1
|
Hu H, Xue H, Dong K, Li Y, Liu P, Wang H, Li L, Xiao X, Chen H. Strand displacement-enhanced CRISPR-Cas13a system for ultra-specific detection of RNA single nucleotide variation. Biosens Bioelectron 2025; 280:117445. [PMID: 40194350 DOI: 10.1016/j.bios.2025.117445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/25/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
RNA plays a critical role in biological systems, mediating genetic information transfer and regulating gene expression. However, RNA is susceptible to variations from endogenous and exogenous sources, with potentially profound biological consequences. The CRISPR-Cas13a system has emerged as a promising tool for RNA variation detection due to its cost-effectiveness, sensitivity, and user-friendly nature. Despite this, designing a simple, universal system with high discrimination factor (DF) for single-nucleotide variations remains a challenge. Here, we present the strand displacement-enhanced Cas13a single-nucleotide variation detection assay (SECND), a sensitive, universal, and easy-to-implement method with a high DF for RNA variations. Using SECND, we detected 5 types of single-nucleotide variations, achieving a maximum DF of 1083.2. We validated the assay's effectiveness on miRNA and SARS-CoV-2 genomic RNA simulants, incorporating a 4-way strand displacement mechanism to enhance detection limits to 10 pmol/L and 50 pmol/L, and to identify variations at frequencies as low as 0.01 % and 0.1 %. Additionally, we demonstrated SECND's utility in quantifying single-nucleotide variants of miR-200b and miR-200c in ovarian cancer and retinal glioma cells. This versatile tool not only advances RNA variation detection but also has significant implications for disease research, diagnostics, and viral classification, enhancing our understanding of the CRISPR-Cas13a system and its potential applications.
Collapse
Affiliation(s)
- Hao Hu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, Guangdong, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanwen Xue
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyuan Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Pei Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haiyun Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
2
|
Bai PA, Solovjev AM, Kubareva EA, Kurzeev SA, Sakharov IY. Chemiluminescent heterogeneous and homogeneous-heterogeneous assays for determination of nicking endonuclease activity. Anal Biochem 2025; 697:115719. [PMID: 39580137 DOI: 10.1016/j.ab.2024.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Homogeneous-heterogeneous and heterogeneous formats of a simple and sensitive assay for the determination of nicking endonuclease (NE) Nt.Bst9I activity was developed. The duplex of two 26-membered biotinylated DNA oligonucleotides was used as a substrate of Nt.Bst9I. To improve the assay sensitivity the chemiluminescent detection system based on the use of conjugate of streptavidin and polyperoxidase and enhanced chemiluminescence reaction was used. Both proposed assay formats were constructed using microtiter plates as a solid support, allowing for easy automation of NE analysis using ELISA equipment. Varying the acidity, concentration of KCl and NaCl, and temperature of the reaction medium, favorable conditions were found. Although both formats of the proposed assay can be applied to estimate Nt.Bst9I activity, the heterogenous assay was more sensitive than the homogeneous-heterogeneous one.
Collapse
Affiliation(s)
- Petr A Bai
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia
| | - Anton M Solovjev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, bldg. 40, Moscow, 119992, Russia
| | - Sergey A Kurzeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg. 3, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Qin Z, Fu J, Wang J, Deng S, Xiong F, Gao Q, Ye J, Zhang Y, Li S. An intelligent fluorescence sensing platform based on entropy-driven toehold-mediated strand displacement cycle reaction for point-of-care testing of miRNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125177. [PMID: 39316855 DOI: 10.1016/j.saa.2024.125177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND MicroRNA (miRNA) has gradually become an emerging biomarker for early diagnosis and prognosis of various diseases due to its specific gene expression and high stability. With the development of molecular diagnosis and point-of-care testing (POCT) technology, developing simple, fast, sensitive, efficient, and low-cost miRNA sensors is of great significance for clinical applications and emergency rapid diagnosis. At present, entropy-driven toehold mediated chain displacement reaction, as a promising enzyme free isothermal amplification technique, is an important tool for ultra-sensitive biosensing applications. RESULTS In this study, we used gold nanoparticles (AuNPs) as carriers and quenchers, modified them using self-assembled triple chain composite substrates AuNPs@A@B1/B2, and used dual reporter molecules for cascade cyclic amplification to amplify fluorescence signals, which proposed a fluorescent biosensor based on this reaction and build an intelligent fluorescence sensing platform for rapid detection of miRNA. We designed a highly specific self-programmable sensor using the acute ischemic stroke (AIS) biomarker miRNA-125a-5p as a sample, and achieved sensitive detection of miRNA in the range of 0.01 μM∼10 μ M under optimal conditions. It broke through the traditional detection limitations of weak signals and liberated the fluorescence detection environment. SIGNIFICANCE In summary, this creative miRNA biosensor combined with POCT has demonstrated extraordinary detection potential, broad application prospects in the early diagnosis and prognosis monitoring of AIS, provides a novel miRNA universal detection strategy for the fields of biological and life sciences.
