteins, folate receptors, iron binding-proteins, G-proteins-coupled receptors, transmembrane proteins, epidermal growth factor receptors), on pesticides, saccharides, vitamins, heavy metal ions (such as mercury, silver, chromium), and on cationic dyes. This is followed by a section on RRS methods based on the use of silver nanoparticles, with subsections on the detection of nucleic acids and insecticides. Several Tables are presented where an RRS method is compared to the performance of other methods. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical Abstract Change in the resonance Rayleigh scattering (RRS) intensity when mixing the nanoparticles with the specific analyte.
Collapse
|
16
|
Han L, Liu SG, Dong XZ, Liang JY, Li NB, Luo HQ. Construction of an effective ratiometric fluorescent sensing platform for specific and visual detection of mercury ions based on target-triggered the inhibition on inner filter effect. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:170-177. [PMID: 31128396 DOI: 10.1016/j.jhazmat.2019.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Sensitive and selective determination of mercury ion (Hg2+) is critical for human health and environmental monitoring. Herein we construct an effective ratiometric fluorescent sensing platform by combining green fluorescent polymer carbon dots (PCDs) and red fluorescent tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) for specific and visual detection of Hg2+. The fluorescence of PCDs can be quenched by TPPS through inner filter effect (IEF). In the presence of both Mn2+ and Hg2+, however, Hg2+ can expedite the complexation of TPPS and Mn2+, which causes the decrease in both fluorescence and absorption of TPPS, accompanied by the fluorescence recovery of PCDs due to the subdued IFE between TPPS and PCDs. Based on the change of fluorescence signal, a ratiometric fluorescent sensing platform is constructed for specific and visual detection of Hg2+. The proposed approach presents a fine linear range for Hg2+ over the range of 10-200 nM with a detection limit of 0.038 nM. Moreover, an easily distinguishable fluorescence color change from pink to green with the increase of Hg2+ concentration can be observed by the naked eye under a UV lamp. Such a simple and effective method shows great potential for visual sensing of Hg2+ in on-site and resource-limited settings.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shi Gang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xue Zhen Dong
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jia Yu Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
17
|
Nicking enzyme-assisted signal-amplifiable Hg 2+ detection using upconversion nanoparticles. Anal Chim Acta 2019; 1072:75-80. [PMID: 31146867 DOI: 10.1016/j.aca.2019.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022]
Abstract
A highly specific and sensitive isothermal method for mercury detection using DNA-conjugated upconversion nanoparticles is reported. A single-stranded DNA containing thymine bases, used as the Hg2+-capturing element through the formation of thymine-Hg2+-thymine complex, is covalently attached to the NaYF4: Yb3+, Tm3+ nanoparticles. Luminescence resonance energy transfer takes place between the NaYF4: Yb3+, Tm3+ nanoparticles as donor and DNA-intercalating SYBR Green I as the acceptor upon excitation of 980 nm. The sensitivity and selectivity toward Hg2+ are enhanced using the nicking enzyme, Nt. Alwl, which leads to signal amplification. By monitoring the ratio of acceptor emission to a reference peak, the presence of Hg2+ ions are quantitatively determined with a lower detection limit of 0.14 nM, which is much lower than the US Environmental Protection Agency (EPA) limit of Hg2+ in drinking water.
Collapse
|
18
|
A Sensitive Resonance Rayleigh Scattering Method for Na + Based on Graphene Oxide Nanoribbon Catalysis. Int J Anal Chem 2018; 2018:4017519. [PMID: 30627166 PMCID: PMC6304511 DOI: 10.1155/2018/4017519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
The gold nanoparticle reaction of HAuCl4-H2O2 was very slow under 60°C, and the as-prepared graphene oxide nanoribbons (GONRs) exhibited strong catalysis of the reaction to form gold nanoparticles (AuNP) that appeared a resonance Rayleigh scattering (RRS) peak at 550 nm. Upon addition of potassium pyroantimonate (PA) ligand, it was adsorbed on the GONRs surface to inhibit the catalysis to cause the RRS peak decreasing. When the analyte of Na+ was added, the coordination reaction between PA and Na+ took place to form the stable complexes of [Na2(PA)] to release free GONRs catalyst that resulted in the RRS peak increasing linearly. Accordingly, a new and sensitive RRS method for Na+ was established, with a linear range of 0.69-25.8 nmol/L and a detection limit of 0.35 nmol/L Na+.
