1
|
Hijji YM, Rajan R, Ahmed H, Nasrallah G, Abebe F. Glucosamine Schiff bases as fluorescent sensors for recognition of Al +3 and Zn +2 ions. Carbohydr Res 2025; 553:109507. [PMID: 40339380 DOI: 10.1016/j.carres.2025.109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Glucosamine salicylidene (GAS) and Glucosamine-4-nitrosalicylidene (GANS) were synthesized using microwave and investigated as water-soluble chemosensors for aluminum and zinc ions. UV-vis, fluorescence titration, binding constant, and jobs plot experiments showed high selectivity and sensitivity towards aluminum and zinc ions. The limit of detection for Al(III) and Zn(II) ions was 0.19 μM and 0.25 μM, respectively. The sensor demonstrated practical applications in solid-state surface and fluorescence intracellular imaging of ions in the HEK-293 cell lines.
Collapse
Affiliation(s)
- Yousef M Hijji
- Department of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, Doha, 2713, Qatar; Department of Chemistry, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD, 21251, USA; Department of Chemistry, Howard University, 626 College Street NW, Washington DC, 20059, USA.
| | - Rajeesha Rajan
- Department of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, Doha, 2713, Qatar
| | - Hira Ahmed
- Department of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, Doha, 2713, Qatar
| | - Gheyath Nasrallah
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Fasil Abebe
- Department of Chemistry, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD, 21251, USA.
| |
Collapse
|
2
|
You B, Li L, Li Z, Wang W, Yang Y, Cheng W, Luo X, Qian Y. Imaging of zinc ions across diverse biological samples with a quinoline-based tris(2-pyridylmethyl)amine fluorescent probe. Talanta 2025; 284:127267. [PMID: 39586214 DOI: 10.1016/j.talanta.2024.127267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Zinc ions (Zn2⁺) is actively involved in diverse biological processes. Therefore, the precise detection of Zn2⁺ ion is an important object of increasing investigation. Although numerous fluorescent zinc ion detection probes have been developed, simple, biocompatible, and sensitive probes are still urgently needed. Herein, we reported two novel fluorescent probes, ZnTP1 and ZnTP2, by incorporating a quinoline fluorophore into a membrane-permeable zinc chelator tris(2-pyridylmethyl)amine. ZnTP1 exhibited a significant fluorescence enhancement in the presence of zinc ions through chelation-enhanced fluorescence (CHEF) processes, whereas probe ZnTP2 did not show any significant change in fluorescence due to the insertion of the carbonyl group. Further investigations revealed that ZnTP1 can effectively penetrate cell membranes and detect Zn2+ with high sensitivity in diverse biological samples, including living cells, plant tissues, and animal model zebrafish. This work suggests that ZnTP1 as a simple and efficient chemical probe has great potential for zinc ions detection in various biological contexts, thus providing a new tool for probing zinc ions in biosystems.
Collapse
Affiliation(s)
- Binghui You
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ling Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Zheng Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Wei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yanli Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Wei Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China; Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
3
|
Khairy GM, Amin AS, Moalla SMN, Medhat A, Hassan N. Sensitive ratiometric sensor for Al(III) detection in water samples using luminescence or eye-vision. ANAL SCI 2023:10.1007/s44211-023-00340-6. [PMID: 37071307 PMCID: PMC10359221 DOI: 10.1007/s44211-023-00340-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023]
Abstract
A facile, quick, and sensitive ratiometric luminescence sensor is designed for detection aluminum ions in water samples using luminescence or eye-vision. This approach relies on the emission change of the europium(III) complex with 3-(2-naphthoyl)-1,1,1,-trifluoro acetone (3-NTA) after interaction with various concentration of aluminum ions. The addition of aluminum ions suppressed the Eu(III) emission at 615 nm under 333 nm excitation, while simultaneously enhancing the ligand emission at 480 nm. Optimum detection was obtained in methanol. The quantification of aluminum ions using ratiometric method was determined by plotting the luminescence ratio (F480nm/F615nm) versus aluminum ions concentration. The calibration plot was obtained within the range 0.1-100 µM with LOD = 0.27 µM. Additionally, the concentration of aluminum ions can be estimated semi-quantitatively by visually observing the luminescence colour change of the probe from red to light green and then to dark green after being excited by a UV lamp with 365 nm. As far as we are aware, this is the first luminescent lanthanide complex-based ratiometric probe for the detection of aluminum ions. The probe showed remarkable aluminum ions selectivity relative to that of other metal ions. The suggested sensor was used effectively to identify aluminum ions in water samples with good results.
