1
|
Shao H, Xue X, Sun Z, Zheng X, Shi P. Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification. Anal Chim Acta 2025; 1336:343444. [PMID: 39788648 DOI: 10.1016/j.aca.2024.343444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification. Methylene blue (MB) and Hemin are chosen as two electrochemical species. Then the ratiometric electrochemical sensor were developed, which showed favorable performance of miRNA-21 detection, and exhibited a detection concentration range from 1 fM to 10 nM. Notably, the limit of detection for this biosensor was 0.15 fM. Overall, this strategy for miRNA detection holds significant promise for early cancer screening.
Collapse
Affiliation(s)
- Honglei Shao
- School of Chemistry & Chemical Engineering, Linyi University, China
| | - Xingming Xue
- School of Chemistry & Chemical Engineering, Linyi University, China
| | - Zhaomei Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China.
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China.
| |
Collapse
|
2
|
Zhang Z, Karimi-Maleh H, Wen Y, Darabi R, Wu T, Alostani P, Ghalkhani M. Nanohybrid of antimonene@Ti 3C 2T x-based electrochemical aptasensor for lead detection. ENVIRONMENTAL RESEARCH 2023; 233:116355. [PMID: 37329944 DOI: 10.1016/j.envres.2023.116355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Lead ions (Pb2+), as one of many common heavy metallic environmental pollutants, can cause serious side-effects and result in chronic poisoning to people's health, so it is highly significant to monitor Pb2+ efficiently and sensitively. Here, we proposed an antimonene@Ti3C2Tx nanohybrid-based electrochemical aptamer sensor (aptasensor) for high sensitive Pb2+ determination. The sensing platform of nanohybrid was synthesized by ultrasonication, possessing the advantages of both antimonene and Ti3C2Tx, which not only can vastly enlarge the sensing signal of the proposed aptasensor, but also greatly simplified its manufacturing flow, because antimonene can strongly interact with aptamer through noncovalently bound. The surface morphology and microarchitecture of the nanohybrid were perused by several methods such as scanning electron microscope (SEM), energy-dispersive X-ray mapping spectroscopy (EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscope (AFM). Under optimal empirical conditions, the proposed aptasensor exhibited a wide linear correlation of the current signals with the logarithm of CPb2+ (Log CPb2+) over the span from 1 × 10-12 to 1 × 10-7 M and provided a trace discernment limit of 3.3 × 10-13 M. Moreover, the constructed aptasensor displayed superior repeatability, great consistency, eminent selectivity, and beneficial reproducibility, implying its extreme potential application for water quality control and the environmental monitoring of Pb2+.
Collapse
Affiliation(s)
- Zhouxiang Zhang
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China; Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran.
| | - Yangpin Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Tao Wu
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Pardis Alostani
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 16785-163, Tehran, 167881-5811, Iran
| |
Collapse
|
3
|
Lv Z, Zhang M, Jin H, Huang Y, Wei M. Screen‐printed electrode‐based homogeneous electrochemical aptasensor for mercury (
II
) based on reduced graphene oxide and exonuclease
III
‐driven cyclic reaction. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeping Lv
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Mingli Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Yawei Huang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
4
|
Liu T, Lin B, Yuan X, Chu Z, Jin W. In situ fabrication of urchin-like Cu@carbon nanoneedles based aptasensor for ultrasensitive recognition of trace mercury ion. Biosens Bioelectron 2022; 206:114147. [PMID: 35276462 DOI: 10.1016/j.bios.2022.114147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Mercury ion (Hg2+) is a strong toxic heavy ion that causes severe damages to the environment and readily accumulates in the food chain. However, it remains a major challenge to realize a sensitive and precise recognition of Hg2+ with a trace concentration for early identifying the pollution source. In this work, a novel electrochemical aptasensor was designed to achieve an ultrasensitive and quantitative detection of trace Hg2+, relying on an urchin-like architecture of Cu@carbon nanoneedles (Cu@CNNs) as the electroactive probe. This specific nanostructure was in-situ constructed through a controllable pyrolysis process, serving as a signal magnifier and DNA loading platform owing to its outstanding electrocatalysis and large specific surface areas. Meanwhile, an exonuclease III-assisted cycling amplification strategy was designed to efficiently amplify the signal strength of trace Hg2+via the consecutive release of report probes in nicking reaction. This as-prepared Hg2+ aptasensor exhibited an ultralow detection limit of 3.7 fM (7 × 10-6 ppm) and a wide linear range from 10 fM to 10 μM, together with the satisfactory stability and reusability for assay in real water samples. It is highly expected that this Cu@CNNs based aptasensor will have tremendous potentials in the early warning and efficient pollution monitoring of heavy metal ions.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bowen Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xueli Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
5
|
Yan B, Zheng X, Shi P. Electrochemical sensor propelled by exonuclease III for highly efficient microRNA-155 detection. Analyst 2022; 147:4824-4828. [DOI: 10.1039/d2an01274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed an electrochemical sensor, propelled by exonuclease III, for highly efficient microRNA-155 detection. The detection performance of the sensor was excellent, with a detection limit as low as 0.035 fM.