Collapse
|
19
|
Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnology 2018; 16:95. [PMID: 30466465 PMCID: PMC6249933 DOI: 10.1186/s12951-018-0419-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
The need and desire to understand the environment, especially the quality of one's local water and air, has continued to expand with the emergence of the digital age. The bottleneck in understanding the environment has switched from being able to store all of the data collected to collecting enough data on a broad range of contaminants of environmental concern. Nanomaterial enabled sensors represent a suite of technologies developed over the last 15 years for the highly specific and sensitive detection of environmental contaminants. With the promise of facile, low cost, field-deployable technology, the ability to quantitatively understand nature in a systematic way will soon be a reality. In this review, we first introduce nanosensor design before exploring the application of nanosensors for the detection of three classes of environmental contaminants: pesticides, heavy metals, and pathogens.
Collapse
Affiliation(s)
- Marjorie R. Willner
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| |
Collapse
|
20
|
Gao W, Xu Y, Wei W, Wang D, Shi X. Ultrasensitive determination of mercury ions (Ⅱ) by analysis of the degree of quantum dots aggregation. Talanta 2018; 188:644-650. [DOI: 10.1016/j.talanta.2018.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
21
|
Baptista PV. Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics: an update. Expert Rev Mol Diagn 2018; 18:767-773. [PMID: 30037279 DOI: 10.1080/14737159.2018.1503950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION An update on the uses and applications of the non-cross-linking (NCL) hybridization assay based on the spectral modulation of gold nanoparticles (AuNPs) are presented, emphasizing DNA and RNA detection. Areas covered: Nanotechnology is strongly impacting the way we address diagnostics and therapeutics. In fact, nanoscale devices and particles have been used in a variety of platforms for improved biosensing and, more interestingly, for molecular diagnostics. AuNPs have been used in a great diversity of DNA and RNA detection strategies that are based on their nanoscale properties. Their unique optical properties have put them at the forefront of colorimetric sensing platforms. Among these, those relying on the NCL mechanism using DNA-modified AuNPs have shown remarkable versatility and simplicity for molecular detection of human pathogens, identification of single base alterations at the basis of human disease, gene expression, among others. Application of the NCL assay to molecular diagnostics will be discussed considering the challenges for validation and clinically relevant targets. Expert commentary: Integration of the NCL approach using AuNPs into chip biosensing platforms, projecting miniaturization and portability, will be addressed in terms of the future, i.e. clinical validation and translation to market.
Collapse
Affiliation(s)
- Pedro V Baptista
- a UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , Caparica , Portugal
| |
Collapse
|
22
|
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018; 143:3249-3283. [PMID: 29924108 PMCID: PMC6042520 DOI: 10.1039/c8an00731d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran and Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Ahmadi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Shabnam Hashemzadeh
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Farshad Lolasi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran and Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahnaz Bozorgomid
- Department of Pharmaceutical Chemistry, Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran and Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Amin Shiralizadeh Dezfuli
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Amiri S, Ahmadi R, Salimi A, Navaee A, Hamd Qaddare S, Amini MK. Ultrasensitive and highly selective FRET aptasensor for Hg2+ measurement in fish samples using carbon dots/AuNPs as donor/acceptor platform. NEW J CHEM 2018. [DOI: 10.1039/c8nj02781a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy was proposed for the determination of Hg2+ in water, foods, and living organisms based on the quenching and recovery of the fluorescence of CDs-ssDNA through the FRET process induced by AuNPs-cDNA. The results showed a wide response range, pM detection limit, and high selectivity.
