1
|
Babamiri B, Farrokhnia M, Mohammadi M, Nezhad AS. A novel strategy for controllable electrofabrication of molecularly imprinted polymer biosensors utilizing embedded Prussian blue nanoparticles. Sci Rep 2025; 15:8859. [PMID: 40087363 PMCID: PMC11909151 DOI: 10.1038/s41598-025-93025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The reproducibility of ultrasensitive biosensors is vital for clinical research, scalable manufacturing, commercialization, and reliable clinical decision-making, as batch-to-batch variations introduce significant uncertainty. However, most biosensors lack robust quality control (QC) measures. This study introduces an innovative QC strategy to produce highly reproducible molecularly imprinted polymer (MIP) biosensors by leveraging real-time data from the electrofabrication process. Prussian Blue nanoparticles (PB NPs) embedded within the MIP structure enable precise monitoring of surface properties, conductivity, MIP film thickness, and template extraction efficiency. The QC strategy utilizes variations in the current intensity of PB NPs during fabrication to implement real-time, non-destructive QC protocols at critical fabrication stages, minimizing measurement variability and ensuring consistency. This approach was validated by fabricating MIP biosensors for detecting agmatine metabolite and glial fibrillary acidic protein (GFAP) in phosphate-buffered saline (PBS). The QC strategy reduced relative standard deviation (RSD) by 79% for agmatine (RSD = 2.05% QC, RSD = 9.68% control) and 87% for GFAP (RSD = 1.44% QC, RSD = 11.67% control). Moreover, quality-controlled biosensors achieved success rates of 45% for agmatine and 36% for GFAP detection, significantly outperforming bare screen-printed electrodes. This work marks a significant advancement in biosensor development by integrating robust QC protocols directly into the fabrication process. By embedding PB NPs and monitoring electrochemical signals in real-time, this strategy delivers an unprecedented level of reproducibility, scalability, and reliability for MIP biosensors, addressing critical challenges in point-of-care diagnostics and commercial applications.
Collapse
Affiliation(s)
- Bahareh Babamiri
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Mohammadreza Farrokhnia
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada.
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
2
|
Salehirozveh M, Bonné R, Kumar P, Abazar F, Dehghani P, Mijakovic I, Roy VAL. Enhanced detection of Brain-Derived Neurotrophic Factor (BDNF) using a reduced graphene oxide field-effect transistor aptasensor. NANOSCALE 2025; 17:4543-4555. [PMID: 39803882 DOI: 10.1039/d4nr04228j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness. In this research, we developed the first electrical aptasensor for BDNF detection, constructed on a flexible polyimide (PI) membrane coated with reduced graphene oxide (r-GO) and utilized an extended-gate field-effect transistor (EGFET) as the transducer. Comprehensive characterization of the sensor, coupled with the fine-tuning of aptamer concentration and the binding time of DNA aptamers to the chemical linker, was achieved through Electrochemical Impedance Spectroscopy (EIS) to boost sensitivity. Consequently, by utilizing the unique properties of r-GO and DNA aptamers, the aptasensor exhibited exceptional detection abilities, with a detection limit as low as 0.4 nM and an extensive response range spanning from 0.025 to 1000 nM. The flexible PI-based electrode offers exceptional stability, affordability, and durability for home diagnostics, enriched by the reusability of its electronic transducer, making the device highly portable and suitable for prolonged monitoring. Our aptasensor surpasses traditional methods, showcasing superior real-time performance and reliability. The high sensitivity and specificity of our aptasensor highlight its potential to significantly improve early diagnosis and therapeutic monitoring of neurodegenerative diseases such as Alzheimer's, representing a considerable advancement in the diagnosis and management of such conditions.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Robin Bonné
- Center for Electromicrobiology (CEM), Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark
| | - Peeyush Kumar
- Department of Engineering, Johannes Kepler University Linz - JKU, Austria
| | - Farbod Abazar
- Department of Information Engineering, University of Pisa, UNIPI, Pisa, Italy
| | - Parisa Dehghani
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| |
Collapse
|
3
|
Li G, Wu G, Huang Q, Dong S, Zhou Y, Lu M, Liang J, Zhou X, Zhou Z. Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection. Mikrochim Acta 2024; 192:35. [PMID: 39729216 DOI: 10.1007/s00604-024-06909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated Ti3C2 MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal. When LDL reacts with the LDL aptamer (LDLApt) immobilized on the photosensitive layers to form LDL-LDLApt complexes, the reaction process can induce the modification of the surface potential in the photosensitive layer, leading to potential shift observed through the I-V curves. The experimental conditions were successfully optimized with few planned tests by applying the Box-Behnken design and response surface methodology aspects of the Design-Expert software. Under the optimal condition, the potential shift had a linear relationship with concentrations of LDL from 0.02 to 0.30 μg/mL. The limit of detection (LOD) was 5.88 ng/mL (S/N = 3) and the sensitivity was 315.20 mV/μg·mL-1. In addition, the LDL C-LAPS demonstrated excellent specificity, reproducibility, and stability in detecting LDL. The sensor performed well in quantifying LDL in real samples. Therefore, the LDL C-LAPS has the potential for clinical applications.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Guangxiong Wu