Collapse
Affiliation(s)
- Bingyin Yan
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| |
Collapse
|
6
|
Nodehi M, Baghayeri M, Behazin R, Veisi H. Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105825] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Chen Y, Zhu Q, Zhou X, Wang R, Yang Z. Reusable, facile, and rapid aptasensor capable of online determination of trace mercury. ENVIRONMENT INTERNATIONAL 2021; 146:106181. [PMID: 33099062 DOI: 10.1016/j.envint.2020.106181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Herein, we reported a homemade waveguide-based evanescent wave aptasensor for the facile online monitoring of mercury pollution. The aptasensor exploited the high selectivity of hairpin structure-based thymidine-Hg2+-thymidine coordination chemistry (T-T mismatch) for Hg2+ recognition and the stably regenerable capability of DNA-functionalized waveguide surfaces. The presence of Hg2+ caused the T-T mismatch of Cy5.5-labeled T-rich single-stranded DNA sequences. The formed hairpin structures blocked the further hybridization of T-rich single-stranded DNA sequences with the complementary DNA strands that are modified on the waveguide surface; this phenomenon was accompanied by the decrease in the fluorescent signals excited by the evanescent wave. The limit of detection in real water samples was determined to be 0.2 μg/L, which was comparable with that of 0.4 μg/L in an ultrapure water under controlled conditions. And the linear range was observed from 1.4 µg/L to 240.7 µg/L. The negligible environmental matrix effect on the performance ensured the reliability of the proposed aptasensor. Moreover, the cross reactivity of this method toward other investigated metal ions was negligible. Through the delicate surface modification with DNA molecules covalently, the chip was reused at least 31 times with a relative standard deviation (RSD) of less than 19%. A Hg2+ pollution accident was successfully detected within 30 min, shedding new light in pollution monitoring, environment restoration, and emergency treatment.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Advanced Technology and Equipment of Water Environment Pollution Monitoring, Changsha 410205, China.
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenchuan Yang
- National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Zhang C, Chen J, Sun R, Huang Z, Luo Z, Zhou C, Wu M, Duan Y, Li Y. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors. ACS Sens 2020; 5:2977-3000. [PMID: 32945653 DOI: 10.1021/acssensors.0c01453] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the continuous development of biosensors, researchers have focused increasing attention on various signal amplification strategies to pursue superior performance for more applications. In comparison with other signal amplification strategies, hybridization chain reaction (HCR) as a powerful signal amplification technique shows its certain charm owing to nonenzymatic and isothermal features. Recently, on the basis of conventional HCR, this technique has been developed and improved rapidly, and a variety of HCR-based biosensors with excellent performance have been reported. Herein, we present a systematic and critical review on the research progress of HCR in biosensors in the last five years, including the newly developed HCR strategies such as multibranched HCR, migration HCR, localized HCR, in situ HCR, netlike HCR, and so on, as well as the combination strategies of HCR with isothermal signal amplification techniques, nanomaterials, and functional DNA molecules. By illustrating some representative works, we also summarize the advantage and challenge of HCR in biosensors, and offer a deep discussion of the latest progress and future development trends of HCR in biosensors.
