1
|
Atkare S, Jagtap S, Late DJ. Exploring the potential of metal-organic framework based composites as key players in bisphenol detection. Chem Soc Rev 2025; 54:3736-3774. [PMID: 39960342 DOI: 10.1039/d4cs01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The extensive usage of bisphenols in the production of plastics and other materials has raised concerns about their potential adverse effects on human and marine ecosystems. This comprehensive review paper aims to provide insights into the various types of bisphenols and their derivatives, as well as the multiple pathways through which human and marine life can be exposed to these compounds. Additionally, it highlights the growing importance of developing effective detection methods for bisphenols and their derivatives due to their potential health and environmental implications. The focus then shifts towards metal-organic frameworks (MOFs) as promising materials for the detection of bisphenols. We delve into the characteristic properties of MOFs and their potential and limitations in the detection of bisphenols and their derivatives. This paper also addresses the significance of pristine MOFs and explores the potential of MOF-based composites for achieving enhanced detection performance. Subsequently, various detection techniques utilizing MOFs and their composites are reviewed. In the final sections, the recent strategic developments and challenges in this field, offering a concise summary of the principal findings of this review, novel approaches, limitations of current methodologies, and emerging trends for future directions, are discussed. This comprehensive exploration of the subject matter not only illuminates the current state of research on the detection of bisphenols but also provides valuable insights into the opportunities and challenges in this evolving field. In conclusion, this review underscores the critical importance of advancing the detection of bisphenols and their derivatives, with MOFs and their composites emerging as promising candidates for more efficient and sensitive detection. The potential for their applications in diverse fields, coupled with ongoing research efforts, suggests a bright future for MOF-based bisphenol detection technologies.
Collapse
Affiliation(s)
- Sayali Atkare
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Dattatray J Late
- Department of Physics, Federal University of Lavras, Campus Universitário, PO Box 3037, Lavras, Minas Gerais 37200-000, Brazil.
| |
Collapse
|
2
|
Joshi DJ, Jha S, Malek NI, Park TJ, Kailasa SK. Doping of Mn 2+ ion into boron quantum dots with enhanced fluorescence properties for sensing of L-thyroxine biomarker and bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125232. [PMID: 39374559 DOI: 10.1016/j.saa.2024.125232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
L-thyroxine serves as a primary biomarker for diagnosing hypothyroidism and it is also utilized in hormone replacement therapy. Regular assessment of thyroxine levels is crucial for preventing health issues in hypothyroid patients, suggesting the requirement of a facile analytical tool for the detection of L-thyroxine. In this work, a straightforward and efficient synthetic method is introduced for in-situ preparation of Mn2+-doped boron quantum dots (Mn2+@B-QDs) derived from boron powder through a solvothermal reaction. The introduction of Mn2+ ion into B-QDs not only enhances fluorescence efficiency but also provides favorable sites within the QDs, expanding their potential applications in analytical chemistry. The blue fluorescent Mn2+ @B-QDs exhibited excellent performance for the selective recognition of L-thyroxine via a dynamic quenching mechanism. Under ideal conditions, a good linear relation was observed between the fluorescence emission intensity ratio of Mn2+@B-QDs and the concentration of L-thyroxine in the range of 0.125-5 μM, with a lower detection limit of 59.86 nM. The Mn2+@B-QDs exhibited the negligible cytotoxicity against A549 lung cancer cell lines and demonstrated good biocompatibility toward Saccharomyces cerevisiae cells.