Collapse
Affiliation(s)
- Ziyue Qin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311100, China
| | - Jie Fu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jiawang Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shouzhe Deng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fangying Xiong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qiya Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jing Ye
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311100, China
| | - Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311100, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Zhang J, Deng Z, Feng H, Shao B, Liu D. A multifunctional fluorescent sensor for Ag + and Hg 2+ detection in seawater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:22. [PMID: 38060083 DOI: 10.1007/s10661-023-12217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In order to detect Ag+ and Hg2+ in seawater, we explored a multifunctional fluorescence sensor. A multifunctional Ag+ and Hg2+ sensor was designed by using gold nanoparticles (AuNPs) as quenching agent, PicoGreen dye as fluorescent probe of base pairing double-stranded deoxyribonucleic acid (DNA), and combining the characteristics of Ag+ making C base mismatch and Hg2+ making T base mismatch. Meanwhile, the DNA logic gate was constructed by establishing logic circuit, truth table, and logic formula. The relevant performances of the sensor were investigated. The results revealed that the sensor can detect Ag+ in the range of 100 to 700 nM with R2 = 0.98129, and its detection limit is 16.88 nM (3σ/slope). The detection range of Hg2+is 100-900 nM with R2 = 0.99725, and the detection limit is 5.59 nM (3σ/slope). An AND-AND-NOR-AND molecular logic gate has been successfully designed. With the characteristics of high sensitivity, multifunction, and low cost, the recommended detection method has the potential to be applied to the detection of Ag+ and Hg2+ in seawater.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China
| | - Ziqi Deng
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China
| | - Hongbo Feng
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China
| | - Bingqian Shao
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China.
| | - Debing Liu
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China.
| |
Collapse
|
5
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Irkham I, Ibrahim AU, Pwavodi PC, Al-Turjman F, Hartati YW. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2240. [PMID: 36850837 PMCID: PMC9964617 DOI: 10.3390/s23042240] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The technological improvement in the field of physics, chemistry, electronics, nanotechnology, biology, and molecular biology has contributed to the development of various electrochemical biosensors with a broad range of applications in healthcare settings, food control and monitoring, and environmental monitoring. In the past, conventional biosensors that have employed bioreceptors, such as enzymes, antibodies, Nucleic Acid (NA), etc., and used different transduction methods such as optical, thermal, electrochemical, electrical and magnetic detection, have been developed. Yet, with all the progresses made so far, these biosensors are clouded with many challenges, such as interference with undesirable compound, low sensitivity, specificity, selectivity, and longer processing time. In order to address these challenges, there is high need for developing novel, fast, highly sensitive biosensors with high accuracy and specificity. Scientists explore these gaps by incorporating nanoparticles (NPs) and nanocomposites (NCs) to enhance the desired properties. Graphene nanostructures have emerged as one of the ideal materials for biosensing technology due to their excellent dispersity, ease of functionalization, physiochemical properties, optical properties, good electrical conductivity, etc. The Integration of the Internet of Medical Things (IoMT) in the development of biosensors has the potential to improve diagnosis and treatment of diseases through early diagnosis and on time monitoring. The outcome of this comprehensive review will be useful to understand the significant role of graphene-based electrochemical biosensor integrated with Artificial Intelligence AI and IoMT for clinical diagnostics. The review is further extended to cover open research issues and future aspects of biosensing technology for diagnosis and management of clinical diseases and performance evaluation based on Linear Range (LR) and Limit of Detection (LOD) within the ranges of Micromolar µM (10-6), Nanomolar nM (10-9), Picomolar pM (10-12), femtomolar fM (10-15), and attomolar aM (10-18).
Collapse
Affiliation(s)
- Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 10, Nicosia 99010, Turkey
| | - Pwadubashiyi Coston Pwavodi
- Department of Bioengineering/Biomedical Engineering, Faculty of Engineering, Cyprus International University, Haspolat, North Cyprus via Mersin 10, Nicosia 99010, Turkey
| | - Fadi Al-Turjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Kyrenia 99320, Turkey
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 10, Nicosia 99010, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
7
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Maatouk F, Maatouk M, Houcine B, Jaffrezic N. Electrochemical Detection of 6-Thioguanine and DNA Hybridization with Oligonucleotide Biosensors by Differential Pulse Voltammetry (DPV). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1975732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ferdaous Maatouk
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Mouna Maatouk
- Research Unit 03/UR/07 "Autoimmunity and Allergy", Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Barhoumi Houcine
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Nicole Jaffrezic
- Laboratory of Analytical Sciences, Doua Villeurbanne, Lyon, France
| |
Collapse
|
9
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
10
|
Zhang J, Xu H, Li C, Wang Y, Liu D, Zhao S. A label-free logic gate hairpin aptasensor for sensitive detection of ATP based on graphene oxide and PicoGreen dye. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00262-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
In this paper, a simple, enzyme-free, label-free fluorescence, high sensitivity logic gate hairpin aptasensor was developed for adenosine triphosphate (ATP) detection based on graphene oxide (GO) and PicoGreen dye.
Methods
Using single-strand deoxyribonucleic acid (DNA) and adenosine triphosphate (ATP) as input signal and fluorescence signal as output signal, if single-strand DNA (DNA-L), single-strand DNA (DNA-S), and ATP were present at the same time, one segment of DNA-L formed a hairpin ring with ATP, and the other segment of DNA-L formed a completely complementary hairpin stem with DNA-S. The hairpin DNA was detached from the GO surface, and PicoGreen dye was embedded into the hairpin stem, and the fluorescence signal was enhanced. The molecular logic gate was constructed through the establishment of logic histogram, logic circuit, truth table, and logic formula. The biosensor-related performances including sensitivity, selectivity, and linearity were investigated, respectively.