Collapse
Affiliation(s)
- Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| |
Collapse
|
9
|
Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. BIOSENSORS-BASEL 2020; 10:bios10050045. [PMID: 32354207 PMCID: PMC7277302 DOI: 10.3390/bios10050045] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The development of reliable biosensing platforms plays a key role in the detection of proteins in clinically and environmentally derived samples for diagnostics, as well as for process monitoring in biotechnological productions. For this purpose, the biosensor has to be stable and reproducible, and highly sensitive to detect potentially extremely low concentrations and prevent the nonspecific binding of interfering compounds. In this review, we present an overview of recently published (2017–2019) immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins. These include the direct immobilization of thiolated aptamers and the utilization of short linkers, streptavidin/biotin interaction, as well as DNA nanostructures and reduced graphene oxide as immobilization platforms. Applied strategies for signal amplification and the prevention of biofouling are additionally discussed, as they play a crucial role in the design of biosensors. While a wide variety of amplification strategies are already available, future investigations should aim to establish suitable antifouling strategies that are compatible with electrochemical measurements. The focus of our review lies on the detailed discussion of the underlying principles and the presentation of utilized chemical protocols in order to provide the reader with promising ideas and profound knowledge of the subject, as well as an update on recent discoveries and achievements.
Collapse
|
10
|
Wang L, Peng X, Fu H, Huang C, Li Y, Liu Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens Bioelectron 2019; 147:111777. [PMID: 31634804 DOI: 10.1016/j.bios.2019.111777] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Abstract
Heavy metal contamination in environment and food has attracted intensive attention from the public since it poses serious threats to ecological system and human health. Traditional detection methods for heavy metals such as atomic absorption spectrometry have a fairly low detection limit, but the methods have many limitations and disadvantages. Therefore, it is of significance to develop a rapid technology for real-time and online detection of heavy metals. The electrochemical aptasensor-based technology is promising in the detection of heavy metals with advantages of high sensitivity, specificity, and accuracy. Although its development is rapid, more researches should be carried out before this technology can be used for on-site detection. In this review, the origin, basic principles and development of electrochemical aptasensors are introduced. The applications of nanomaterials and electrochemical aptasensors for the detection of heavy metals (mainly mercury, lead, cadmium, and arsenic) are summarized. The research and application tendency of electrochemical aptasensors for detection of heavy metals are prospected.
Collapse
Affiliation(s)
- Liyuan Wang
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, 41004, China
| | - Xianglian Peng
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, 41004, China.
| | - Hongjun Fu
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, 41004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaping Li
- College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, 41004, China
| | - Zhiming Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
11
|
Wu Z, Luo F, Wen W, Zhang X, Wang S. Enrichment-Stowage-Cycle Strategy for Ultrasensitive Electrochemiluminescent Detection of HIV-DNA with Wide Dynamic Range. Anal Chem 2019; 91:12238-12245. [PMID: 31513379 DOI: 10.1021/acs.analchem.9b01969] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sensitive detection of human immunodeficiency virus DNA (HIV-DNA) is essential for timely diagnosis and cure of the illness. Herein, a novel "enrichment-stowage-cycle" strategy was proposed to fabricate a multiple amplified electrochemiluminecence (ECL) biosensor for HIV-DNA detection. On the basis of the enrichment role of magnetic nanobeads, assembly role of copolymer nanospheres and strand displacement amplification (SDA), the processes were named as "enrichment", "stowage", and "cycle", respectively. The method employed electrochemiluminescent nanospheres (ENs) as signal labels by assembling three layers of CdSe/ZnS quantum dots (QDs) onto the surface of copolymer nanospheres. Compared to QDs, the same concentration of ENs can the enhance the ECL intensity by about 11.3-fold. SDA could further amplify the signals by about 3.77-fold, possessing high sensitivity for low-abundant biomarkers detection. The integration of magnetic separation improved detection specificity and stability, making the method possible for practical application. On the basis of magnetic separation, ENs and SDA, the ECL biosensor realized ultrasensitive detection of 39.81 fM HIV-DNA, which was more sensitive than other HIV-DNA analytical methods, with a wide dynamic range of 0.05 pM to 50 nM. The successful detection of HIV-DNA in complex samples with good sensitivity and accuracy indicated its potential utilization in early judgment of diseases and fabrication of signal amplification platforms.