Collapse
Affiliation(s)
- Gasser M Khairy
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Sayed M N Moalla
- Chemistry Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Ayman Medhat
- Chemistry Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Nader Hassan
- Chemistry Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| |
Collapse
|
4
|
Li Z, Peng X, Chen Y, Xiao L, Duan X. A selective and turn-on acylhydrazone-based fluorescent probe for Al3+ and its practical application. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
A Fluorescent Probe Based on the Hydrazone Schiff Base for the Detection of Zn 2+ and its Application on Test Strips. J Fluoresc 2023; 33:1183-1189. [PMID: 36622493 DOI: 10.1007/s10895-022-03140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
A novel fluorescent probe SHK for Zn2+ detection was designed based on the hydrazone Schiff base, successfully synthesized by Suzuki coupling and condensation reactions. The probe SHK in DMSO/H2O showed extremely weak fluorescence. However, the solution exhibited an intensive yellow-green emission with the introduction of Zn2+. In contrast, negligible fluorescence change was observed when other metal ions were added, suggesting a high selectivity of SHK for Zn2+ detection. The Job's Plot analysis revealed that a 1:1 stoichiometric adduct SHK-Zn2+ formed during the Zn2+ sensing. The binding constant of the complex was determined to be 184 M- 1, and the detection limit for Zn2+ was calculated to be 112 µM. Moreover, the probe SHK achieved selective fluorescence sensing for Zn2+ on test strips, which guaranteed its practical application prospect.
Collapse
|
6
|
Liu X, Liu J, Jiang J, Wang Y. A Ratiometric Fluorescent Probe 4-(benzothiazol-2-yl)-2-hydroxy Benzaldehyde for Detecting Malononitrile: Theoretical Investigation on the ICT and ESIPT Mechanism. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Cai XM, Zhang X, Lin Y, Tang Z, Huang S. Two distinctly fluorescent BioAIEgens originated from the combination of natural rosin and chromophoric triphenylamine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Two Schiff-base fluorescent-colorimetric probes based on naphthaldehyde and aminobenzoic acid for selective detection of Al3+, Fe3+ and Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Theoretical investigation and reconsideration of intramolecular proton-transfer-induced the twisted charge-transfer for the fluorescent sensor to detect the aluminum ion. Struct Chem 2022. [DOI: 10.1007/s11224-022-01941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Wang M, Niu X, Cao R, Zhang M, Xu H, Hao F, Liu Z. An IMPLICATION-logic-based fluorescent probe for sequential detection of Cu 2+ and phosphates in living cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj04992e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this manuscript, we developed an IMPLICATION logic fluorescent probe, HL, for the sequential detection of Cu2+ and phosphate anions in extracellular and intracellular environments.
Collapse
Affiliation(s)
- Meixiang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Xiaoxiao Niu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Rui Cao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
11
|
Selective smartphone aided colorimetric detection of Hg(II) in an aqueous solution via metal ion-induced keto-enol tautomerism–Spectroscopic and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Huang JD, Cheng S, Li W, Lin F, Ma H, Dong B. Fluorescence enhancement mechanism of thymolphthalein-based probe by coordination interaction with zinc ion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Kumar G, Singh I, Goel R, Paul K, Luxami V. Dual-channel ratiometric recognition of Al 3+ and F - ions through an ESIPT-ESICT signalling mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119112. [PMID: 33189981 DOI: 10.1016/j.saa.2020.119112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
An optical probe 1 has been synthesized comprising naphthalimide unit conjugated with Schiff base, exhibiting excited state intramolecular proton transfer and intramolecular charge transfer as a potential sensor for Al3+ and F- ions using standard spectroscopic techniques. The probe 1 exhibited local and charge-transfer excitation at 340 nm and 460 nm, respectively. On excitation at 460 nm, probe 1 displayed two emission bands at 510 nm and 610 nm, accompanied by Stokes' shift of 50 nm and 150 nm, respectively. The solvatochromic effect and theoretical calculation depicted that the representative emissions resulted from the ESICT/ESIPT phenomenon. Upon addition of Al3+ ions, the charge transfer excitation at 460 nm was enhanced ratiometrically to local excitation at 340 nm and showed a color change from orange to yellow. Similarily, probe 1.Al3+ displayed emission enhancement at 540 nm in H2O/CH3CN (1:9; v/v) and showed a color change from yellow to blue-green emission. Following the detection of Al3+ ions, hydrolysis of probe 1 to its reacting precursors was observed. The detection of Al3+ ions was also demonstrated in surfactant-containing water. The limit of detection (LOD) of probe 1 (H2O/CH3CN (1:9; v/v)) towards Al3+ ions was measured to be 3.2 × 10-8 M. The probe 1 displayed a ratiometric absorption response towards F- ions with a new peak at 570 nm and showed a color change from orange to purple. The probe 1.F- displayed a decrease in emission at 635 nm. The LOD of probe 1 (CH3CN) towards F- ions was measured to be 7.5 × 10-7 M.