Results
We have successfully constructed a AND logic gate. The detection limit of ATP is 138.0 pmol/L (3σ/slope) with detection range of 50–500 nmol/L (R2 = 0.98951), and its sensitivity is 4.748 × 106–6.875 × 108 a.u. (mol/L)−1.
Conclusions
The logic gate hairpin aptamer sensor has the advantages of high sensitivity, low detection limit, and low cost, and can be successfully applied to the detection of adenosine triphosphate (ATP) in actual human urine samples.
Collapse
|
11
|
Wang S, Kang G, Cui F, Zhang Y. Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with Exonuclease III-assisted signal amplification for simultaneous detection of multiple DNA targets. Anal Chim Acta 2021; 1154:338346. [PMID: 33736804 DOI: 10.1016/j.aca.2021.338346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Sensitive and simultaneous detection of multiple biomarkers such as target DNA or proteins using biocompatible materials with good analysis performance remains an important challenge. Herein, we successfully developed a signal "off-on" highly sensitive multiplex detection platform based on the combination of dual-color graphene quantum dots (blue GQDs and green GQDs) modified DNA probes with carbon nanoparticles (CNPs), which is a cheap, effective nonfluorescent quencher to simultaneously quench the fluorescence of both GQDs-DNA probes. The Exo III-assisted sequence-independent target recycling and signal amplification strategy was integrated into this sensing platform, which endows it with high sensitivity towards the multiplex detection of targets DNA. The detection limits of 6.6 pM for HIV and 9.5 pM for HBV were achieved respectively, which is about 60-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. Our proposed multiplex detecting platform is advantageous in both respective and simultaneous detection of multiple targets and can also discriminate perfectly matched targets from mismatched targets in both PBS buffer and 1% human serum samples, demonstrating its potential to be a reliable strategy for highly sensitive simultaneous detection of multiple target genes in practical diagnosis applications.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China
| | - Guangjie Kang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China
| | - Fangli Cui
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China.
| |
Collapse
|
12
|
Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y. CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens Bioelectron 2020; 173:112821. [PMID: 33221510 DOI: 10.1016/j.bios.2020.112821] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Circulating tumor DNA (ctDNA) plays an important role in the early diagnosis and prognosis of several cancers and is a credible biomarker for predicting the response to therapy. Additionally, the fact that the strategy used to detect ctDNA is non-invasive also adds to the advantages of using ctDNA for predicting disease diagnosis and prognosis. However, low abundance in peripheral blood and the high background of wild-type DNA impair the precise and specific measurement of ctDNA. In this study, we developed a novel 3D GR/AuPtPd nanoflower sensing platform based on CRISPR/Cas9 cleavage-triggered entropy-driven strand displacement reaction (ESDR) for the effective detection of ctDNA. Low levels of ctDNA could be detected using this method as the ESDR amplification does require complicated operation procedures and stringent reaction conditions. By combining the advantages of the site-specific cleavage by "gene magic scissors," Cas9/sgRNA, with those of the rapid amplification kinetics of entropy-driven strand displacement, our method resulted in amplification efficiency as well as high specificity for discriminating single-nucleotide mismatches. The 3D GR/AuPtPd nanoflower-based electrochemical biosensor displayed high specificity and worthy performance in assays with human serum. Therefore, this pioneered method provides a new paradigm for efficient ctDNA detection and shows great potential for use in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Mei Chen
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Dongming Wu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Shihua Tu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Chaoyin Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - DeJie Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Ying Xu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
| |
Collapse
|
13
|
Hu K, Cheng J, Li J, Ye S, Yang H, Liu Y, Kong J. Perfluorosulfonic acid polymer based eATRP for ultrasensitive detection of CYFRA21-1 DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2827-2834. [PMID: 32930205 DOI: 10.1039/d0ay00328j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensitive detection of biomarker cytokeratin fragment antigen 21-1 (CYFRA21-1) is crucial for early diagnosis and screening of non-small cell lung cancer (NSCLC). In this work, an electrochemical biosensor based on Nafion-initiated eATRP has been built for ultrasensitive detection of CYFRA21-1 DNA for the first time. Specifically, peptide nucleic acid (PNA) probes are immobilized onto a gold electrode surface and then hybridized with target DNA to form PNA/DNA heteroduplexes for the subsequent attachment of Nafion by the identified carboxyl-Zr4+-phosphoric acid chemistry. Finally, polymer chains are obtained by linking the monomer of ferrocenylmethyl methacrylate to the PNA/MCH/DNA/Zr4+/Nafion probes via eATRP. Under optimized steady-state conditions, the sensor offers a wide current response for CYFRA21-1 DNA from 10-11 to 10-16 M with a detection limit of 6.42 × 10-17 M. The proposed method of using Nafion as the eATRP initiator exhibits high sensitivity, reproducibility and stability and is a promising strategy for early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jiamin Cheng
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jinge Li
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Shan Ye
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Huaixia Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Yanju Liu
- Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
14
|
Kim DM, Yoo SM. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: recent biotechnological advances and future perspectives. Crit Rev Biotechnol 2020; 40:787-803. [DOI: 10.1080/07388551.2020.1764485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection. Anal Bioanal Chem 2020; 412:3019-3027. [PMID: 32232523 DOI: 10.1007/s00216-020-02531-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
As a typical strand displacement-based DNA circuit, the catalytic hairpin assembly (CHA) has the potential to transduce and amplify signals for analytical applications, but little practice has been fulfilled in Luminex-based multiple microRNAs (miRNAs) detection. Here, we proposed a target-fueled CHA-based platform for sensitive and multiple miRNAs detection, by virtue of the multiplex characteristic of the Luminex xMAP platform. The cyclic use of target miRNA, which forms a substantial amount of H1-H2 duplexes, has amplified the fluorescent response to achieve sensitive sensing. Key experimental conditions including hairpin probe concentrations, reaction temperature, and concentration of SA-PE were optimized. Liver tumor-related miRNA-21, miRNA-122, and miRNA-222 could be simultaneously detected with LOD of 2 pM. Overall, the proposed method first combined CHA with the Luminex xMAP system to construct a sensitive sensing platform suitable for multiple miRNAs detection in real sample analysis, which could potentially be applied in biomedical research and clinical diagnosis. Graphical abstract.