Collapse
Affiliation(s)
- Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Fanwei Luo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , P. R. China
| |
Collapse
|
12
|
Deng P, Zheng S, Yun W, Zhang W, Yang L. A visual and sensitive Hg 2+ detection strategy based on split DNAzyme amplification and peroxidase-like activity of hemin-graphene composites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:335-340. [PMID: 30472597 DOI: 10.1016/j.saa.2018.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
A visual and sensitive Hg2+ detection strategy was developed based on split DNAzyme amplification and hemin-graphene oxide composites (H-GNs). Two split DNAzyme sequences can form two entire enzyme-strands DNA (E-DNA) by T-Hg2+-T interaction. The E-DNA can bind with the loop of molecular beacon (MB) to form Mg2+-dependent DNAzyme structure. The formed DNAzyme can circularly cleave the loop of MB, resulting large amount of DNA fragments. The resultant DNA fragments can prevent H-GNs from aggregation by adsorbing on its surface. Consequently, the supernate with large amount of H-GNs shows dark blue color after chromogenic reaction. This strategy shows a linear range from 50 pM to 1200 pM. The limit detection can be low to 33 pM. This strategy provides a visual and enzyme-free amplification mode for quick and sensitive screen of Hg2+.
Collapse
Affiliation(s)
- Pengxi Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuang Zheng
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Weilu Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
13
|
Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction. Mikrochim Acta 2019; 186:216. [PMID: 30838468 DOI: 10.1007/s00604-019-3332-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
A highly sensitive and selective fluorometric method is described for determination of mercury(II). It is based on (a) the use of graphene oxide (GO) acting as a quencher of the fluoresence of the carboxy-fluorescein (FAM), and (b) of Hg(II)-triggered cleavage of the newly formed nucleic acid sequences harbored blunt 3'-hydroxyl termini by exonuclease III (Exo III) that leads to signal amplification. Two DNA probes are used, viz. a capture probe (CP) and a help probe; HP) that is partially complementary. In the absence of Hg(II), the FAM-labeled hairpin (signal probe, SP) is adsorbed onto the surface of GO via π-stacking interactions. CP blocks the release of the HP for binding to SP. This results in quenching of the green fluorescence of the label. Upon addition of Hg(II), the linear structure of CP is converted to a hairpin structure due to the formation of thymidine-Hg(II)-thymidine duplexes. HP is released from the CP/HP hybrids, and this causes SP to be released from from GO and fluorescence to be recovered. The signal is strongly amplified by using Exo III-assisted targeting and recycling of HP. Hence, Hg(II) can be detected via the strong increase in fluorescence. The method has a linear response in the 0.1 to 30 nM Hg(II) concentration range and a 10 pM detection limit. It was applied to the determination of Hg(II) in three (spiked) Chinese medicines. Graphical abstract Schematic representation of fluorescence sensing strategy for Hg2+ by using graphene oxide as a quencher and exonuclease III-assisted signal amplification.
Collapse
|
14
|
Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal Chim Acta 2018; 1051:1-23. [PMID: 30661605 DOI: 10.1016/j.aca.2018.10.058] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Global food and water safety issues have prompted the development of highly sensitive, specific, and fast analytical techniques for food and water analysis. The electrochemical aptamer-based detection platform (E-aptasensor) is one of the more promising detection techniques because of its unique combination of advantages that renders these sensors ideal for detection of a wide range of target analytes. Recent research results have further demonstrated that this technique has potential for real world analysis of food and water contaminants. This review summaries the recently developed E-aptasensors for detection of analytes related to food and water safety, including bacteria, mycotoxins, algal toxins, viruses, drugs, pesticides, and metal ions. Ten different electroanalytical techniques and one opto-electroanalytical technique commonly employed with these sensors are also described. In addition to highlighting several novel sensor designs, this review also describes the strengths, limitations, and current challenges this technology faces, and future development trend.
Collapse
Affiliation(s)
- Fengqin Li
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Zhigang Yu
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xianda Han
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, United States.