Collapse
Affiliation(s)
- Gulshan Kumar
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Richa Goel
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
14
|
|
15
|
Li Z, Wang J, Xiao L, Wang J, Yan H. A dual-response fluorescent probe for Al3+ and Zn2+ in aqueous medium based on benzothiazole and its application in living cells. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Tümay SO, Şenocak A, Mermer A. A “turn-on” small molecule fluorescent sensor for the determination of Al 3+ ion in real samples: theoretical calculations, and photophysical and electrochemical properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03462f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fluorescence sensing properties of a naphthalene-based acetohydrazide (3) were investigated. A highly selective “turn-on” response was obtained towards Al3+ ions, and this was used for real sample analysis and development of paper test strips.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Arif Mermer
- University of Health Sciences Turkey, Experimental Medicine Research and Application Center, Uskudar, 34662, Istanbul, Turkey
| |
Collapse
|
17
|
Shi X, Meng HM, Geng X, Qu L, Li Z. DNAzyme-Metal-Organic Framework Two-Photon Nanoprobe for In situ Monitoring of Apoptosis-Associated Zn 2+ in Living Cells and Tissues. ACS Sens 2020; 5:3150-3157. [PMID: 32962339 DOI: 10.1021/acssensors.0c01271] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monitoring Zn2+ in living cells is critical for fully elucidating the biological process of apoptosis. However, the quantitative intracellular sensing of Zn2+ using DNAzyme remains challenging because of issues related to penetration of the signal through tissue, targeted cellular uptake and activation, and susceptibility toward enzymatic degradation. In this study, we developed a novel phosphate ion-activated DNAzyme-metal-organic frameworks (MOFs) nanoprobe for two-photon imaging of Zn2+ in living cells and tissues. The design of this nanoprobe involved the loading of a Zn2+-specific, RNA-cleaving DNAzyme onto the MOFs through strong coordination between the phosphonate O atoms of the DNAzyme backbone and Zr atoms in the MOFs. This coordination restrained the extracellular activity of DNAzyme; however, after cell entry, the DNAzyme was released from the MOFs through a competitive binding by the phosphate ions present at a high intracellular concentration. Following their release, the two-photon (TP) fluorophore-labeled substrate strands of DNAzyme were cleaved with the aid of Zn2+, which resulted in a strong fluorescence signal. The incorporation of a TP fluorophore into the nanoprobe facilitated near-infrared excitation, which allowed the highly sensitive and specific imaging of Zn2+ in living cells and tissues at greater depths than possible previously. The TP-DNAzyme-MOFs nanoprobe achieved a low detection limit of 3.53 nM, extraordinary selectivity toward Zn2+, and a tissue signal penetration of 120 μm. More importantly, this nanoprobe was successfully used to monitor cell apoptosis, and this application of the DNAzyme-MOFs probe holds great potential for future use in biological studies and medical diagnostics.
Collapse
Affiliation(s)
- Xinxin Shi
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Geng
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
- Institute of Chemical Biology and Clinical Application, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
- Institute of Chemical Biology and Clinical Application, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Yang XL, Xie MH, Cai W, Shao R, Zang RB, Guan RF, Feng Y. Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al 3. Anal Chem 2020; 92:11600-11606. [PMID: 32693574 DOI: 10.1021/acs.analchem.0c01082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of highly sensitive and selective fluorescent sensors toward hazardous analytes represents great progress in fabricating sensing devices for practical applications. In this work, a highly selective sensor with dual functions has been fabricated via facile postmodification of the UiO-MOF. Butene modified salicylaldehyde is covalently linked to the UiO-66 scaffold via an efficient Schiff-base reaction, resulting in a highly fluorescent ozone sensor of UiO-66-butene. Ozonolysis of the terminal olefin followed by β-elimination could significantly quench the bright blue fluorescence of UiO-66-butene, and linear turn-off detection of ozone in the range of 0-100 μM is well established. The detection is highly sensitive and selective, and a detection limit of 73 nM was calculated. Remarkably, the ozonolysis afforded product could further act as a selective sensor for Al3+ via turn-on fluorescence with a detection limit of 142 nM, representing a second potential sensing function. The chemically selective sequential ozonolysis/β-elimination and remarkable dual functions offer the exclusive detection of ozone over other oxidative species as well as Al3+ over other cations following a tandem process, representing the first example of a direct MOF sensor for dual sensing of ozone and Al3+. This work demonstrates the potential of employing combinatorial principles for fabricating highly selective sensors, and postmodification of MOFs represents a promising facile strategy for developing various functional sensors.