Collapse
|
16
|
Electrochemical aptamer-based determination of protein tyrosine kinase-7 using toehold-mediated strand displacement amplification on gold nanoparticles and graphene oxide. Mikrochim Acta 2019; 186:720. [PMID: 31655906 DOI: 10.1007/s00604-019-3849-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
An electrochemical method is described for ultrasensitive determination of protein tyrosine kinase-7 (PTK7). It is based on (a) the use of positively charged gold nanoparticles (AuNPs) and negatively charged graphene oxide (GO), and (b) of toehold-mediated strand displacement amplification. A hairpin probe 2 (HP2) containing the sgc8 aptamer was used to modify a glassy carbon electrode (GCE). Its hairpin structure is opened in the presence of PTK7 to form the PTK7-HP2 complex. The exposed part of HP2 partly hybridizes with hairpin probe 1 (HP1) that was immobilizing on the AuNPs and GO modified GCE. On addition of the hairpin probe 3 that was labeled with the redox probe Methylene Blue (MB-HP3), toehold-mediated strand displacement occurs due to complementary hybridization of HP1 with MB-HP3. This causes the release of PTK7-HP2 into the solution and makes it available for the next reaction. Under optimal conditions, PTK7 can be quantified by voltammetry (typically performed at -0.18 V) with a detection limit of 1.8 fM. The assay possesses high selectivity for PTK7 due to the employment of the aptamer. It was successfully applied to the determination of PTK7 in the debris of malignant melanoma A375 cells. Graphical abstract Schematic representation of the enzyme-free electrochemical sensor for ultrasensitive determination of protein tyrosine kinase-7 (PTK7) based on the toehold-mediated strand displacement reaction amplification on gold nanoparticles and graphene oxide.
Collapse
|
17
|
Yun W, Wu H, Yang Z, Wang R, Wang C, Yang L, Tang Y. A dynamic, ultra-sensitive and "turn-on" strategy for fluorescent detection of uranyl based on DNAzyme and entropy-driven amplification initiated circular cleavage amplification. Anal Chim Acta 2019; 1068:104-110. [PMID: 31072470 DOI: 10.1016/j.aca.2019.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023]
Abstract
A uranyl detection strategy with ultra-sensitivity was developed based on entropy-driven amplification and DNAzyme circular cleavage amplification. The cleavage of UO22+-specific DNAzyme produces a DNA fragment to initiate the entropy-driven amplification. Two DNA sequences released from the entropy-driven amplification are partly complementary. They can form an entire enzyme strand (E-DNA) of Mg2+-specific DNAzyme. The formed E-DNA can circularly cleave FAM-labeled probes on gold nanoparticles (AuNPs), causing the leaving of FAM from AuNPs and recovery of fluorescent signal. A linear relationship was obtained in the range from 30 pM to 5 nM between fluorescence intensity and concentration of UO22+. The limit of detection was low to 13 pM. This method showed a promising future for practical application in real water samples.
Collapse
Affiliation(s)
- Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China; State Key Laboratory of Environment-Friendly Energy Material, Southwest University of Science and Technology, Mianyang 621010, PR China.
| | - Hong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zhehan Yang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Ruiqi Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Chongjun Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yongjian Tang
- State Key Laboratory of Environment-Friendly Energy Material, Southwest University of Science and Technology, Mianyang 621010, PR China
| |
Collapse
|
18
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
19
|
Zhang H, Song Z, Pan F, He F. A surface-confined DNA assembly enabled target recycling amplification for multiplexed electrochemical DNA detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
A Label-Free Fluorescent DNA Machine for Sensitive Cyclic Amplification Detection of ATP. MATERIALS 2018; 11:ma11122408. [PMID: 30501020 PMCID: PMC6316892 DOI: 10.3390/ma11122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
In this study, a target recycled amplification, background signal suppression, label-free fluorescent, enzyme-free deoxyribonucleic acid (DNA) machine was developed for the detection of adenosine triphosphate (ATP) in human urine. ATP and DNA fuel strands (FS) were found to trigger the operation of the DNA machine and lead to the cyclic multiplexing of ATP and the release of single stranded (SS) DNA. Double-stranded DNA (dsDNA) was formed on graphene oxide (GO) from the combination of SS DNA and complementary strands (CS′). These double strands then detached from the surface of the GO and in the process interacted with PicoGreen dye resulting in amplifying fluorescence intensity. The results revealed that the detection range of the DNA machine is from 100 to 600 nM (R2 = 0.99108) with a limit of detection (LOD) of 127.9 pM. A DNA machine circuit and AND-NOT-AND-OR logic gates were successfully constructed, and the strategy was used to detect ATP in human urine. With the advantage of target recycling amplification and GO suppressing background signal without fluorescent label and enzyme, this developed strategy has great potential for sensitive detection of different proteins and small molecules.