| |
Collapse
|
15
|
Silver nanoclusters-assisted triple-amplified biosensor for ultrasensitive methyltransferase activity detection based on AuNPs/ERGO hybrids and hybridization chain reaction. Biosens Bioelectron 2018; 118:174-180. [DOI: 10.1016/j.bios.2018.07.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
|
16
|
A Multifunctional Molecular Probe for Detecting Hg 2+ and Ag⁺ Based on Ion-Mediated Base Mismatch. SENSORS 2018; 18:s18103280. [PMID: 30274296 PMCID: PMC6211076 DOI: 10.3390/s18103280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 01/29/2023]
Abstract
In this paper, a multifunctional biosensing platform for sensitively detecting Hg2+ and Ag⁺, based on ion-mediated base mismatch, fluorescent labeling, and strand displacement, is introduced. The sensor can also be used as an OR logic gate, the multifunctional design of sensors is realized. Firstly, orthogonal experiments with three factors and three levels were carried out on the designed sensor, and preliminary optimization of conditions was performed for subsequent experiments. Next, the designed sensor was tested the specificity and target selectivity under the optimized conditions, and the application to actual environmental samples further verified the feasibility. Generally, this is a convenient, fast, stable, and low-cost method that provides a variety of ideas and an experimental basis for subsequent research.
Collapse
|
17
|
Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H. Label-free Electrochemical Bisphenol A Aptasensor Based on Designing and Fabrication of a Magnetic Gold Nanocomposite. ELECTROANAL 2018. [DOI: 10.1002/elan.201800158] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mehdi Baghayeri
- Department of Chemistry, Faculty of Science; Hakim Sabzevari University; PO. Box 397 Sabzevar Iran
| | - Reza Ansari
- Department of Chemistry, Faculty of Science; University of Guilan; Namjoo Street PO. Box 1914 Rasht Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science; University of Guilan; Namjoo Street PO. Box 1914 Rasht Iran
| | - Iman Razavipanah
- Department of Chemistry, Faculty of Sciences; Ferdowsi University of Mashhad; Mashhad Iran
| | - Hojat Veisi
- Department of Chemistry; Payame Noor University; 19395-4697 Tehran Iran
| |
Collapse
|
18
|
Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron 2018; 116:130-147. [PMID: 29879539 DOI: 10.1016/j.bios.2018.05.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
The serious threats of mercury (Hg2+) and lead (Pb2+) ions for the public health makes it important to achieve the detection methods of the ions with high affinity and specificity. Metal ions usually coexist in some environment and foodstuff or clinical samples. Therefore, it is very necessary to develop a fast and simple method for simultaneous monitoring the amount of metal ions, especially when Hg2+ and Pb2+ coexist. DNAzyme-based biosensors and aptasensors have been highly regarded for this purpose as two main groups of the functional nucleic acid (FNA)-based biosensors. In this review, we summarize the recent achievements of functional nucleic acid-based biosensors for the simultaneous detection of Hg2+ and Pb2+ ions in two main optical and electrochemical groups. The tremendous interest in utilizing the various nanomaterials is also highlighted in the fabrication of the FNA-based biosensors. Finally, some results are presented based on the advantages and disadvantages of the studied FNA-based biosensors to compare their validation.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
19
|
Wu SH, Zhang B, Wang FF, Mi ZZ, Sun JJ. Heating enhanced sensitive and selective electrochemical detection of Hg 2+ based on T-Hg 2+ -T structure and exonuclease III-assisted target recycling amplification strategy at heated gold disk electrode. Biosens Bioelectron 2018; 104:145-151. [DOI: 10.1016/j.bios.2018.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
20
|
A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Jiao Y, Fu J, Hou W, Shi Z, Guo Y, Sun X, Yang Q, Li F. Homogeneous electrochemical aptasensor based on a dual amplification strategy for sensitive detection of profenofos residues. NEW J CHEM 2018. [DOI: 10.1039/c8nj02262c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A homogeneous type of electrochemical aptasensor was designed based upon the principle of target-induced and tool enzyme-assisted signal amplification, which was employed for the detection of profenofos residues.