Collapse
Affiliation(s)
- Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Cai
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong-Bin Zang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong-Feng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China
| |
Collapse
|
19
|
Duan Y, Ding G, Yao M, Wang Q, Guo H, Wang X, Zhang Y, Li J, Li X, Qin X. Novel triphenylamine-based fluorescent chemo-sensors for fast detection of thiophenols in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118348. [PMID: 32334384 DOI: 10.1016/j.saa.2020.118348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
A novel chemo-sensor based on triphenylamine derivative Probe-TPA for thiophenols (C6H5SH, p-NH2-C6H4SH, p-OH-C6H4SH) detection was presented in this work. The target dye Probe-TPA displayed high selectivity and extremely fast response toward thiophenols in DMSO/PBS buffer (5/5, v/v) solution in the presence of other competitive species (such as K+, Na+, Ni2+, Fe3+, S2-, HS-, SO42-, SO32-, NaClO, H2O2, GSH, Cys, Hcy, etc.). The sensing property for thiophenols was studied by UV-Visible, fluorescence spectrophotometric analyses and DFT/TD-DFT calculations, those results indicated that the sensor Probe-TPA possessed high anti-interference ability, excellent sensitivity, higher specifity, dramatically "naked-eye" fluorescence enhancement (almost 200-folds) under 365 nm UV lamp, especially immediate response speed (within 15 s). In extended application aspect, the fluorescent chemo-sensor Probe-TPA could provide a new method of analysis to detect of thiophenol in real water samples and visualize monitoring in live cells with remarkable fluorescence variation.
Collapse
Affiliation(s)
- Yuanke Duan
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Ge Ding
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Mengyu Yao
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Qi Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Hui Guo
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Xinchao Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Yanfen Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Junye Li
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Xiujuan Li
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Xiaozhuan Qin
- Zhengzhou Institute of Technology, School of Chemical Engineering & Food Science, Henan, Zhengzhou 450044, China.
| |
Collapse
|
20
|
Wang X, Ding G, Duan Y, Zhu Y, Zhu G, Wang M, Li X, Zhang Y, Qin X, Hung CH. A novel triphenylamine-based bis-Schiff bases fluorophores with AIE-Activity as the hydrazine fluorescence turn-off probes and cell imaging in live cells. Talanta 2020; 217:121029. [PMID: 32498835 DOI: 10.1016/j.talanta.2020.121029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Developing a specific and sensitive method for endogenous hydrazine detection in living systems is valuable to understand its various pathological events. In this work, two novel fluorescent chemosensors (C1, C3) based on triphenylamine Schiff-base derivative and reference dyes (C2, C4) were prepared in relatively high yield (more than 72% yield). The aggregation induced emission (AIE) properties of sensors were investigated through UV-Visible, dynamic light scattering, X-ray diffraction, fluorescence spectrophotometric analyses as well as scanning electron microscope images (SEM). The results indicated that probes C1 and C3 exhibited strong AIE property in DMF/H2O (1:1, v/v) mixture system with brilliant yellow fluorescence emission (560 nm) observed under 365 nm UV lamp. The experiments of sensing indicated that probes C1 and C3 possessed the sequentially detecting abilities for hydrazine with high sensitivity, specificity as well as an extremely low detection limit (55.1 nM), which was due to blocking of AIE process of probes C1 and C3 by special chemical reaction (-CHN- moiety transformed into -CH2-NH- group) after hydrazine addition, resulting in the increase in water solubility and a weak emission in aqueous media. Furthermore, 1H NMR, SEM and fluorescence titration experiment was also conducted to confirm the sensing mechanism. For biological application, probes C1 and C3 presented a good bio-imaging performance and showed the similar fluorescence quenching after adding hydrazine. Therefore, the probes are suitable for the fluorescence imaging of exogenous hydrazine in HeLa cells.