Collapse
|
21
|
Zhang J, Yang C, Niu C, Liu C, Cai X, Du J, Chen Y. A Label-Free Fluorescent AND Logic Gate Aptasensor for Sensitive ATP Detection. SENSORS 2018; 18:s18103281. [PMID: 30274300 PMCID: PMC6210427 DOI: 10.3390/s18103281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
In this study, a label-free fluorescent, enzyme-free, simple, highly sensitive AND logic gate aptasensor was developed for the detection of adenosine triphosphate (ATP). Double-stranded deoxyribonucleic acid (DNA) with cohesive ends was attached to graphene oxide (GO) to form an aptasensor probe. ATP and single-stranded DNA were used as input signals. Fluorescence intensity of PicoGreen dye was used as an output signal. The biosensor-related performances, including the logic gate construction, reaction time, linearity, sensitivity, and specificity, were investigated and the results showed that an AND logic gate was successfully constructed. The ATP detection range was found to be 20 to 400 nM (R² = 0.9943) with limit of detection (LOD) of 142.6 pM, and the sensitivity range was 1.846 × 10⁶ to 2.988 × 10⁶ M-1. This method for the detection of ATP has the characteristics of being simple, low cost, and highly sensitive.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chunzheng Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chaoqun Niu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chen Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xuepin Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jie Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
22
|
Zhang J, Zhang S, Niu C, Liu C, Du J, Chen Y. A Label-Free Fluorescent DNA Calculator Based on Gold Nanoparticles for Sensitive Detection of ATP. Molecules 2018; 23:molecules23102494. [PMID: 30274237 PMCID: PMC6222419 DOI: 10.3390/molecules23102494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022] Open
Abstract
Herein we described a deoxyribonucleic acid (DNA) calculator for sensitive detection of the determination of adenosine triphosphate (ATP) using gold nanoparticles (GNP) and PicoGreen fluorescence dye as signal transducer, and ATP and single-stranded DNA (DNA-M′) as activators. The calculator-related performances including linearity, reaction time, logic gate, and selectivity were investigated, respectively. The results revealed that this oligonucleotide sensor was highly sensitive and selective. The detection range was 50–500 nmol/L (R2 = 0.99391) and the detection limit was 46.5 nmol/L. The AND DNA calculator was successfully used for the ATP detection in human urine. Compared with other methods, this DNA calculator has the characteristics of being label-free, non-enzymic, simple, and highly sensitive.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Shizhi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chaoqun Niu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chen Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jie Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, College of Materials and Chemical Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
23
|
Liu Z, Wang Y, Wang X, Liu W, Dai Y, Yu P, Liao Z, Ping Y, Tao Z. Toehold integrated molecular beacon system for a versatile non-enzymatic application. Anal Bioanal Chem 2018; 410:7285-7293. [PMID: 30218124 DOI: 10.1007/s00216-018-1340-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 01/16/2023]
Abstract
A molecular beacon (MB) is an oligonucleotide hybridization probe with a hairpin-shaped structure that leads to specific and instantaneous nucleic acid hybridization, enabling a variety of applications. However, integration of additional module sequences interferes with the performance of MBs and increases the complexity of sequence design. Herein, we develop and characterize a toehold integrated molecular beacon (ToMB) strategy for nucleic acid hybridization, where the reaction rate can be flexibly regulated by a target-induced MB conformational switch. Using this basic mechanism, the ToMB is capable of identifying nucleic acids with high specificity and a wider linearity range compared with the conventional molecular beacon system. We further applied the ToMB to the construction of a hybridization chain reaction system and a basic OR logic gate VJHto explore its programmability and versatility. Our results strongly suggest that the novel ToMB can act as a powerful nano-module to construct universal and multifunctional biosensors or molecular computations. Graphical abstract Molecular beacon is employed as a flexible and switchable spacer to control the toehold-mediated strand displacement reaction.
Collapse
Affiliation(s)
- Zhenping Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiyun Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuchu Wang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yibei Dai
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoping Liao
- Department of Transfusion, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Ping
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Zhang XF, Xu HM, Han L, Li NB, Luo HQ. A Thioflavin T-induced G-Quadruplex Fluorescent Biosensor for Target DNA Detection. ANAL SCI 2018; 34:149-153. [PMID: 29434099 DOI: 10.2116/analsci.34.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The detection of disease-related DNA is of great significance for early and accurate diagnosis and therapy. In this work, we successfully achieved the sensitive detection of target DNA based on a thioflavin T (ThT)-induced G-quadruplex fluorescent biosensor. ThT, a water-soluble fluorescent dye, can induce G-rich sequences to form G-quadruplexes and obtain an obviously enhanced fluorescence. In this work, it was employed to construct a biosensor for the detection of HIV. When the target HIV existed, the hairpin DNA probes would be opened in succession and release the completely exposed G-rich sequence to combine with ThT. The simple and rapid biosensor performed satisfactory selectivity; it also exhibited sensitivity with a detection limit of 2.4 nM. With good performance in human serum, we believe that this optical biosensor has the potential to be applied to the practical detection of target DNA.