Collapse
Affiliation(s)
- Yancui Jiao
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Jiayun Fu
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Wenjie Hou
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Zhaoqiang Shi
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Yemin Guo
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xia Sun
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Qingqing Yang
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Falan Li
- School of Agriculture and Food Engineering
- Shandong University of Technology
- Shandong Province
- P. R. China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| |
Collapse
|
22
|
Huang JY, Zhao L, Lei W, Wen W, Wang YJ, Bao T, Xiong HY, Zhang XH, Wang SF. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens Bioelectron 2017; 99:28-33. [PMID: 28735043 DOI: 10.1016/j.bios.2017.07.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/17/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
In this work, we have developed an electrochemical aptasensor for high-sensitivity determination of carcinoembryonic antigen (CEA) based on lead ion (Pb2+)-dependent DNAzyme-assisted signal amplification and graphene quantum dot-ionic liquid-nafion (GQDs-IL-NF) composite film. We designed hairpin DNA containing CEA-specific aptamers and DNAzyme chains. In the presence of CEA, hairpin DNA recognized the target and performed a DNAzyme-assisted signal amplification reaction to yield a large number of single-stranded DNA. The GQDs-IL-NF composite film was immobilized on the glassy carbon electrode for the interaction with single-stranded DNA through noncovalent π-π stacking interaction. Therefore, the methylene blue-labeled substrate DNA (MB-substrate) was fixed on the electrode and exhibited an initial electrochemical signal. Under optimal conditions, the response current change was proportional to the concentration of CEA, demonstrating a wide linear range from 0.5fgmL-1 to 0.5ngmL-1, with a low detection limit of 0.34fgmL-1. Furthermore, the proposed aptasensor was successfully applied in determining CEA in serum samples, showing its superior prospects in clinical diagnosis.
Collapse
Affiliation(s)
- Jing-Yi Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Lang Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wan Lei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yi-Jia Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Hua-Yu Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiu-Hua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Sheng-Fu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules&College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
23
|
Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry 2017; 118:47-61. [PMID: 28715665 DOI: 10.1016/j.bioelechem.2017.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
Abstract
The growing number of contaminants requires the development of new analytical tools to meet the increasing demand for legislative actions on food safety and environmental pollution control. In this context, electrochemical aptamer-based sensors appear promising among all biosensors because they permit multiplexed analysis and provide fast response, sensitivity, specificity and low cost. The aim of this review is to give the readers an overview of recent important achievements in the development of electrochemical aptamer-based biosensors for contaminant detection over the last two years. Special emphasis is placed on aptasensors based on screen-printed electrodes which show a substantial improvement of analytical performances.
Collapse
|
24
|
Hong M, Wang M, Wang J, Xu X, Lin Z. Ultrasensitive and selective electrochemical biosensor for detection of mercury (II) ions by nicking endonuclease-assisted target recycling and hybridization chain reaction signal amplification. Biosens Bioelectron 2017; 94:19-23. [PMID: 28237902 DOI: 10.1016/j.bios.2017.02.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
In this paper, a novel and signal-on electrochemical biosensor based on Hg2+- triggered nicking endonuclease-assisted target recycling and hybridization chain reaction (HCR) amplification tactics was developed for sensitive and selective detection of Hg2+. The hairpin-shaped capture probe A (PA) contained a specific sequence which was recognized by nicking endonuclease (NEase). In the presence of Hg2+, probe B (PB) hybridized with PA to form stand-up duplex DNA strands via the Hg2+ mediated thymine-Hg2+-thymine (T-Hg2+-T) structure, which automatically triggered NEase to selectively digest duplex region from the recognition sites, spontaneously dissociating PB and Hg2+ and leaving the remnant initiators. The released PB and Hg2+ could be reused to initiate the next cycle and more initiators were generated. The long nicked double helices were formed through HCR event, which was triggered by the initiators and two hairpin-shaped signal probes labeled with methylene blue, resulting in a significant signal increase. Under optimum conditions, the resultant biosensor showed the high sensitivity and selectivity for the detection of Hg2+ in a linear range from 10 pM to 50nM (R2=0.9990), and a detection limit as low as 1.6 pM (S/N=3). Moreover, the proposed biosensor was successfully applied in the detection of Hg2+ in environment water samples with satisfactory results.
Collapse
Affiliation(s)
- Minqiang Hong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mengyan Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xueqin Xu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
25
|
Hu T, Wen W, Zhang X, Wang S. Nicking endonuclease-assisted recycling of target-aptamer complex for sensitive electrochemical detection of adenosine triphosphate. Analyst 2017; 141:1506-11. [PMID: 26815141 DOI: 10.1039/c5an02484f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An electrochemical biosensor was developed for the detection of adenosine triphosphate (ATP) based on target-induced conformation switching and nicking endonuclease (NEase)-assisted signal amplification. The electrochemical biosensor was constructed by base pairing and target recognition. After capture DNA hybridized with the gold electrode, a significant current of Methylene Blue (MB) was obtained by differential pulse voltammetry. In the presence of ATP, the hairpin DNA formed a G-quadruplex structure due to the specific recognition between hairpin DNA and ATP. Then the exposed part of the target-aptamer complex hybridized with the 3'-terminus of capture DNA to form a specific nicking site for Nb.BbvCI, which led to NEase-assisted target-aptamer complex recycling. The released target-aptamer complex hybridized with the remaining capture DNA. Nb.BbvCI-assisted target-aptamer complex recycling caused the continuous cleavage of capture DNA with MB at its 5'-terminus, resulting in release of a certain amount of DNA fragment labeled with MB. Then the current value decreased significantly. The reduced current showed a linear range from 10 nM to 1 μM with a limit of detection as low as 3.4 nM. Furthermore, the proposed strategy can be used for the detection of similar substances.