Collapse
Affiliation(s)
- Dharaben J Joshi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat 395007, Gujarat, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
3
|
Radfar R, Akin E, Sehit E, Moldovean-Cioroianu NS, Wolff N, Marquant R, Haupt K, Kienle L, Altintas Z. Synthesis and characterization of core-shell magnetic molecularly imprinted polymer nanocomposites for the detection of interleukin-6. Anal Bioanal Chem 2024; 416:6237-6257. [PMID: 39412695 PMCID: PMC11541377 DOI: 10.1007/s00216-024-05536-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 11/07/2024]
Abstract
Interleukin-6 (IL-6) belongs to the cytokine family and plays a vital role in regulating immune response, bone maintenance, body temperature adjustment, and cell growth. The overexpression of IL-6 can indicate various health complications, such as anastomotic leakage, cancer, and chronic diseases. Therefore, the availability of highly sensitive and specific biosensing platforms for IL-6 detection is critical. In this study, for the first time, epitope-mediated IL-6-specific magnetic molecularly imprinted core-shell structures with fluorescent properties were synthesized using a three-step protocol, namely, magnetic nanoparticle functionalization, polymerization, and template removal following thorough optimization studies. The magnetic molecularly imprinted polymers (MMIPs) were characterized using dynamic and electrophoretic light scattering (DLS and ELS), revealing a hydrodynamic size of 169.9 nm and zeta potential of +17.1 mV, while Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy techniques showed characteristic peaks of the polymer and fluorescent tag, respectively. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) investigations confirmed the successful encapsulation of the magnetic core within the ca. 5-nm-thick polymeric shell. The MMIP-based electrochemical sensing platform achieved a limit of detection of 0.38 pM within a linear detection range of 0.38-380 pM, indicating high affinity (dissociation constant KD = 1.6 pM) for IL-6 protein in 50% diluted serum samples. Moreover, comparative investigations with the non-imprinted control polymer demonstrated an imprinting factor of 4, confirming high selectivity. With multifunctional features, including fluorescence, magnetic properties, and target responsiveness, the synthesized MMIPs hold significant potential for application in various sensor techniques as well as imaging.
Collapse
Affiliation(s)
- Rahil Radfar
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Eda Akin
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Ekin Sehit
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Nastasia Sanda Moldovean-Cioroianu
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Niklas Wolff
- Real Structure and Synthesis, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Rodrigue Marquant
- CNRS Enzyme and Cell Engineering Laboratory, Universite de Technologie de Compiègne, Compiègne, France
| | - Karsten Haupt
- CNRS Enzyme and Cell Engineering Laboratory, Universite de Technologie de Compiègne, Compiègne, France
- Institut Universitaire de France, Compiegne, France
| | - Lorenz Kienle
- Real Structure and Synthesis, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Kiel, Germany
| | - Zeynep Altintas
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany.
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Kiel, Germany.
| |
Collapse
|
4
|
Seo YH, Baik S, Lee J. Nanopore surface engineering of molecular imprinted mesoporous organosilica for rapid and selective detection of L-thyroxine. Colloids Surf B Biointerfaces 2024; 234:113711. [PMID: 38128361 DOI: 10.1016/j.colsurfb.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
To develop a biosensing platform for precise diagnosis and management of thyroid-related diseases, the sensitive and selective recognition and identification of L-thyroxine (T4), a thyroid hormone, remains challenging. We herein introduce T4-imprinted mesoporous organosilica (T4-IMO) for sensitive and specific detection of T4 via the sophisticated engineering of pore surfaces using additives with different polarities. The pore surface of T4-IMO emitting a stable fluorescence signal is simply modified by fixed additives. Additives embedded in the pore surface promote the rebinding response of T4 into the recognized cavities, subsequently sensitizing T4 detection. Notably, T4-IMO containing abundant fluorine elements on the pore surface shows a high affinity toward T4, remarkably boosting the rebinding capacity. In addition to good selectivity to T4, the "turn-off" fluorescent signal exhibits a linear relationship with the logarithm of T4 concentration in a range of 0-500 nM with a detection limit of 0.47 nM in synthetic urine samples. Our findings can establish an insightful strategy for the rational design of molecular-recognition-based sensor systems for the selective and sensitive detection of target analytes.
Collapse
Affiliation(s)
- Young Hun Seo
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, Germany.