Collapse
Affiliation(s)
- Xiao Fang Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University
| | - Hong Mei Xu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University
| |
Collapse
|
25
|
Chen S, Li Y, Fu Z, Zeng Y, He L, Zhou K, Ao X, Liu S, Zou L. Label-free and enzyme-free sensitive fluorescent method for detection of viable Escherichia coli O157:H7. Anal Biochem 2018; 556:145-151. [PMID: 29990465 DOI: 10.1016/j.ab.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
We have developed a label-free, enzyme-free, modification-free and DNA extraction-free fluorescent aptasensing (LEFA) method for detection of E. coli O157:H7 based on G-quadruplex formation using two ingeniously designed hairpin probes (GHP1 and GHP2). In the presence of E. coli O157:H7, it released the single stranded initiation sequence (IS) resulting in the toehold strand displacement between GHP1 and GHP2, which in turn led to the cyclic reuse of the production of DNA assemblies with numerous G-quadruplex structures and initiation sequences. Then these G-quadruplex structures can be recognized quickly by N-methyl mesoporphyrin IX (NMM) resulting in significantly enhanced fluorescence. The LEFA method was successfully implemented for detecting E. coli O157:H7 with a detection limit of 66 CFU/mL in pure culture, 10 CFU/mL and 1 CFU/mL after pre-incubation of the milk and tap water for 4 and 8 h, respectively. Moreover, the strategy could distinguish viable E. coli O157:H7 from dead E. coli O157:H7 and other species of pathogen cells. Furthermore, the whole process of the strategy is accomplished within 100 min. The results indicated that the approach may be used to effectively control potential microbial hazards in human health, food safety, and animal husbandry.
Collapse
Affiliation(s)
- Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yongsheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450000, PR China
| | - Zhenzhen Fu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yue Zeng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Kang Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
26
|
Chen J, Shang B, Zhang H, Zhu Z, Chen L, Wang H, Ran F, Chen Q, Chen J. Enzyme-free ultrasensitive fluorescence detection of epithelial cell adhesion molecules based on a toehold-aided DNA recycling amplification strategy. RSC Adv 2018; 8:14798-14805. [PMID: 35541343 PMCID: PMC9079946 DOI: 10.1039/c8ra01362d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Epithelial cell adhesion molecules (EpCAMs) play a significant role in tumorigenesis and tumor development. EpCAMs are considered to be tumor signaling molecules for cancer diagnosis, prognosis and therapy. Herein, an enzyme-free and highly sensitive fluorescent biosensor, with a combined aptamer-based EpCAM recognition and toehold-aided DNA recycling amplification strategy, was developed for sensitive and specific fluorescence detection of EpCAMs. Due to highly specific binding between EpCAMs and corresponding aptamers, strand a, which is released from the complex of aptamer/strand a in the presence of EpCAMs which is bound to the corresponding aptamer, triggered the toehold-mediated strand displacement process. An amplified fluorescent signal was achieved by recycling strand a for ultrasensitive EpCAM detection with a detection limit as low as 0.1 ng mL-1, which was comparable or superior to that of reported immunoassays and biosensor strategies. In addition, high selectivity towards EpCAMs was exhibited when other proteins were selected as control proteins. Finally, this strategy was successfully used for the ultrasensitive fluorescence detection of EpCAMs in human serum samples with satisfactory results. Importantly, the present strategy may be also expanded for the detection of other targets using the corresponding aptamers.
Collapse
Affiliation(s)
- Jishun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Bing Shang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hua Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Zhengpeng Zhu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Long Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hongmei Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Fengying Ran
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Jun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| |
Collapse
|
27
|
Hong F, Chen X, Cao Y, Dong Y, Wu D, Hu F, Gan N. Enzyme- and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification. Biosens Bioelectron 2018; 112:202-208. [PMID: 29709830 DOI: 10.1016/j.bios.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/20/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
Abstract
It is critically important to detect antibiotic residues for monitoring food safety. In this study, an enzyme- and label-free electrochemical aptasensor for antibiotics, with kanamycin (Kana) as a typical analyte, was developed based on a double stir bar-assisted toehold-mediated strand displacement reaction (dSB-TMSDR) for dual-signal amplification. First, we modified two gold electrodes (E-1 and E-2) with different DNA probes (S1/S2 hybrid probe in E-1 and DNA fuel strand S3 in E-2). In the presence of Kana, an S1/S2 probe can be disassembled from E-1 to form an S2/Kana complex in supernatant. The S2/Kana could react with S3 on E-2 to form S2/S3 hybrid and release Kana through TMSDR. After then, the target recycling was triggered. Subsequently, the formed S2/S3 hybrid can also trigger a hybridization chain reaction (HCR). Consequently, the dual-signal amplification strategy was established, which resulted in many long dsDNA chains on E-2. The chains can associate with methylene blue (MB) as redox probes to produce a current response for the quantification of Kana. The assay exhibited high sensitivity and specificity with a detection limit at 16 fM Kana due to the dual-signal amplification. The double stir bars system can both increase phase separation and prevent leakage of DNA fuel to reduce background interference. Moreover, it allows flexible sequence design of the TMSDR probes. The assay was successfully employed to detect Kana residues in food and showed potential application value in food safety detection.