Collapse
Affiliation(s)
- Xinchao Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Ge Ding
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Yuanke Duan
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Yinjun Zhu
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Guangshi Zhu
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Min Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Xiujuan Li
- College of Pharmacy, Heze University, Heze, Shandong Province, China
| | - Yanfen Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, China.
| | - Xiaozhuan Qin
- Zhengzhou Institute of Technology, School of Chemical Engineering & Food Science, Henan, Zhengzhou, 450044, China
| | - Cheung-Hin Hung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China.
| |
Collapse
|
21
|
Liu TT, Xu J, Liu CG, Zeng S, Xing ZY, Sun XJ, Li JL. A novel dual-function probe for recognition and differentiation of Zn2+ and Al3+ and its application. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Zhong W, Wang L, Fang S, Qin D, Zhou J, Yang G, Duan H. Two novel colorimetric fluorescent probes: Hg 2+ and Al 3+ in the visual colorimetric recognition environment. RSC Adv 2020; 10:3048-3059. [PMID: 35497715 PMCID: PMC9048429 DOI: 10.1039/c9ra08428b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Two new dual channel Schiff base fluorescent probes, Tri-R6G and Tri-Flu, were synthesized, and can detect Hg2+ and Al3+, respectively. The two probes were characterized by FTIR, 1H NMR, 13C NMR and HRMS, and their optical properties were detected by UV and FL. Test results showed the probes' detection of Hg2+ and Al3+ compared to other metal ions (Ag+, Co2+, Cd2+, Mg2+, Cu2+, Ni2+, Ba2+, Pb2+, Cr3+, Al3+, Zn2+, Hg2+, K+, Ga2+ and Fe3+), respectively. Besides, the detection limits were determined to be 1.61 × 10-8 M and 1.15 × 10-8 M through the standard curve plot, respectively. The photoelectron transfer (PET) mechanism was guessed by the Job's plot and the infrared titration. Corresponding orbital electron distribution and molecular geometry configurations of the compounds were predicted by density functional theory (DFT). In addition, the prepared test paper changed from white to pink when the target ion was detected. The color changed from colorless to pink in a solution having a concentration of 10-5 M.
Collapse
Affiliation(s)
- Wenxia Zhong
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province China 250353 +86 13153035598
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province China 250014
| | - Shimin Fang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province China 250353 +86 13153035598
| | - Dawei Qin
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province China 250353 +86 13153035598
| | - Jianhua Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province China 250353 +86 13153035598
| | - Geng Yang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province China 250353 +86 13153035598
| | - Hongdong Duan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province China 250353 +86 13153035598
| |
Collapse
|
23
|
Chen H, Yang P, Li Y, Zhang L, Ding F, He X, Shen J. Insight into triphenylamine and coumarin serving as copper (II) sensors with "OFF" strategy and for bio-imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117384. [PMID: 31336321 DOI: 10.1016/j.saa.2019.117384] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Chemosensing is one of the widest and powerful techniques for response to anions and cations in living systems serving as bio-probes. Meanwhile, copper(II) (Cu(II)) widely exists in the environment and the human body as a common trace element, which plays an necessary role in most physiological processes. Thus, it is extremely urgent to explore means for effective, rapid and convenient detection of Cu(II) in living cells. Herein, we introduce a novel strategy for designing triphenylamine (TS) and coumarin-based (CS) functional sensors for Cu(II) detection with fluorescence "OFF" switching mechanism by blocking intramolecular charge transfer (ICT). Based on this design strategy, we have demonstrated two kinds of fluorophores sensors with aunique new fluorescent dye and excellent photophysical properties, which have shown rapid recognition of Cu(II) via a stoichiometric ratio of 2:1 and the proposed binding mode was confirmed by the single-crystal structure of CS-Cu(II) complex. In addition, we have carried out density functional theory (DFT) calculation with the B3LYP exchange functional employing RB3LYP/6-31G basis sets to get insight into the mechanism of Cu(II)-sensors alongside their optical properties. Furthermore, the sensors were capable of bio-imaging Cu(II) in living cancer cells (HepG2, A549 and Hela) with low cytotoxicity and good biocompatibility shown. Taken together, We expect that this novel strategy would provide new insight into the development of Cu(II) detection techniques and could be used more for biomedical applications.