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, Germany
| | - Jaeho Lee
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, Germany
| |
Collapse
|
5
|
Zhuang Z, Cheng D, Han B, Li R, Shen Y, Wang M, Wang Z, Ding W, Chen G, Zhou Y, Jing T. Preparation of double-system imprinted polymer-coated multi-walled carbon nanotubes and their application in simultaneous determination of thyroid-disrupting chemicals in dust samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167858. [PMID: 37863228 DOI: 10.1016/j.scitotenv.2023.167858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Dust ingestion is a significant route of human exposure to thyroid-disrupting chemicals (TDCs), and simultaneous determination of multi-contaminants is a great challenge for environmental monitoring. In this study, molecularly imprinted polymer-coated multi-walled carbon nanotubes using thyroxine as the template were synthesized for highly selective TDCs capture. This polymer was prepared by integrating the atom transfer radical polymerization using 2-(3-indol-yl)ethylmethacrylamide as the monomer with the self-polymerization of dopamine. Construction of double-system imprinted cavities could significantly improve their selective recognition performance for TDCs and the coincidence rate reached 88.5 %. The prepared polymers were applied as the solid phase extraction adsorbent to simultaneously determine 7 groups of 35 TDCs. The proposed method showed wide linear range (0.25-1000 ng L-1), low limits of detection (0.02-0.23 ng L-1) and acceptable recoveries (81.8 %-103.5 %). The occurrence and distribution of TDCs were then studied in indoor dust samples (n = 65) collected from four cities in China. We found that tetrabromobisphenol A was the predominant compound and perfluorinated compounds were the most abundant TDCs. In addition, the distribution ratio of TDCs varied between regions. This study provides an efficient technology for direct exposure assessment of multi-contaminants.
Collapse
Affiliation(s)
- Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Danqi Cheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Wenping Ding
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Guang Chen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Li Y, Johnson JP, Yang Y, Yu D, Kubo H, Berretta RM, Wang T, Zhang X, Foster M, Yu J, Tilley DG, Houser SR, Chen X. Effects of maternal hypothyroidism on postnatal cardiomyocyte proliferation and cardiac disease responses of the progeny. Am J Physiol Heart Circ Physiol 2023; 325:H702-H719. [PMID: 37539452 PMCID: PMC10659327 DOI: 10.1152/ajpheart.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.
Collapse
Affiliation(s)
- Yijia Li
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Yijun Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Daohai Yu
- Department of Biomedical Education and Data Science, Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Tao Wang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiaoying Zhang
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Michael Foster
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Sales TA, Ferreira LVF, Nogueira AG, Ramalho TC. A theoretical protocol for the rational design of the bioinspired multifunctional hybrid material MIP@cercosporin. J Mol Model 2023; 29:321. [PMID: 37725158 DOI: 10.1007/s00894-023-05653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 09/21/2023]
Abstract
CONTEXT Rational design of polymeric materials prepared with the molecular imprinting technology is gaining even more space, as it can provide the optimal conditions to direct the laboratory molecularly imprinting polymer (MIP) preparation, maximizing their efficiency while reducing costs and preparation time, when compared to try-and-error approaches. We perform a rational design of an MIP with specific cavities for cercosporin accommodation by means of computational tools. The main steps of an MIP preparation were simulated and it was found that the most appropriated functional monomer to be used in the MIP preparation for cercosporin is the acrylamide, while the most suitable crosslinking agent is found to be p-divinylbenzene. Also, the most suitable solvents to remove cercosporin from the cavity are those with low dielectric constant, such as chloroform. This kind of solvent can then be used in washing step, in the case of use the MIP for sensing destinations. On the other hand, solvents like water, which has high dielectric constants, can efficiently improve the interactions between cercosporin and the functional monomer acrylamide, being indicated when the objective is to attract or maintain the cercosporin inside the MIP cavity. Thus, a MIP@cercosporin hybrid material can be used in aqueous solutions more reliably, or even the cercosporin detection in this media can be favoured. In the selectivity analysis of the material prepared in this specific condition, the results point that this MIP can also detect elsinochrome A with high efficiency, and could be more selective for hypericin, altertoxin, hypocrelin A, and phleichrome mycotoxins. METHOD The main steps of a MIP synthesis were theoretically simulated trough density functional theory (DFT) calculations aiming to direct and optimize the synthesis and applications of the material before the bench tests. Initially, in order to choose the most suitable functional to be employed for cercosporin calculations, eight of the DFT functionals that had been previously used for cercosporin calculations in literature were tested, which were the LCWPBE, B3LYP, CAM-B3LYP, M062-X, mPW1PW91, PBE0, TPSSh, and ωb97Xd. The theoretical 1H NMR chemical shifts for cercosporin molecule were calculated and compared with experimental results to analyze the performance of the functionals. Of all these, the best results were obtained with the TPSSh functional, employing the 6-31G(d,p) basis set, and this level of theory was then used for all the following steps. All the simulations were performed by means of geometry optimizations and frequency calculations. Additionally, AIM calculations were employed for further analysis of the interactions between the chosen functional monomer and cercosporin template in step 1, which was functional monomer selection. In washing step, the calculations were done using implicit solvation model, and finally, in selectivity tests, the putative "solid" MIP was simulated by freezing the positions of the monomers after the template remotion, and then other structurally similar toxins were placed in its cavity for the geometry optimizations and frequency calculations.