Collapse
Affiliation(s)
- Feng Hong
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Xixue Chen
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| | - Youren Dong
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Dazhen Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
28
|
Zhou J, Meng L, Ye W, Wang Q, Geng S, Sun C. A sensitive detection assay based on signal amplification technology for Alzheimer's disease's early biomarker in exosome. Anal Chim Acta 2018; 1022:124-130. [PMID: 29729732 DOI: 10.1016/j.aca.2018.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) considered as the third health "killer" has seriously threatened the health of the elderly. However, the modern diagnostic strategies of AD present several disadvantages: the low accuracy and specificity resulting in some false-negative diagnoses, and the poor sensitivity leading to a delayed treatment. In view of this situation, a enzyme-free and target-triggered signal amplification strategy, based on graphene oxide (GO) and entropy-driven strand displacement reaction (ESDR) principle, was proposed. In this strategy, when the hairpin structure probes (H)specially binds with beta-amyloid-(1-42) oligomers (Aβ42 oligomers), it's structure will be opened, causing the bases complementary to FAM-labeled replacement probes R (R1 and R2) exposed. At this time, R1 and R2 will hybridize with H, resulting in the bound Aβ42 oligomers released. The released Aβ42 oligomers would participate in the next cycle reaction, making the signal amplified. As a quencher, GO could absorb the free single-stranded DNA R1 and R2 and quench their fluorescence; however, the DNA duplex still exists free and keeps its signal-on. Through the detection of Aβ42 oligomers in exosomes, this ultrasensitive detection method with the advantages of low limit of detection (LOD, 20 pM), great accuracy, excellent precision and convenience provides an excellent prospect for AD's early diagnosis.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China.
| | - Lingchang Meng
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Weiran Ye
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qiaolei Wang
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Shizhen Geng
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Chong Sun
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
29
|
Ultrasensitive amperometric aptasensor for the epithelial cell adhesion molecule by using target-driven toehold-mediated DNA recycling amplification. Mikrochim Acta 2018; 185:202. [PMID: 29594643 DOI: 10.1007/s00604-018-2739-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/20/2018] [Indexed: 01/29/2023]
Abstract
An amperometric aptasensor is reported for the electrochemical determination of the epithelial cell adhesion molecule (EpCAM). It is based on a combination of EpCAM-driven toehold-mediated DNA recycling amplification, the specific recognition of EpCAM aptamer, and its binding to EpCAM. Hairpin probe 1 (Hp1) with a toehold region was modified with a 5'-thiol group (5'-SH) and self-assembled onto the surface of a gold electrode. Upon addition of EpCAM, the probe A (a 15-mer) is liberated from the aptamer/probe A complex and then hybridizes with the toehold domain of Hp1. This results in the exposure of another toehold for further hybridizing with hairpin probe 2 (Hp2) to displace probe A in the presence of Hp2 that was labeled with the electrochemical probe Methylene Blue (MB). Subsequently, liberated probe A is hybridized again with another Hp1 to start the next round of DNA recycling amplification by reusing probe A. This leads to the formation of plenty of MB-labeled DNA strands on the electrode surface and generates an amplified current. This 1:N probe-response amplification results in ultrasensitive and specific detection of EpCAM, with a 20 pg·mL-1 detection limit. The electrode is highly stable and regenerable. It was successfully applied to the determination of EpCAM in spiked human serum, urine and saliva, and thus provides a promising tool for early clinical diagnosis. Graphical abstract Schematic illustration of the electrochemical detection for EpCAM. The method is based on aptamer-based recognition and EpCAM-driven toehold-mediated DNA recycling amplification. Hp1: Hairpin probe 1; Hp2: Hairpin probe 2; MB: Methylene blue; MCH: 6-Mercapto-1-hexanol; EpCAM: Epithelial cell adhesion molecule.
Collapse
|
30
|
Ling Y, Zhang XF, Chen XH, Liu L, Wang XH, Wang DS, Li NB, Luo HQ. A dual-cycling biosensor for target DNA detection based on the toehold-mediated strand displacement reaction and exonuclease III assisted amplification. NEW J CHEM 2018. [DOI: 10.1039/c7nj05191c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Based on the toehold-mediated strand displacement reaction and exonuclease III assisted amplification, a sensitive and simple target DNA biosensor was established.
