1
|
Ummalyma SB, Bhaskar T. Recent advances in the role of biocatalyst in biofuel cells and its application: An overview. Biotechnol Genet Eng Rev 2024; 40:2051-2089. [PMID: 37010302 DOI: 10.1080/02648725.2023.2197715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Biofuel cells have recently gained popularity as a green and renewable energy source. Biofuel cells are unique devices of energy and are capable of converting the stored chemical energy from waste materials such as pollutants, organics and wastewater into reliable, renewable, pollution-free energy sources through the action of biocatalysts such as various microorganisms and enzymes. It is a promising technological device to treat waste to compensate for global warming and the energy crisis through the green energy production process. Due to their unique properties, various potential biocatalysts are attracting researchers to apply them to various microbial biofuel cells for improving electricity and power. Recent research in biofuel cells is focusing on the exploitation of different biocatalysts and how they are enhancing power generation for various applications in the field of environmental technology, and biomedical fields such as implantable devices, testing kits, and biosensors. This review focusing the importance of microbial fuel cells (MFCs) and enzymatic fuel cells (ECFs) and role of different types of biocatalysts and their mechanisms for improving biofuel cell efficiency gathered from recent reports. Finally, its multifaceted applications with special emphasis on environmental technology and biomedical field will be described, along with future perspectives.
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- Department of Biotechnology, Govt. of India Takyelpat, Institute of Bioresources and Sustainable Development (IBSD)An Autonomous Institute, Imphal, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Cao L, Chen J, Pang J, Qu H, Liu J, Gao J. Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors. Molecules 2024; 29:257. [PMID: 38202838 PMCID: PMC10780655 DOI: 10.3390/molecules29010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.
Collapse
Affiliation(s)
- Lili Cao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (J.P.); (H.Q.); (J.L.); (J.G.)
| | | | | | | | | | | |
Collapse
|
3
|
Ratautė K, Ratautas D. A Review from a Clinical Perspective: Recent Advances in Biosensors for the Detection of L-Amino Acids. BIOSENSORS 2023; 14:5. [PMID: 38248382 PMCID: PMC10813600 DOI: 10.3390/bios14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The field of biosensors is filled with reports and designs of various sensors, with the vast majority focusing on glucose sensing. However, in addition to glucose, there are many other important analytes that are worth investigating as well. In particular, L-amino acids appear as important diagnostic markers for a number of conditions. However, the progress in L-amino acid detection and the development of biosensors for L-amino acids are still somewhat insufficient. In recent years, the need to determine L-amino acids from clinical samples has risen. More clinical data appear to demonstrate that abnormal concentrations of L-amino acids are related to various clinical conditions such as inherited metabolic disorders, dyslipidemia, type 2 diabetes, muscle damage, etc. However, to this day, the diagnostic potential of L-amino acids is not yet fully established. Most likely, this is because of the difficulties in measuring L-amino acids, especially in human blood. In this review article, we extensively investigate the 'overlooked' L-amino acids. We review typical levels of amino acids present in human blood and broadly survey the importance of L-amino acids in most common conditions which can be monitored or diagnosed from changes in L-amino acids present in human blood. We also provide an overview of recent biosensors for L-amino acid monitoring and their advantages and disadvantages, with some other alternative methods for L-amino acid quantification, and finally we outline future perspectives related to the development of biosensing devices for L-amino acid monitoring.
Collapse
Affiliation(s)
- Kristina Ratautė
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania
| | - Dalius Ratautas
- Life Science Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Plekhanova YV, Reshetilov AN. Nanomaterials for Controlled Adjustment of the Parameters of Electrochemical Biosensors and Biofuel Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Plekhanova YV, Rai M, Reshetilov AN. Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect. 3 Biotech 2022; 12:231. [PMID: 35996672 PMCID: PMC9391563 DOI: 10.1007/s13205-022-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
Electrochemical biosensors and biofuel cells are finding an ever-increasing practical application due to several advantages. Biosensors are miniature measuring devices, which can be used for on-the-spot analyses, with small assay times and sample volumes. Biofuel cells have dual benefits of environmental cleanup and electric energy generation. Application of nanomaterials in biosensor and biofuel-cell devices increases their functioning efficiency and expands spheres of use. This review discusses the potential of nanomaterials in improving the basic parameters of bioelectrochemical systems, including the sensitivity increase, detection lower-limit decrease, detection-range change, lifetime increase, substrate-specificity control. In most cases, the consideration of the role of nanomaterials links a certain type of nanomaterial with its effect on the bioelectrochemical device upon the whole. The review aims at assessing the effects of nanomaterials on particular analytical parameters of a biosensor/biofuel-cell bioelectrochemical device.