Collapse
Affiliation(s)
- Hong Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Ping Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
24
|
Kim MS, Yun D, Chae JB, So H, Lee H, Kim KT, Kim M, Lim MH, Kim C. A Novel Thiophene-Based Fluorescent Chemosensor for the Detection of Zn 2+ and CN -: Imaging Applications in Live Cells and Zebrafish. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5458. [PMID: 31835755 PMCID: PMC6961029 DOI: 10.3390/s19245458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
A novel fluorescent turn-on chemosensor DHADC ((E)-3-((4-(diethylamino)-2-hydroxybenzylidene)amino)-2,3-dihydrothiophene-2-carboxamide) has been developed and used to detect Zn2+ and CN-. Compound DHADC displayed a notable fluorescence increase with Zn2+. The limit of detection (2.55 ± 0.05 μM) for zinc ion was far below the standard (76 μM) of the WHO (World Health Organization). In particular, compound DHADC could be applied to determine Zn2+ in real samples, and to image Zn2+ in both HeLa cells and zebrafish. Additionally, DHADC could detect CN- through a fluorescence enhancement with little inhibition with the existence of other types of anions. The detection processes of compound DHADC for Zn2+ and CN- were demonstrated with various analytical methods like Job plots, 1H NMR titrations, and ESI-Mass analyses.
Collapse
Affiliation(s)
- Min Seon Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01187, Korea; (M.S.K.); (D.Y.); (J.B.C.); (H.S.)
| | - Dongju Yun
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01187, Korea; (M.S.K.); (D.Y.); (J.B.C.); (H.S.)
| | - Ju Byeong Chae
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01187, Korea; (M.S.K.); (D.Y.); (J.B.C.); (H.S.)
| | - Haeri So
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01187, Korea; (M.S.K.); (D.Y.); (J.B.C.); (H.S.)
| | - Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01187, Korea.;
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01187, Korea.;
| | - Mingeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34140, Korea; (M.K.); (M.H.L.)
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34140, Korea; (M.K.); (M.H.L.)
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01187, Korea; (M.S.K.); (D.Y.); (J.B.C.); (H.S.)
| |
Collapse
|
25
|
He X, Wu C, Qian Y, Li Y, Ding F, Zhou Z, Shen J. Symmetrical bis-salophen probe serves as a selectively and sensitively fluorescent switch of gallium ions in living cells and zebrafish. Talanta 2019; 205:120118. [DOI: 10.1016/j.talanta.2019.120118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
|
26
|
Xue J, Tian L, Yang ZY. A novel ratiometric fluorescent probe based on coumarin derivative for the recognition of Al(III) and its application on test strips. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Sun XJ, Ma YQ, Fu H, Xing ZY, Sun ZG, Shen Y, Li JL. A Highly Selective Fluorescence "Turn on" and Absorbance-Ratiometric Detection of Al 3+ in Totally H 2O and its Application in Test Paper. J Fluoresc 2019; 29:577-586. [PMID: 30937611 DOI: 10.1007/s10895-019-02374-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
Abstract
A novel naphthalene based fluorescence probe NBDH was designed and synthesized. Probe NBDH exhibited highly selective and sensitive responses towards Al3+ in HEPES-NaOH buffer solution (pH = 7.4). In addition, the detection of NBDH to Al3+ could be achieved through dual channels embodied in significant fluorescent turn-on signal and ratiometric absorbance response. The stoichiometry ratio of NBDH-Al3+ was 1:1 by fluorescence job' plot and binging mechanism was further varified by the FT-IR, NMR titration and HRMS. Furthermore, NBDH was achieved in real sample detection, and a series of color test paper were developed for visual detecting Al3+ ions.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu-Qing Ma
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Yong Xing
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Zhi-Gang Sun
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Shen
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Long Li
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
| |
Collapse
|
28
|
Lu Z, Lu Y, Fan W, Fan C, Li Y. Ultra-fast zinc ion detection in living cells and zebrafish by a light-up fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:295-301. [PMID: 30121474 DOI: 10.1016/j.saa.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
As the second most abundant transition metal after iron in biological systems, Zn2+ takes part in various fundamental life processes such as cellular metabolism and apoptosis, neurotransmission. Thus, the development of analytical methods for fast detection of Zn2+ in biology and medicine has been attracting much attention but still remains a huge challenge. In this report, we develop a novel Zn2+-specific light-up fluorescent probe based on intramolecular charge transfer combined with chelation enhanced fluorescence induced by structural transformation. Addition of Zn2+ in vitro can induce a remarkable color change from colorless to green and a strong fluorescence enhancement with a red shift of 43 nm. Moreover, the probe shows an extremely low detection limit of 13 nM and ultra-fast response time of less than 1 s. The Zn2+ sensing mechanism was fully supported by TDDFT calculations as well as HRMS and 1H NMR titrations. The recognition of Zn2+ in living Hela cells as well as the MTT assay demonstrate that the probe can rapidly light-up detect Zn2+ in vivo with low cytotoxicity and good cell-permeability. Furthermore, the probe can also be successfully applied to bioimaging Zn2+ in living zebrafish.