Collapse
Affiliation(s)
- Tianxing Hu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
26
|
CHEN T, TAN S, LI W, ZHU Y. Amplified Fluorescent Detection of Mercuric Ions by Conjugation of the ThT-induced G-Quadruplex Based Hybridization Chain Reaction. ANAL SCI 2017; 33:1333-1337. [DOI: 10.2116/analsci.33.1333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tianxiao CHEN
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Shuzhen TAN
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Wei LI
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Yuqing ZHU
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| |
Collapse
|
27
|
Wang W, Bao T, Zeng X, Xiong H, Wen W, Zhang X, Wang S. Ultrasensitive electrochemical DNA biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling. Biosens Bioelectron 2016; 91:183-189. [PMID: 28006687 DOI: 10.1016/j.bios.2016.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
In this work, a novel and ultrasensitive electrochemical biosensor was constructed for DNA detection based on functionalized gold clusters/graphene nanohybrids (AuNCs/GR nanobybrids) and exonuclease III (Exo III)-aided cascade target recycling. By utilizing the capacity of GR as universal template, different metal nanoclusters including AuNCs/GR nanobybrids and PtNCs/GR nanohybrids were synthesized through convenient ultrasonic method. Exo III-aided cascade recycling was initiated by target DNA, generating the final cleavage product (S2), which acted as a linkage between capture probe and the functionalized metal nanoclusters/GR conjugates in the construction of the biosensor. The AuNCs/GR-DNA-enzyme conjugates acted as interfaces of enzyme-catalyzed silver deposition reaction, achieving DNA detection ranging from 0.02 fM to 20 pM with a detection limit of 0.057 fM. In addition, PtNCs/GR-DNA conjugates presented peroxidase-like activity and the functionalized PtNCs/GR nanohybrids-based electrochemical biosensor also realized DNA detection by catalyzing the 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide (TMB-H2O2) system to produce electrochemical signal. This metal clusters/GR-based multiple-amplified electrochemical biosensor provided an universal method for DNA detection.
Collapse
Affiliation(s)
- Wei Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xi Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Huayu Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
28
|
Lv JJ, Yang ZH, Zhuo Y, Yuan R, Chai YQ. A novel aptasensor for thrombin detection based on alkaline phosphatase decorated ZnO/Pt nanoflowers as signal amplifiers. Analyst 2016; 140:8088-91. [PMID: 26548406 DOI: 10.1039/c5an01773d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To remedy the problems caused by the introduction of an additional electron mediator and realize signal amplification, a new strategy has been presented to construct an electrochemical aptasensor for thrombin detection based on the cascade electrocatalysis of alkaline phosphatase (ALP) and Pt nanoparticle (PtNP)-functionalized ZnO nanoflowers.
Collapse
Affiliation(s)
- J J Lv
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Z H Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Y Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - R Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Y Q Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
29
|
Huang YL, Gao ZF, Jia J, Luo HQ, Li NB. A label-free electrochemical sensor for detection of mercury(II) ions based on the direct growth of guanine nanowire. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:173-178. [PMID: 26835893 DOI: 10.1016/j.jhazmat.2016.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
A simple, sensitive and label-free electrochemical sensor is developed for detection of Hg(2+) based on the strong and stable T-Hg(2+)-T mismatches. In the presence of Mg(2+), the parallel G-quadruplex structures could be specifically recognized and precipitated in parallel conformation. Therefore, the guanine nanowire was generated on the electrode surface, triggering the electrochemical H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In this research, a new method of signal amplification for the quantitative detection of Hg(2+) was described based on the direct growth of guanine nanowire via guanine nanowire. Under optimum conditions, Hg(2+) was detected in the range of 100 pM-100 nM, and the detection limit is 33 pM. Compared to the traditional single G-quadruplex label unit, this electrochemical sensor showed high sensitivity and selectivity for detecting Hg(2+).