Collapse
Affiliation(s)
- Yu Ling
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Xiao Fang Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Xiao Hui Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Li Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Xiao Hu Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - De Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)
- School of Life Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
31
|
Shuai HL, Wu X, Huang KJ, Zhai ZB. Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction. Biosens Bioelectron 2017; 94:616-625. [DOI: 10.1016/j.bios.2017.03.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 02/03/2023]
|
32
|
Ultrasensitive chemiluminescence assay for the lung cancer biomarker cytokeratin 21-1 via a dual amplification scheme based on the use of encoded gold nanoparticles and a toehold-mediated strand displacement reaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2430-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Cascade toehold-mediated strand displacement along with non-enzymatic target recycling amplification for the electrochemical determination of the HIV-1 related gene. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2368-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
SDR-ELISA: Ultrasensitive and high-throughput nucleic acid detection based on antibody-like DNA nanostructure. Biosens Bioelectron 2017; 90:481-486. [DOI: 10.1016/j.bios.2016.10.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
|
35
|
Schneider A, Eber FJ, Wenz NL, Altintoprak K, Jeske H, Eiben S, Wege C. Dynamic DNA-controlled "stop-and-go" assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes. NANOSCALE 2016; 8:19853-19866. [PMID: 27878174 DOI: 10.1039/c6nr03897b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA-based approach allows external control over the self-assembly process of tobacco mosaic virus (TMV)-like ribonucleoprotein nanotubes: their growth from viral coat protein (CP) subunits on five distinct RNA scaffolds containing the TMV origin of assembly (OAs) could be temporarily blocked by a stopper DNA oligomer hybridized downstream (3') of the OAs. At two upstream (5') sites tested, simple hybridization was not sufficient for stable stalling, which correlates with previous findings on a non-symmetric assembly of TMV. The growth of DNA-arrested particles could be restarted efficiently by displacement of the stopper via its toehold by using a release DNA oligomer, even after storage for twelve days. This novel strategy for growing proteinaceous tubes under tight kinetic and spatial control combines RNA guidance and its site-specific but reversible interruption by DNA blocking elements. As three of the RNA scaffolds contained long heterologous non-TMV sequence portions that included the stopping sites, this method is applicable to all RNAs amenable to TMV CP encapsidation, albeit with variable efficiency most likely depending on the scaffolds' secondary structures. The use of two distinct, selectively addressable CP variants during the serial assembly stages finally enabled an externally configured fabrication of nanotubes with highly defined subdomains. The "stop-and-go" strategy thus might pave the way towards production routines of TMV-like particles with variable aspect ratios from a single RNA scaffold, and of nanotubes with two or even more adjacent protein domains of tightly pre-defined lengths.
Collapse
Affiliation(s)
- Angela Schneider
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Fabian J Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Nana L Wenz
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| |
Collapse
|
36
|
Zhang Y, Sun Z, Tang L, Zhang H, Zhang GJ. Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1923-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Kumar M, Ghosh S, Nayak S, Das A. Recent advances in biosensor based diagnosis of urinary tract infection. Biosens Bioelectron 2016; 80:497-510. [DOI: 10.1016/j.bios.2016.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
|
38
|
Zhang P, Liu H, Ma S, Men S, Li Q, Yang X, Wang H, Zhang A. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA. Biosens Bioelectron 2016; 80:538-542. [PMID: 26894984 DOI: 10.1016/j.bios.2016.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 11/30/2022]
Abstract
The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Hui Liu
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Suzhen Ma
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Shuai Men
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Qingzhou Li
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Xin Yang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Hongning Wang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China.
| | - Anyun Zhang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| |
Collapse
|
39
|
Guo Y, Xu L, Hong S, Sun Q, Yao W, Pei R. Label-free DNA-based biosensors using structure-selective light-up dyes. Analyst 2016; 141:6481-6489. [DOI: 10.1039/c6an01958g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Label-free biosensors (LFBs) have demonstrated great potential in cost-effective applications. This review collected the latest reported works which employed structure-selective nucleic acid dyes for the development of DNA-based LFBs.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Lijun Xu
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Shanni Hong
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Qingqing Sun
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
40
|
Sun AL, Zhang YF, Sun GP, Wang XN, Tang D. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron 2015; 89:659-665. [PMID: 26707001 DOI: 10.1016/j.bios.2015.12.032] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/06/2015] [Accepted: 12/14/2015] [Indexed: 12/15/2022]
Abstract
A simple and feasible homogeneous electrochemical sensing protocol was developed for the detection of ochratoxin A (OTA) in foodstuff on the immobilization-free aptamer-graphene oxide nanosheets coupling with DNase I-based cycling signal amplification. Thionine-labeled OTA aptamers were attached to the surface of nanosheets because of the strong noncovalent binding of graphene oxide nanosheets with nucleobases and aromatic compounds. The electronic signal was acquired via negatively charged screen-printed carbon electrode (SPCE) toward free thionine molecules. Initially, the formed thionine-aptamer/graphene nanocomposites were suspended in the detection solution and far away from the electrode, thereby resulting in a weak electronic signal. Upon addition of target OTA, the analyte reacted with the aptamer and caused the dissociation of thionine-aptamer from the graphene oxide nanosheets. The newly formed thionine-aptamer/OTA could be readily cleaved by DNase I and released target OTA, which could retrigger thionine-aptamer/graphene nanocomposites with target recycling to generate numerous free thionine molecules. Free thionine molecules were captured by negatively charged SPCE, each of which could produce an electrochemical signal within the applied potentials. Under optimal conditions, graphene-based aptasensing platform could exhibit good electrochemical responses for the detection of OTA at a concentration as low as 5.6pg/mL. The reproducibility, precision and selectivity of the system were acceptable. Importantly, the method accuracy was comparable with commercialized OTA ELISA kit when using for quantitative monitoring of contaminated wheat samples.
Collapse
Affiliation(s)
- Ai-Li Sun
- Department of Chemistry and Chemical Engineering, Institute of Biotechnology, Xinxiang University, Xinxiang 453000, PR China.
| | - Yan-Fang Zhang
- Department of Chemistry and Chemical Engineering, Institute of Biotechnology, Xinxiang University, Xinxiang 453000, PR China; Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Guo-Peng Sun
- Department of Chemistry and Chemical Engineering, Institute of Biotechnology, Xinxiang University, Xinxiang 453000, PR China; Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Xuan-Nian Wang
- Department of Chemistry and Chemical Engineering, Institute of Biotechnology, Xinxiang University, Xinxiang 453000, PR China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| |
Collapse
|