Collapse
Affiliation(s)
- Zhengliang Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yanan Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenlong Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunhua Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yanan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
29
|
Chen Z, Niu Y, Cheng G, Tong L, Zhang G, Cai F, Chen T, Liu B, Tang B. A fast, highly sensitive and selective assay of iodide ions with single-stranded DNA-templated copper nanoparticles as a fluorescent probe for its application in Kunming mice samples. Analyst 2018; 142:2781-2785. [PMID: 28653059 DOI: 10.1039/c7an00595d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of fast, sensitive, selective and flexible methods for the detection of iodide is highly demanded and is of great significance. In this work, single-stranded DNA-templated copper nanoparticles (ssDNA-CuNPs) generated by sodium ascorbate reduction of Cu2+ along the single-stranded DNA of poly-T were utilized as a fluorescent probe for the determination of iodide ions (I-). The detection scheme is based on the instant quenching of the fluorescence of ssDNA-CuNPs by iodide ions. I- can be quantified in the concentration range from 0.050 to 40 μM and from 40 to 80 μM, and the limit of detection is as low as 15 nM. This method provides a simple and convenient strategy for the biochemical assay of I-, which is also helpful for early diagnosis of related diseases. The establishment of a low cost and fast detection method would be particularly important in developing countries where medical supplies are lacking.
Collapse
Affiliation(s)
- Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Guiying Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Feng Cai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Tingting Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
30
|
Single chemosensor for sensing multiple analytes: Selective fluorogenic detection of Cu2+ and Br−. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Wen X, Wang Q, Fan Z. An active fluorescent probe based on aggregation-induced emission for intracellular bioimaging of Zn 2+ and tracking of interactions with single-stranded DNA. Anal Chim Acta 2018; 1013:79-86. [DOI: 10.1016/j.aca.2018.01.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/29/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
|
32
|
Wang Y, Ma ZY, Zhang DL, Deng JL, Chen X, Xie CZ, Qiao X, Li QZ, Xu JY. Highly selective and sensitive turn-on fluorescent sensor for detection of Al 3+ based on quinoline-base Schiff base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:157-164. [PMID: 29414573 DOI: 10.1016/j.saa.2018.01.049] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 05/06/2023]
Abstract
A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL1) has been conveniently synthesized and characterized. HL1 exhibited a highly selective and pronounced enhancement for Al3+ in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al3+ with 41 fold intensity enhancement at 545 nm. HL1 displays good linear relationship with Al3+ in the low concentration and the limit of detection is 8.08 × 10-8 mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL1 could be used to detect Al3+ ions in real sample by fluorescence spectrometry and Al3+ ions in cells by bioimaging.
Collapse
Affiliation(s)
- Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - De-Long Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Jia-Li Deng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Xiong Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China.
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
33
|
Lu Z, Fan W, Lu Y, Fan C, Zhao H, Guo K, Chu W, Lu Y. A highly sensitive fluorescent probe for bioimaging zinc ion in living cells and zebrafish models. NEW J CHEM 2018. [DOI: 10.1039/c8nj02197j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A simple OFF–ON fluorescent probe was prepared and successfully applied for bioimaging Zn2+ in living systems.
Collapse
Affiliation(s)
- Zhengliang Lu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan
- Jinan 250022
- China
| | - Wenlong Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan
- Jinan 250022
- China
| | - Yanan Lu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan
- Jinan 250022
- China
| | - Chunhua Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan
- Jinan 250022
- China
| | - Huaiqing Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan
- Jinan 250022
- China
| | - Kai Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan
- Jinan 250022
- China
| | - Wei Chu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan
- Jinan 250022
- China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan
- Jinan 250022
- China
| |
Collapse
|
34
|
Anand V, Sadhasivam B, Dhamodharan R. Facile synthesis of triphenylamine and phenothiazine-based Schiff bases for aggregation-induced enhanced emission, white light generation, and highly selective and sensitive copper(ii) sensing. NEW J CHEM 2018. [DOI: 10.1039/c8nj03316a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile synthesis of triphenylamine and phenothiazine based Schiff bases for multiple applicability, viz., in AIEE, WLE and Cu2+ sensing.