Collapse
Affiliation(s)
- Shole Amiri
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
| | - Rezgar Ahmadi
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
| | - Abdollah Salimi
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
- Department of Chemistry
| | - Aso Navaee
- Department of Chemistry
- University of Kurdistan
- Sanandaj 66177-15175
- Iran
| | | | | |
Collapse
|
24
|
Ma C, Zhang W, Su Z, Bai Y. Resonance Rayleigh scattering method for the determination of chitosan using erythrosine B as a probe and PVA as sensitization. Food Chem 2018; 239:126-131. [DOI: 10.1016/j.foodchem.2017.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 04/17/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
25
|
Rapid and Selective Determination of Folate Receptor α with Sensitive Resonance Rayleigh Scattering Signal. Int J Anal Chem 2017. [PMID: 28630626 PMCID: PMC5463099 DOI: 10.1155/2017/1670812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A rapid, simple, and novel method for folate receptor α (FRα) determination is reported here. A probe of gold nanoparticles (Au NPs) modified with anti-FRα antibody was synthesized under the optimized conditions first. The antibody-modified Au NPs would aggregate when FRα was added to the probe for the specific interaction between antibody and antigen, resulting in the enhancement of resonance Rayleigh scattering (RRS) intensity. There is a linear relationship between the change of RRS intensity (ΔIRRS) and the concentration of FRα, with the detecting range of 0.50–37.50 ng·mL−1 and the limit of determination of 0.05 ng·mL−1. The determination of FRα in serum samples was realized with the advantages of high selectivity, high sensitivity, and easy operation.
Collapse
|
26
|
Tan X, Yang J, Yang Q, Li Q. A highly sensitive resonance Rayleigh scattering and colorimetric assay for the recognition of propranolol in β‐adrenergic blocker. LUMINESCENCE 2017; 32:1221-1226. [DOI: 10.1002/bio.3314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/19/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
Affiliation(s)
| | - Jidong Yang
- Chongqing Three Gorges University Wanzhou China
- School of Chemistry and Chemical Engineering Yangtze Normal University Chongqing China
- School of Chemistry and Chemical Engineering Southwest University Chongqing China
| | - Qiong Yang
- School of Chemistry and Chemical Engineering Yangtze Normal University Chongqing China
| | - Qin Li
- Chongqing Medical and Health school Fuling China
| |
Collapse
|
27
|
Zeptomolar detection of Hg 2+ based on label-free electrochemical aptasensor: One step closer to the dream of single atom detection. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Huang J, Su X, Li Z. Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 2017; 96:127-139. [PMID: 28478384 DOI: 10.1016/j.bios.2017.04.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Metal ion detection is critical in a variety of areas. The past decade has witnessed great progress in the development of metal ion sensors using functional nucleic acids (FNAs) and nanomaterials. The former has good recognition selectivity toward metal ions and the latter possesses unique properties for enhancing the performance of metal ion sensors. This review offers a summary of FNA- and nanomaterial-based metal ion detection methods. FNAs mainly include DNAzymes, G-quadruplexes, and mismatched base pairs and nanomaterials cover gold nanoparticles (GNPs), quantum dots (QDs), carbon nanotubes (CNTs), and graphene oxide (GO). The roles of FNAs and nanomaterials are introduced first. Then, various methods based on the combination of different FNAs and nanomaterials are discussed. Finally, the challenges and future directions of metal ion sensors are presented.
Collapse
Affiliation(s)
- Jiahao Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Xuefen Su
- School of Public Health and Primary Care, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
29
|
Lv X, Zhang Y, Liu G, Du L, Wang S. Aptamer-based fluorescent detection of ochratoxin A by quenching of gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra01474k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A simple, rapid, low cost and highly sensitive method for the detection of ochratoxin A (OTA) was developed based on the principle that dispersed AuNPs show a better fluorescence quenching effect than aggregated AuNPs.