Collapse
Affiliation(s)
- Thaís A Sales
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | | | - Artur G Nogueira
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Topçu A, Kılıç S, Özgür E, Türkmen D, Denizli A. Inspirations of Biomimetic Affinity Ligands: A Review. ACS OMEGA 2022; 7:32897-32907. [PMID: 36157742 PMCID: PMC9494661 DOI: 10.1021/acsomega.2c03530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Affinity chromatography is a well-known method dependent on molecular recognition and is used to purify biomolecules by mimicking the specific interactions between the biomolecules and their substrates. Enzyme substrates, cofactors, antigens, and inhibitors are generally utilized as bioligands in affinity chromatography. However, their cost, instability, and leakage problems are the main drawbacks of these bioligands. Biomimetic affinity ligands can recognize their target molecules with high selectivity. Their cost-effectiveness and chemical and biological stabilities make these antibody analogs favorable candidates for affinity chromatography applications. Biomimetics applies to nature and aims to develop nanodevices, processes, and nanomaterials. Today, biomimetics provides a design approach to the biomimetic affinity ligands with the aid of computational methods, rational design, and other approaches to meet the requirements of the bioligands and improve the downstream process. This review highlighted the recent trends in designing biomimetic affinity ligands and summarized their binding interactions with the target molecules with computational approaches.
Collapse
Affiliation(s)
- Aykut
Arif Topçu
- Medical
Laboratory Program, Vocational School of Health Service, Aksaray University, 68100 Aksaray, Turkey
| | - Seçkin Kılıç
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Erdoğan Özgür
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Deniz Türkmen
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| |
Collapse
|
9
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
10
|
Sin KR, Kim CJ, Ko SG, Hwang TM, Han YN, Pak YN. Inclusion of thymol into cucurbiturils: density functional theory approach with dispersion correction and natural bond orbital analysis. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
12
|
Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022; 147:571-586. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific recognition and highly sensitive detection of biomarkers play an essential role in identification, early diagnosis and prevention of many diseases. Magnetic molecularly imprinted polymers (MMIPs) have been widely used to capture biomimetic receptors for targets in various complex matrices due to their superior recognition ability, structural stability, and rapid separation characteristics, which overcome the existing deficiencies of traditional recognition elements such as antibodies, aptamers. The integration of MMIPs as recognition elements with chemical sensors opens new opportunities for the development of advanced analytical devices with improved selectivity and sensitivity, shorter analysis time, and lower cost. Recently, MMIPs-chemical sensors (MMIPs-CS) have made significant progress in detection, but many challenges and development spaces remain. Therefore, this review focuses on the research progress of the sensor based on biomarker detection and introduces the surface modification of the magnetic support material used to prepare high selective MMIPs, as well as the selective extraction of target biomarkers by MMIPs from the complex biological sample matrix. Based on the understanding of optical sensors and electrochemical sensors, the applications of MMIPs-optical sensors (MMIPs-OS) and MMIPs-electrochemical sensors (MMIPs-ECS) for biomarker detection were reviewed and discussed in detail. Moreover, it provides an overview of the challenges in this research area and the potential strategies for the rational design of high-performance MMIPs-CS, accelerating the development of multifunctional MMIPs-CS.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Xiaomin Yang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
13
|
Borse S, Jha S, Murthy ZVP, Kailasa SK. Sustainable chemistry approach for the preparation of bluish green emissive copper nanoclusters from Justicia adhatoda leaves extract: a facile analytical approach for the sensing of myoglobin and l-thyroxine. NEW J CHEM 2022. [DOI: 10.1039/d2nj02524h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sustainable chemistry approach for synthesis of fluorescent copper nanoclusters for sensing of myoglobin and l-thyroxine.