Collapse
Affiliation(s)
- Yan Li Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhong Feng Gao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing Jia
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
30
|
Wang Y, Zhang Y, Yan T, Fan D, Du B, Ma H, Wei Q. Ultrasensitive electrochemical aptasensor for the detection of thrombin based on dual signal amplification strategy of Au@GS and DNA-CoPd NPs conjugates. Biosens Bioelectron 2016; 80:640-646. [PMID: 26908183 DOI: 10.1016/j.bios.2016.02.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
In this work, an ultrasensitive electrochemical aptasensor for the detection of thrombin was developed based on Au nanoparticles decorated graphene sheet (Au@GS) and CoPd binary nanoparticles (CoPd NPs). A sulfydryl-labeled thrombin capture probe (Apt1) and a biotin-labeled thrombin reporter probe (Apt2) were designed to achieve a sandwich-type strategy. Au@GS was used as a sensing platform for the facile immobilization of Apt1 through Au-S bond, forming a sensing interface for thrombin. The specific recognition of thrombin induced the attachment of Apt2-CoPd NPs to the electrode. The labeled CoPd NPs showed good catalytic properties toward the reduction of H2O2, resulting in an amperometric signal. The amperometric response was correlated to the thrombin concentration in sample solutions. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) confirmed the successful fabrication of the aptasensor. A linear response to thrombin in the range of 0.01-2.00 ng mL(-1) with a low detection limit (5 pg mL(-1)) was achieved. The proposed aptasensor showed good selectivity, good reproducibility and acceptable stability. This proposed strategy may find many potential applications in the detection of other biomolecules.
Collapse
Affiliation(s)
- Yaoguang Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Tao Yan
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Dawei Fan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
31
|
Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg(2+) Using Hg(2+)-Triggered Exonuclease III-Assisted Target Recycling and Growth of G-Wires for Signal Amplification. Anal Chem 2016; 88:1385-90. [PMID: 26704253 DOI: 10.1021/acs.analchem.5b03972] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel signal-on and label-free resonance Rayleigh scattering (RRS) aptasensor was constructed for detection of Hg(2+) based on Hg(2+)-triggered Exonuclease III-assisted target recycling and growth of G-quadruplex nanowires (G-wires) for signal amplification. The hairpin DNA (H-DNA) was wisely designed with thymine-rich recognition termini and a G-quadruplex sequence in the loop and employed as a signal probe for specially recognizing trace Hg(2+) by a stable T-Hg(2+)-T structure, which automatically triggered Exonuclease III (Exo-III) digestion to recycle Hg(2+) and liberate the G-quadruplex sequence. The free G-quadruplex sequences were self-assembled into guanine nanowire (G-wire) superstructure in the presence of Mg(2+) and demonstrated by gel electrophoresis. The RRS intensity was dramatically amplified by the resultant G-wires, and the maximum RRS signal at 370 nm was linear with the logarithm of Hg(2+) concentration in the range of 50.0 pM to 500.0 nM (R = 0.9957). Selectivity experiments revealed that the as-prepared RRS sensor was specific for Hg(2+), even coexisting with high concentrations of other metal ions. This optical aptasensor was successfully applied to identify Hg(2+) in laboratory tap water and river water samples. With excellent sensitivity and selectivity, the proposed RRS aptasensor was potentially suitable for not only routine detection of Hg(2+) in environmental monitoring but also various target detection just by changing the recognition sequence of the H-DNA probe.
Collapse
Affiliation(s)
- Wang Ren
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China.,College of Chemistry and Pharmaceutical Engineering, Sichuan Provincial Academician (Expert) Workstation, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering , Zigong 643000, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China.,College of Chemistry and Pharmaceutical Engineering, Sichuan Provincial Academician (Expert) Workstation, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering , Zigong 643000, People's Republic of China
| | - Hong Guo Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Zhong Feng Gao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
32
|
Application Progress of Exonuclease-Assisted Signal Amplification Strategies in Biochemical Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60874-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|