Collapse
Affiliation(s)
- Yulia V. Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH 444602 India
| | - Anatoly N. Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
- Tula State University, 300012 Tula, Russian Federation
| |
Collapse
|
6
|
Serapinas S, Gineitytė J, Butkevičius M, Danilevičius R, Dagys M, Ratautas D. Biosensor prototype for rapid detection and quantification of DNase activity. Biosens Bioelectron 2022; 213:114475. [PMID: 35714494 DOI: 10.1016/j.bios.2022.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
DNases are enzymes that cleave phosphodiesteric bonds of deoxyribonucleic acid molecules and are found everywhere in nature, especially in bodily fluids, i.e., saliva, blood, or sweat. Rapid and sensitive detection of DNase activity is highly important for quality control in the pharmaceutical and biotechnology industries. For clinical diagnostics, recent reports indicate that increased DNase activity could be related to various diseases, such as cancers. In this paper, we report a new bioelectronic device for the determination of nuclease activity in various fluids. The system consists of a sensor electrode, a custom design DNA target to maximize the DNase cleavage rate, a signal analysis algorithm, and supporting electronics. The developed sensor enables the determination of DNase activity in the range of 3.4 × 10-4 - 3.0 × 10-2 U mL-1 with a limit of detection of up to 3.4 × 10-4 U mL-1. The sensor was tested by measuring nuclease activity in real human saliva samples and found to demonstrate high accuracy and reproducibility compared to the industry standard DNaseAlert™️. Finally, the entire detection system was implemented as a prototype device system utilizing single-use electrodes, custom-made cells, and electronics. The developed technology can improve nuclease quality control processes in the pharmaceutical/biotechnology industry and provide new insights into the importance of nucleases for medical applications.
Collapse
Affiliation(s)
- Skomantas Serapinas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Laboratorija 1", Pamėnkalnio g. 36, LT-01114, Vilnius, Lithuania
| | - Justina Gineitytė
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
| | - Marius Butkevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Laboratorija 1", Pamėnkalnio g. 36, LT-01114, Vilnius, Lithuania
| | | | - Marius Dagys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
| | - Dalius Ratautas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania.
| |
Collapse
|
7
|
Dey B, Dutta T. Laccases: thriving the domain of Bio-electrocatalysis. Bioelectrochemistry 2022; 146:108144. [DOI: 10.1016/j.bioelechem.2022.108144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022]
|
8
|
Schachinger F, Chang H, Scheiblbrandner S, Ludwig R. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules 2021; 26:molecules26154525. [PMID: 34361678 PMCID: PMC8348568 DOI: 10.3390/molecules26154525] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. The combination of both biosensor elements-enzymes and electrodes-is evaluated by comparison of substrate specificity, current density, sensitivity, and the range of detection.
Collapse
|
9
|
Teišerskytė V, Urbonavičius J, Ratautas D. A direct electron transfer formaldehyde dehydrogenase biosensor for the determination of formaldehyde in river water. Talanta 2021; 234:122657. [PMID: 34364466 DOI: 10.1016/j.talanta.2021.122657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/31/2023]
Abstract
In this work, we report the construction of a direct electron transfer (DET) biosensor based on NAD-dependent formaldehyde dehydrogenase from Pseudomonas sp. (FDH) immobilized on the gold nanoparticle-modified gold electrode. To the best of our knowledge, a DET for FDH was achieved for the first time - the oxidation of formaldehyde started at a low electrode potential of -190 mV vs. Ag/AgCl and reached a maximum current density of 1100 nA cm-2 at 200 mV vs. Ag/AgCl. Also, the designed electrode was insensitive to substrate inhibition (in comparison to the free enzyme) and operated in solutions with formaldehyde concentrations up to 10 mM. The electrode was used and characterized as a mediatorless biosensor for the detection of formaldehyde. The biosensor demonstrated a limit of detection (0.05 mM), linear range from 0.25 to 2.0 mM, the sensitivity of 178.9 nA mM cm-2, high stability and selectivity. The biosensor has been successfully tested for the determination of added formaldehyde concentration in river water samples, thus the developed electrode could be applied for a fast, inexpensive and simple measurement of formaldehyde in various media.