Collapse
Affiliation(s)
- Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat 39500, Gujarat, India
| | - Z. V. P. Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, India
| |
Collapse
|
14
|
Wang D, Yang Y, Xu Z, Liu Y, Liu Z, Lin T, Chen X, Liu H. Molecular Simulation-Aided Preparation of Molecularly Imprinted Polymeric Solid-Phase Microextraction Coatings for Kojic Acid Detection in Wheat Starch and Flour Samples. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02039-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
16
|
Marfà J, Pupin RR, Sotomayor M, Pividori MI. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal Bioanal Chem 2021; 413:6141-6157. [PMID: 34164705 DOI: 10.1007/s00216-021-03461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Magnetic particles, as well as molecularly imprinted polymers, have revolutionized separation and bioanalytical methodologies in the 1980s due to their wide range of applications. Today, biologically modified magnetic particles are used in many scientific and technological applications and are integrated in more than 50,000 diagnostic instruments for the detection of a huge range of analytes. However, the main drawback of this material is their stability and high cost. In this work, we review recent advances in the synthesis and characterization of hybrid molecularly imprinted polymers with magnetic properties, as a cheaper and robust alternative for the well-known biologically modified magnetic particles. The main advantages of these materials are, besides the magnetic properties, the possibility to be stored at room temperature without any loss in the activity. Among all the applications, this work reviews the direct detection of electroactive analytes based on the preconcentration by using magnetic-MIP integrated on magneto-actuated electrodes, including food safety, environmental monitoring, and clinical and pharmaceutical analysis. The main features of these electrochemical sensors, including their analytical performance, are summarized. This simple and rapid method will open the way to incorporate this material in different magneto-actuated devices with no need for extensive sample pretreatment and sophisticated instruments.
Collapse
Affiliation(s)
- J Marfà
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R R Pupin
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - Mpt Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - M I Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
17
|
“Out of Pocket” Protein Binding—A Dilemma of Epitope Imprinted Polymers Revealed for Human Hemoglobin. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides.
Collapse
|
18
|
Caserta G, Zhang X, Yarman A, Supala E, Wollenberger U, Gyurcsányi RE, Zebger I, Scheller FW. Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Cao X, Zhang Z, Liu G, Zhang Z, Yin J. Preparation of Magnetic Dummy Template Molecularly Imprinted Polymers for the Determination of Aminoglycosides Antibiotics in Milk. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Herrera-Chacón A, Cetó X, Del Valle M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal Bioanal Chem 2021; 413:6117-6140. [PMID: 33928404 PMCID: PMC8084593 DOI: 10.1007/s00216-021-03313-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Molecularly imprinted polymers (MIPs) are artificially synthesized materials to mimic the molecular recognition process of biological macromolecules such as substrate-enzyme or antigen-antibody. The combination of these biomimetic materials with electrochemical techniques has allowed the development of advanced sensing devices, which significantly improve the performance of bare or catalyst-modified sensors, being able to unleash new applications. However, despite the high selectivity that MIPs exhibit, those can still show some cross-response towards other compounds, especially with chemically analogous (bio)molecules. Thus, the combination of MIPs with chemometric methods opens the room for the development of what could be considered a new type of electronic tongues, i.e. sensor array systems, based on its usage. In this direction, this review provides an overview of the more common synthetic approaches, as well as the strategies that can be used to achieve the integration of MIPs and electrochemical sensors, followed by some recent examples over different areas in order to illustrate the potential of such combination in very diverse applications.