Collapse
Affiliation(s)
- Xin Lv
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Yuanfu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Guofu Liu
- College of Life Science
- Liaocheng University
- Liaocheng 252059
- China
| | - Lingyun Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Shuhao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| |
Collapse
|
30
|
Wen G, Liang X, Liu Q, Liang A, Jiang Z. A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free Vitoria blue 4R as molecular probe. Biosens Bioelectron 2016; 85:450-456. [DOI: 10.1016/j.bios.2016.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
|
31
|
Yang Q, Liu J, Li B, Hu X, Liu S, Chen G. In-situ formation of ion-association nanoparticles induced enhancements of resonance Rayleigh scattering intensities for quantitative analysis of trace Hg(2+) ions in environmental samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 167:19-25. [PMID: 27235829 DOI: 10.1016/j.saa.2016.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
In this paper, Hg(2+) ions are demonstrated to form anionic [HgI4](2-) complexes after interacting with massive amount of I(-) ions. Subsequently, the addition of tetradecyl pyridyl bromide (TPB) can make [HgI4](2-) anionic complexes react with univalent tetradecyl pyridyl cationic ions (TP(+)), forming dispersed ion-association complexes (TP)2(HgI4). Due to the extrusion action of water and Van der Waals force, the hydrophobic ion-association complexes aggregate together, forming dispersed nanoparticles with an average size of about 8.5nm. Meanwhile, resonance Rayleigh scattering (RRS) intensity is apparently enhanced due to the formation of (TP)2(HgI4) ion-association nanoparticles, contributing to a novel technique for Hg(2+) detection. The wavelength of 365nm is chosen as a detection wavelength and several conditions affecting the RRS responses of Hg(2+) are optimized. Under the optimum condition, the developed method is used for the determination of Hg(2+) in aqueous solution and the detection limit is estimated to be 0.8ngmL(-1). Finally, the practical application of the developed method can be confirmed through the detections of Hg(2+) in waste and river water samples with satisfactory results.
Collapse
Affiliation(s)
- Qingling Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Environmental Monitoring Center in Chongqing City, Chongqing 400020, China
| | - Jian Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Banglin Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shaopu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Gangcai Chen
- Environmental Monitoring Center in Chongqing City, Chongqing 400020, China
| |
Collapse
|
32
|
Resonance Rayleigh Scattering Spectra of an Ion-Association Complex of Naphthol Green B-Chitosan System and Its Application in the Highly Sensitive Determination of Chitosan. Mar Drugs 2016; 14:md14040071. [PMID: 27096866 PMCID: PMC4849075 DOI: 10.3390/md14040071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
This work describes a highly-sensitive and accurate approach for the determination of chitosan (CTS) using Naphthol Green B (NGB) as a probe in the Resonance Rayleigh scattering (RRS) method. The interaction between CTS and NGB leads to notable enhancement of RRS, and the enhancement is proportional to the concentration of CTS over a certain range. Under optimum conditions, the calibration curve of ΔI against CTS concentration was ΔI = 1860.5c + 86.125 (c, µg/mL), R2 = 0.9999, and the linear range and detection limit (DL) were 0.01–5.5 µg/mL and 8.87 ng/mL. Moreover, the effect of the molecular weight of CTS on the accurate quantification of CTS was studied. The experimental data were analyzed through linear regression analysis using SPSS20.0, and the molecular weight was found to have no statistical significance. This method has been applied to assay two CTS samples and obtained good recovery and reproducibility.
Collapse
|
33
|
Zhang Y, Liu J, Liu T, Li H, Xue Q, Li R, Wang L, Yue Q, Wang S. Label-free, sensitivity detection of fibrillar fibrin using gold nanoparticle-based chemiluminescence system. Biosens Bioelectron 2016; 77:111-5. [DOI: 10.1016/j.bios.2015.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022]
|
34
|
Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg(2+) Using Hg(2+)-Triggered Exonuclease III-Assisted Target Recycling and Growth of G-Wires for Signal Amplification. Anal Chem 2016; 88:1385-90. [PMID: 26704253 DOI: 10.1021/acs.analchem.5b03972] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel signal-on and label-free resonance Rayleigh scattering (RRS) aptasensor was constructed for detection of Hg(2+) based on Hg(2+)-triggered Exonuclease III-assisted target recycling and growth of G-quadruplex nanowires (G-wires) for signal amplification. The hairpin DNA (H-DNA) was wisely designed with thymine-rich recognition termini and a G-quadruplex sequence in the loop and employed as a signal probe for specially recognizing trace Hg(2+) by a stable T-Hg(2+)-T structure, which automatically triggered Exonuclease III (Exo-III) digestion to recycle Hg(2+) and liberate the G-quadruplex sequence. The free G-quadruplex sequences were self-assembled into guanine nanowire (G-wire) superstructure in the presence of Mg(2+) and demonstrated by gel electrophoresis. The RRS intensity was dramatically amplified by the resultant G-wires, and the maximum RRS signal at 370 nm was linear with the logarithm of Hg(2+) concentration in the range of 50.0 pM to 500.0 nM (R = 0.9957). Selectivity experiments revealed that the as-prepared RRS sensor was specific for Hg(2+), even coexisting with high concentrations of other metal ions. This optical aptasensor was successfully applied to identify Hg(2+) in laboratory tap water and river water samples. With excellent sensitivity and selectivity, the proposed RRS aptasensor was potentially suitable for not only routine detection of Hg(2+) in environmental monitoring but also various target detection just by changing the recognition sequence of the H-DNA probe.