Collapse
Affiliation(s)
- Viktorija Teišerskytė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania
| | - Dalius Ratautas
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania; Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
10
|
Haghighi O, Moradi M. In Silico Study of the Structure and Ligand Interactions of Alcohol Dehydrogenase from Cyanobacterium Synechocystis Sp. PCC 6803 as a Key Enzyme for Biofuel Production. Appl Biochem Biotechnol 2020; 192:1346-1367. [PMID: 32767175 DOI: 10.1007/s12010-020-03400-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Alcohol dehydrogenase is one of the most critical enzymes in the production of ethanol and butanol. Synechocystis sp. PCC 6803 is a model cyanobacterium organism that is able to produce alcohols through its autotrophic energy production system. In spite of the high potential for biofuel production by this bacteria, the structure of its alcohol dehydrogenase has not been subjected to in-depth studies. The current study was aimed to analyze the molecular model for alcohol dehydrogenase of Synechocystis sp. PCC 6803 and scrutinize the interactions of different chemicals, including substrates and coenzymes. Also, the phylogenetic tree was provided to investigate the relation between different sources. The results indicated that alcohol dehydrogenase of Synechocystis sp. PCC 6803 has a different sequence compared with other Alcohol dehydrogenases (ADHs) of cyanobacterial family members. Verification of the homology model using Ramachandran plot by PROCHECK indicated that all of the residues are in favored or allowed regions of the plot. This enzyme has two Zn ions in its structure which is very similar to the other Zn-dependent ADHs. Docking studies suggest that this enzyme could have more active sites for different substrates. In addition, this enzyme has more affinity to NADH as a cofactor and sinapaldehyde as a substrate compared with the other cofactor and substrates.
Collapse
Affiliation(s)
- Omid Haghighi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mohammad Moradi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
11
|
Real-time glucose monitoring system containing enzymatic sensor and enzymatic reference electrodes. Biosens Bioelectron 2020; 164:112338. [PMID: 32553347 DOI: 10.1016/j.bios.2020.112338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023]
Abstract
Every electrochemical biosensor uses two or three electrode setup, which involves sensing electrode for a specific reaction, metal/salt reference electrode (i.e., Ag/AgCl or Hg/Hg2Cl2) for the control of the potential and, is some cases, counter electrode for the compensation of the current. This setup has significant flaws related to metal/salt reference electrodes: they are bulky and difficult to miniaturize, leak electrolyte to the medium, lose the ability to define the electrochemical potential precisely in time, consequently, have to be updated or replaced. This causes problems when the biosensor cannot be easily replaced (e.g., implanted electronics). Here we present a fully enzymatic real-time glucose monitoring system capable of referencing its own electrochemical potential. Using sensing electrode composed of wired glucose dehydrogenase and enzymatic reference electrode composed of wired laccase we have created a stable and accurate electrode system, which measured fluxes in concentration of glucose in a physiological range (3-8 mM), and demonstrated performance of the designed system in undiluted human serum. In addition, our designed enzymatic reference electrode is universal and may be applied for other biosensors, thus open possibilities for the new generation of implantable devices for healthcare monitoring.
Collapse
|
12
|
Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications. Catalysts 2019. [DOI: 10.3390/catal10010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.