Collapse
Affiliation(s)
- Anna Herrera-Chacón
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Cetó
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Manel Del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
21
|
Shen J, Wu X, Yu J, Yin F, Hao L, Lin C, Zhu L, Luo C, Zhang C, Xu F. Hydrogen bonding interactions between arsenious acid and dithiothreitol/dithioerythritol at different pH values: a computational study with an explicit solvent model. NEW J CHEM 2021. [DOI: 10.1039/d1nj03191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvents participate in the most stable complex formation between arsenious acid and DTT/DTE in their optimal pH ranges.
Collapse
Affiliation(s)
- Jinyu Shen
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Jinsong Yu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Fengqin Yin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Liling Hao
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Caixia Lin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Lizhi Zhu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Chunyan Luo
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| |
Collapse
|
22
|
Zhang L, He L, Wang Q, Tang Q, Liu F. Theoretical and experimental studies of a novel electrochemical sensor based on molecularly imprinted polymer and GQDs-PtNPs nanocomposite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Huang K, Wang X, Zhang H, Zeng L, Zhang X, Wang B, Zhou Y, Jing T. Structure-Directed Screening and Analysis of Thyroid-Disrupting Chemicals Targeting Transthyretin Based on Molecular Recognition and Chromatographic Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5437-5445. [PMID: 32252528 DOI: 10.1021/acs.est.9b05761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exposure to thyroid-disrupting chemicals (TDCs) poses a great threat to human health. However, the screening and analysis of TDCs in environmental samples remain a tough work. In this study, we reported a structure-directed strategy for analyzing TDCs targeting transthyretin (TTR) based on molecular imprinting and chromatographic separation. The imprinted composites were prepared using l-thyroxine (T4) as a template and a tryptophan-like monomer screened from the amino acid library. The imprinted composites exhibited an adsorption capacity of 22.2 μmol g-1 for T4 and an imprinting factor of 2.1. Chromatographic testing was then conducted among 72 chemicals using the imprinted composites-packed column. High retention factors were observed for chemicals that were structurally similar to T4. The chromatographic results were compared with a data set of 45 chemicals with known activities toward TTR. The results suggested that chemicals can be distinguished as TTR binders and nonbinders by retention factors, with a predictive accuracy of more than 90%. Moreover, the retention factors of chemicals were highly correlated with the reported relative potencies obtained from TTR assays. Thus, screening of TTR-binding chemicals can be realized through this simple chromatographic method. The imprinted composites were applied for target analysis and nontarget analysis of TTR-binding chemicals in dust samples. Three new TTR binders were successfully identified and verified by this method. The combination of molecular imprinting and chromatography opens up a new approach for screening TDCs targeting TTR.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Xiu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Hongxing Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Lingshuai Zeng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Xiu Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Bingmao Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| |
Collapse
|
24
|
Ren X, Yang L, Li Y, Cheshari EC, Li X. The integration of molecular imprinting and surface-enhanced Raman scattering for highly sensitive detection of lysozyme biomarker aided by density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117764. [PMID: 31727516 DOI: 10.1016/j.saa.2019.117764] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful bioanalytical technique that opens opportunities for early disease diagnosis and treatment by detecting biomarkers. However, the low sensitivity, selectivity, and reproducibility in the bioanalytical SERS are the main obstacles for clinical use. Herein, we demonstrate a high sensitive and selective label-free lysozyme biomarker detection platform based on coupling of SERS with molecular imprinting technique. The hierarchical silver microspheres with dendritic structure are controllably fabricated by a wet-chemical self-assembly approach. Based on selection of surface-active regions by density functional theory (DFT) simulations, a thin MIPs film (thickness < 15 nm) is then grafted on Ag microsphere surface through surface imprinting. As a result, the final synthesized Ag@MIPs hybrid exhibits as low as 5 ng mL-1 detection limit for target lysozyme, and high selectivity and reproducibility. Intensive "hot spots" in Ag@MIPs confirmed by Raman mapping give rise to the high-performance SERS. Meanwhile, DFT calculations are employed to investigate the SERS spectra and assist the assignment for the characteristic peaks of lysozyme. We believe that the present study provides a reliable and high-sensitive protocol for label-free protein biomarkers detection.