Collapse
Affiliation(s)
- Vivek Anand
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | - Balaji Sadhasivam
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | | |
Collapse
|
35
|
Feng J, Shao X, Shang Z, Chao J, Wang Y, Jin W. A new biphenylcarbonitrile based fluorescent sensor for Zn2+ ions and application in living cells. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7084-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Jeong HY, Lee SY, Han J, Lim MH, Kim C. Thiophene and diethylaminophenol-based “turn-on” fluorescence chemosensor for detection of Al 3+ and F − in a near-perfect aqueous solution. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Novel reversible fluorescent probe for relay recognition of Zn2+ and PPi in aqueous medium and living cells. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Zhu Q, Li L, Mu L, Zeng X, Redshaw C, Wei G. A ratiometric Al3+ ion probe based on the coumarin-quinoline FRET system. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Ibrahim MY, Hashim NM, Dhiyaaldeen SM, Al-Obaidi MMJ, El-Ferjani RM, Adam H, Alkotaini B, Batran RA, Ali HM. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Manganese (II) Complex against HCl/Ethanol-Induced Gastric Ulcerations in Rats. Sci Rep 2016; 6:26819. [PMID: 27229938 PMCID: PMC4882520 DOI: 10.1038/srep26819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Manganese is a crucial element for health. In this study, the gastroprotective efficacy of Mn (II) complex (MDLA) against acidified ethanol (HCl/Ethanol)-induced gastric ulceration in rats was evaluated. The animals were distributed into 5 groups. Groups 1 and 2 received carboxymethylcellulose (CMC), group 3 was pretreated with omeprazole, and groups 4 and 5 were given 10 and 20 mg/kg of MDLA, respectively. After one hour, CMC and HCl/Ethanol were given to groups 2–5 whilst the animals in group 1 were ingested with CMC. After sacrifice, gastric lesions were evaluated by wall mucus, gross appearance, histology, antioxidant enzymes and immunohistochemistry. Group 2 displayed severe gastric damage with a significant reduction in wall mucus. Conversely, gastric lesions were reduced in groups 3–5 by 85.72%, 56.51% and 65.93%, respectively. The rats in groups 3–5 showed up-regulation of heat shock protein 70 (Hsp70) with down-regulation of Bcl-2-associated protein x (Bax). Pretreatment with omeprazole or MDLA led to an increase in the uptake of Periodic Acid Schiff (PAS) stain in the glandular part of the gastric tissue, raised levels of prostaglandin E2 (PGE2) and superoxide dismutase (SOD), and a reduction in malondialdehyde (MDA) concentrations. These results suggested the gastroprotective action of Mn (II) complex.
Collapse
Affiliation(s)
- Mohamed Yousif Ibrahim
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur, Malaysia.,Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur, Malaysia.,Center for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Summaya M Dhiyaaldeen
- Department of Microbiology, Faculty of medicine, University of Duhok, 78 Kurdistan, Iraq
| | - Mazen M Jamil Al-Obaidi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rashd M El-Ferjani
- Department of Chemistry, Faculty of Science, University of Benghazi, 1308 Benghazi, Libya
| | - Hoyam Adam
- School of Pharmacy, Ahfad University for Women (AUW), 167 Omdurman, Sudan
| | - Bassam Alkotaini
- Department of Chemical Engineering, Faculty of Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Rami Al Batran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Institute of Research Management &Monitoring, Deputy Vice Chancellor (Research &Innovation), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Li W, Gan X, Liu D, Tian X, Yu J, Tian Y, Wu J, Zhou H. High contrast off–on fluorescence photo-switching via copper ion recognition, trans–cis isomerization and ring closure of a thiosemicarbazide Schiff base. RSC Adv 2016. [DOI: 10.1039/c6ra05699g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Two independently addressable photochromic systems based on distinct mechanisms and selective recognition for Cu2+were investigated in detail.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Xiaoping Gan
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
- School of Science
| | - Dan Liu
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Xiaohe Tian
- Center of Stem Cell Research and Transformation Medicine
- Anhui University
- Hefei 230601
- P. R. China
| | - Jianhua Yu
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Jieying Wu
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering
- Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Hefei 230601
- P. R. China
| |
Collapse
|