Collapse
|
13
|
Highly sensitive amperometric biosensor based on alcohol dehydrogenase for determination of glycerol in human urine. Talanta 2019; 200:333-339. [DOI: 10.1016/j.talanta.2019.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022]
|
14
|
Besharati M, Hamedi J, Hosseinkhani S, Saber R. A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochemistry 2019; 128:66-73. [PMID: 30928867 DOI: 10.1016/j.bioelechem.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 12/17/2022]
Abstract
Different carbon-based nanostructures were used to investigate direct electron transfer (DET) of TetX2 monooxygenase (TetX2), and an enzyme-based biosensor for sensitive determination of tetracycline (TC) also fabricated. A polyethyleneimine (PEI) with positive charge groups was used for immobilization of TetX2 on modified glassy carbon electrodes. Cyclic voltammetry (CV) was employed to study the electrochemical characteristics of the immobilized enzyme and the performance of the proposed biosensor. Amongst multiple carbon-modified electrodes, nano-porous glassy carbon electrode (NPGCE) was selected because of its amplified signal response for flavin adenine dinucleotide (FAD) and superior electrocatalytic behavior toward oxygen reduction. The cyclic voltammogram of PEI/TetX2/NPGCE showed two couple of well-defined and quasi-reversible redox peaks of FAD, consistent with the realization of DET. The prepared electrode was then successfully introduced as a biosensing interface based on the oxygen reduction peak current, resulting in a linear range response from 0.5 to 5 μM with a good detection limit of 18 nM. The as-fabricated electrode demonstrates a fast response and excellent stability for the detection of TC. The results indicate that this simple, rapid, eco-friendly and economic strategy of PEI/TetX2/NPGCE preparation has potential for the fabrication of an enzyme-based biosensor for the practical detection of TC in food products.
Collapse
Affiliation(s)
- Maryam Besharati
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran; Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran; Microbial Technology and Products Research Center, University of Tehran, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Saber
- Research Center of Medical Science, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Hui Y, Ma X, Qu F. Flexible glucose/oxygen enzymatic biofuel cells based on three-dimensional gold-coated nickel foam. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4099-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Ratautas D, Ramonas E, Marcinkevičienė L, Meškys R, Kulys J. Wiring Gold Nanoparticles and Redox Enzymes: A Self-Sufficient Nanocatalyst for the Direct Oxidation of Carbohydrates with Molecular Oxygen. ChemCatChem 2018. [DOI: 10.1002/cctc.201701738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dalius Ratautas
- Faculty of Fundamental Sciences; Vilnius Gediminas Technical University; Saulėtekio al. 11 LT-10223 Vilnius Lithuania
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| | - Eimantas Ramonas
- Faculty of Fundamental Sciences; Vilnius Gediminas Technical University; Saulėtekio al. 11 LT-10223 Vilnius Lithuania
| | - Liucija Marcinkevičienė
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| | - Rolandas Meškys
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| | - Juozas Kulys
- Faculty of Fundamental Sciences; Vilnius Gediminas Technical University; Saulėtekio al. 11 LT-10223 Vilnius Lithuania
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| |
Collapse
|
17
|
Wu G, Gao Y, Zhao D, Ling P, Gao F. Methanol/Oxygen Enzymatic Biofuel Cell Using Laccase and NAD +-Dependent Dehydrogenase Cascades as Biocatalysts on Carbon Nanodots Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40978-40986. [PMID: 29088536 DOI: 10.1021/acsami.7b12295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The efficient immobilization of enzymes on favorable supporting materials to design enzyme electrodes endowed with specific catalysis performances such as deep oxidation of biofuels, and direct electron transfer (DET)-type bioelectrocatalysis is highly desired for fabricating enzymatic biofuel cells (BFCs). In this study, carbon nanodots (CNDs) have been used as the immobilizing matrixes and electron relays of enzymes to construct (NAD+)-dependent dehydrogenase cascades-based bioanode for the deep oxidation of methanol and DET-type laccase-based biocathode for oxygen reduction to water. At the bioanode, multiplex enzymes including alcohol dehydrogenase, aldehyde dehydrogenase, and formate dehydrogenase are coimmobilized on CNDs electrode which is previously coated with in situ polymerized methylene blue as the electrocatalyst for oxidizing NADH to NAD+. At the biocathode, fungal laccase is directly cast on CNDs and facilitated DET reaction is allowed. As a result, a novel membrane-less methanol/O2 BFC has been assembled and displays a high open-circuit voltage of 0.71(±0.02) V and a maximum power density of 68.7 (±0.4) μW cm-2. These investigated features imply that CNDs may act as new conductive architectures to elaborate enzyme electrodes for further bioelectrochemical applications.
Collapse
Affiliation(s)
- Guozhi Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Yue Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Dan Zhao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| |
Collapse
|