Collapse
Affiliation(s)
- Xiaohui Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanchao Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Emily C Cheshari
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Chemistry and Biochemistry Department, School of Science and Applied Technology, Laikipia University, 20300-1100, Nyahururu, Kenya
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Yang Y, Yan W, Guo C, Zhang J, Yu L, Zhang G, Wang X, Fang G, Sun D. Magnetic molecularly imprinted electrochemical sensors: A review. Anal Chim Acta 2020; 1106:1-21. [PMID: 32145837 DOI: 10.1016/j.aca.2020.01.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
The preparation and practical applications of molecularly imprinted electrochemical sensors (MIECSs) remain challenging due to issues involving electrode surface renewal modes, low adsorption capacities, and sample preparation speeds. To solve these issues, magnetic molecularly imprinted electrochemical sensors (MMIECSs) have been extensively explored by various groups. Recently, MMIECSs fabricated based on diverse strategies have yielded insight into the development of MIECSs, and they have provided effective paths for sample preparation, immobilization and renewal of molecularly imprinted polymers (MIPs) on the electrode surface, leading to promising performances of MIECSs. This review comprehensively describes the research advances for various types of MMIECSs and their applications in the fields of food safety, environmental monitoring, and clinical and pharmaceutical analysis. Based on our understanding of MMIECSs, the literature in this field is thoroughly explored and classified in this review. The challenges existing in this research area and some potential strategies for the rational design of high-performance MMIECS are also outlined.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Wenyan Yan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci, 030619, China.
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
26
|
Preparation and characterization of magnetic molecular imprinted polymers with ionic liquid for the extraction of carbaryl in food. Anal Bioanal Chem 2019; 412:1049-1062. [DOI: 10.1007/s00216-019-02330-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
|
27
|
Khan S, Wong A, Zanoni MVB, Sotomayor MDPT. Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109825. [DOI: 10.1016/j.msec.2019.109825] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
|
28
|
Mathieu-Scheers E, Bouden S, Grillot C, Nicolle J, Warmont F, Bertagna V, Cagnon B, Vautrin-Ul C. Trace anthracene electrochemical detection based on electropolymerized-molecularly imprinted polypyrrole modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Wang Y, Liu X, Lu Z, Liu T, Zhao L, Ding F, Zou P, Wang X, Zhao Q, Rao H. Molecularly imprinted polydopamine modified with nickel nanoparticles wrapped with carbon: fabrication, characterization and electrochemical detection of uric acid. Mikrochim Acta 2019; 186:414. [PMID: 31187172 DOI: 10.1007/s00604-019-3521-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/19/2019] [Indexed: 01/12/2023]
Abstract
An electrochemical sensor is described for determination of uric acid (UA). Carbon-enwrapped nickel nanoparticles (Ni@BC) were coated with polydopamine (PDA) that was molecularly imprinted with UA. The biomass carbon (BC) was synthesized by one-step solid-state pyrolysis from leaves of Firmiana platanifolia. The imprinted polymer was obtained by electrodeposition of DA as the monomer. The amount of monomer, the scan cycles, pH value and adsorption time were optimized. Furthermore, the selectivity of the MIP for UA on a glassy carbon electrode (GCE) was evaluated by selectivity tests. The differential pulse voltammetric responses to UA with and without interferents were consistent. The modified GCE has a linear response in the 0.01-30 μM UA concentration range, and the limit of detection is 8 nM. The MIP electrode was applied to the analysis of UA in urine for which the initial concentrations were determined by the phosphotungstic acid kit. Recoveries ranged from 91.3 to 113.4%, with relative standard deviations between 1.3 and 9.7% (n = 3). Graphical abstract Schematic presentation of electrochemical detection of uric acid by molecularly imprinted polydopamine modified with nickel nanoparticles wrapped with carbon (Ni@BC-MIP).