Collapse
Affiliation(s)
- Wang Ren
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China.,College of Chemistry and Pharmaceutical Engineering, Sichuan Provincial Academician (Expert) Workstation, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering , Zigong 643000, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China.,College of Chemistry and Pharmaceutical Engineering, Sichuan Provincial Academician (Expert) Workstation, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering , Zigong 643000, People's Republic of China
| | - Hong Guo Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Zhong Feng Gao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
35
|
Li S, Liao L, Wu R, Yang Y, Xu L, Xiao X, Nie C. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe. Anal Bioanal Chem 2015; 407:8911-8. [PMID: 26403237 DOI: 10.1007/s00216-015-9050-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/30/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022]
Abstract
In this paper, we report a resonance light scattering (RLS) method for the determination of fructose bisphosphates (FBPs) in water solution using fructose 1,6-bisphosphate (F-1,6-BP) as a model analyte without the procedure of extracting target analyte. The method used a type of modified gold nanoparticles (GNPs) as optical probe. The modified GNPs are uranyl-salophen-cysteamine-GNPs (U-Sal-Cy-GNPs) which are obtained through the acylation reaction of carboxylated salophen with cysteamine-capped GNPs (Cy-GNPs) to form Sal-Cy-GNPs and then the chelation reaction of uranyl with tetradentate ligand salophen in the Sal-Cy-GNPs. A FBP molecule is used easily to connect two U-Sal-Cy-GNPs to cause the aggregation of the GNPs by utilizing the specific affinity of uranyl-salophen complex to phosphate group, resulting in the production of strong RLS signal from the system. The amount of FBPs can be determined through detecting the RLS intensity change of the system. A linear range was found to be 2.5 to 75 nmol/L with a detection limit of 0.91 nmol/L under optimal conditions. The method has been successfully used to determine FBPs in real samples with the recoveries of 96.5-103.5 %.
Collapse
Affiliation(s)
- Shijun Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Lifu Liao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China.
| | - Rurong Wu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yanyan Yang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Li Xu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Xilin Xiao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Changming Nie
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
36
|
Li L, Wen Y, Xu L, Xu Q, Song S, Zuo X, Yan J, Zhang W, Liu G. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes. Biosens Bioelectron 2015; 75:433-45. [PMID: 26356764 DOI: 10.1016/j.bios.2015.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/21/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.
Collapse
Affiliation(s)
- Lanying Li
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Li Xu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Qin Xu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Shiping Song
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Xiaolei Zuo
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong District, Shanghai 201306, PR China.
| | - Weijia Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong District, Shanghai 201306, PR China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| |
Collapse
|
37
|
Zhu Y, Cai Y, Zhu Y, Zheng L, Ding J, Quan Y, Wang L, Qi B. Highly sensitive colorimetric sensor for Hg2+ detection based on cationic polymer/DNA interaction. Biosens Bioelectron 2015; 69:174-8. [DOI: 10.1016/j.bios.2015.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/13/2023]
|
38
|
Zang X, Peng J, Zhou M, Peng H. A high selective and sensitive method for the detection of six psychotropic drugs in human urine by high performance liquid chromatography combined with resonance Rayleigh scattering spectra. RSC Adv 2015. [DOI: 10.1039/c5ra11485c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly selective and sensitive method of high performance liquid chromatography combined with resonance Rayleigh scattering spectra was developed for the detection of six psychotropic drugs: Doxepin, Promethazine, Imipramine, Amitriptyline, Chlorpromazine and Clomipramine.
Collapse
Affiliation(s)
- Xu Zang
- School of Chemistry and Chemical Engineering
- Southwest University
- P. R. China
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering
- Southwest University
- P. R. China
| | - Mingqiong Zhou
- School of Chemistry and Chemical Engineering
- Southwest University
- P. R. China
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering
- Southwest University
- P. R. China
| |
Collapse
|