Collapse
Affiliation(s)
- Yanying Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Xin Liu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Lijun Zhao
- Ministry of Agriculture and Rural Affairs Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry, Chengdu, 610065, People's Republic of China
| | - Fang Ding
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Optoelectronics, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China.
| |
Collapse
|
30
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
31
|
Electrochemical sensing of the thyroid hormone thyronamine (T0AM) via molecular imprinted polymers (MIPs). Talanta 2019; 194:689-696. [DOI: 10.1016/j.talanta.2018.10.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022]
|
32
|
Lahcen AA, Amine A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. ELECTROANAL 2018. [DOI: 10.1002/elan.201800623] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdellatif Ait Lahcen
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| | - Aziz Amine
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| |
Collapse
|
33
|
Hassan AHA, Sappia L, Moura SL, Ali FHM, Moselhy WA, Sotomayor MDPT, Pividori MI. Biomimetic magnetic sensor for electrochemical determination of scombrotoxin in fish. Talanta 2018; 194:997-1004. [PMID: 30609635 DOI: 10.1016/j.talanta.2018.10.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022]
Abstract
This work addresses a novel, rapid and cost-effective approach for the electrochemical sensing of scombrotoxin (histamine) in fish based on magnetic molecularly imprinted polymer (magnetic-MIP). The histamine magnetic-MIP was synthesized by the core-shell method using histamine as a template, and 2-vinyl pyridine as functional monomer. The magnetic-MIP was characterized by TEM, SEM, and confocal microscopy. Additionally, the binding capacity of magnetic-MIP towards histamine was investigated and compared with magnetic non-molecularly imprinted polymer (magnetic-NIP). This biomimetic material merged the advantages of MIPs and magnetic particles (MPs), including low cost of production, stability, high binding capacity and can be easily separated by the aid of a permanent magnet. The magnetic-MIP was integrated into magneto-actuated electrodes for the direct electrochemical detection of histamine preconcentrated from fish samples. The results revealed that this approach succeeded in the preconcentration and determination of histamine with a LOD as low as 1.6 × 10-6 mg L-1, much lower than the index for fish spoilage (50 mg kg-1) accordingly to the legislation. Furthermore, the analytical performance was validated for the determination of histamine in scombroid fish samples with recovery values ranging from 96.8 to 102.0 %, confirm so it can be applied easily for routine food examination.
Collapse
Affiliation(s)
- Amal H A Hassan
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Food Hygiene and Control department, Faculty of Veterinary Medicine, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Luciano Sappia
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Silio Lima Moura
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Fatma H M Ali
- Food Hygiene and Control department, Faculty of Veterinary Medicine, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Walaa A Moselhy
- Forensic Medicine and Toxicology department, Faculty of Veterinary Medicine, Beni-Suef University, 62511 Beni-Suef, Egypt
| | | | - Maria Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
34
|
A review of titanium dioxide and its highlighted application in molecular imprinting technology in environment. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
35
|
Synthesis of cobalt-based magnetic nanoporous carbon core-shell molecularly imprinted polymers for the solid-phase extraction of phthalate plasticizers in edible oil. Anal Bioanal Chem 2018; 410:6943-6954. [DOI: 10.1007/s00216-018-1299-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023]
|
36
|
Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens Bioelectron 2018; 118:181-187. [PMID: 30077132 DOI: 10.1016/j.bios.2018.06.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
The electrochemical detection of methyl parathion in fish was performed by preconcentrating the pesticide on magnetic molecularly imprinted polymer and further readout on magneto-actuated electrode by square wave voltammetry. The magnetic molecularly imprinted polymer was synthesized by a magnetic core-shell strategy, using methacrylic acid as a functional monomer, and selected by theoretical calculation using the density functional theory (DFT). The characterization of this material was performed by SEM, TEM and XRD. Moreover, the binding capacity and selectivity towards methyl parathion was studied and compared with the corresponding magnetic non-imprinted polymer. The magneto-actuated electrochemical sensor showed outstanding analytical performance for the detection of methyl parathion in fish, with a limit of detection of as low as 1.22 × 10-6 mg L-1 and recovery values ranging from 89.4% to 94.7%. The magnetic molecularly imprinted polymer successfully preconcentrated the analyte from the complex samples and paves the way to incorporate this material in other platforms for the detection of this pesticide in the field of environmental control and food safety.
Collapse
|