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Qing Huang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Shuaikang Dong
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Yu Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Mei Lu
- Department of Clinical Laboratory, The 924, Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, People's Republic of China
| | - Jintao Liang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Xueqing Zhou
- Department of Clinical Laboratory, The 924, Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
4
|
Yin J, Jia X, Li H, Zhao B, Yang Y, Ren TL. Recent Progress in Biosensors for Depression Monitoring-Advancing Personalized Treatment. BIOSENSORS 2024; 14:422. [PMID: 39329797 PMCID: PMC11430531 DOI: 10.3390/bios14090422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Depression is currently a major contributor to unnatural deaths and the healthcare burden globally, and a patient's battle with depression is often a long one. Because the causes, symptoms, and effects of medications are complex and highly individualized, early identification and personalized treatment of depression are key to improving treatment outcomes. The development of wearable electronics, machine learning, and other technologies in recent years has provided more possibilities for the realization of this goal. Conducting regular monitoring through biosensing technology allows for a more comprehensive and objective analysis than previous self-evaluations. This includes identifying depressive episodes, distinguishing somatization symptoms, analyzing etiology, and evaluating the effectiveness of treatment programs. This review summarizes recent research on biosensing technologies for depression. Special attention is given to technologies that can be portable or wearable, with the potential to enable patient use outside of the hospital, for long periods.
Collapse
Affiliation(s)
- Jiaju Yin
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xinyuan Jia
- Xingjian College, Tsinghua University, Beijing 100084, China;
| | - Haorong Li
- Weiyang College, Tsinghua University, Beijing 100084, China;
| | - Bingchen Zhao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Hassan Akhtar M, Azhar Hayat Nawaz M, Abbas M, Liu N, Han W, Lv Y, Yu C. Advances in pH Sensing: From Traditional Approaches to Next-Generation Sensors in Biological Contexts. CHEM REC 2024; 24:e202300369. [PMID: 38953343 DOI: 10.1002/tcr.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Indexed: 07/04/2024]
Abstract
pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.
Collapse
Affiliation(s)
- Mahmood Hassan Akhtar
- College of Animal Science, Jilin University, Changchun, 130062, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS, University Islamabad, 54000, Lahore, Campus, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yan Lv
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Mobed A, Charsouei S, Yazdani Y, Gargari MK, Ahmadalipour A, Sadremousavi SR, Farrahizadeh M, Shahbazi A, Haghani M. Biosensors, Recent Advances in Determination of BDNF and NfL. Cell Mol Neurobiol 2023; 43:3801-3814. [PMID: 37605014 PMCID: PMC11407714 DOI: 10.1007/s10571-023-01401-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Key biomarkers such as Brain Derived Neurotrophic Factor (BDNF) and Neurofilament light chain (NfL) play important roles in the development and progression of many neurological diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In these clinical conditions, the underlying biomarker processes are markedly heterogeneous. In this context, robust biomarker discovery is of critical importance for screening, early detection, and monitoring of neurological diseases. The difficulty of directly identifying biochemical processes in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory response have been identified in various body fluids such as blood, cerebrospinal fluid, and tears. Furthermore, biotechnology and nanotechnology have facilitated the development of biosensor platforms capable of real-time detection of multiple biomarkers in clinically relevant samples. Biosensing technology is approaching maturity and will be deployed in communities, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight clinical and current technological advances in the development of multiplex-based solutions for effective diagnosis and monitoring of neuroinflammatory and neurodegenerative diseases. The trend in the detection if BDNF and NfL.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeid Charsouei
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yalda Yazdani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morad Kohandel Gargari
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Reyhaneh Sadremousavi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, East Azarbayjan Science and Research Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Farrahizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ali Shahbazi
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Haghani
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Wei H, Sun B, Li Y, Wang Y, Chen Y, Guo M, Mo X, Hu F, Du Y. Electrochemical immunosensor AuNPs/NG-PANI/ITO-PET for the determination of BDNF in depressed mice serum. Mikrochim Acta 2023; 190:330. [PMID: 37500906 DOI: 10.1007/s00604-023-05878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
A novel electrochemical immunosensor was developed for highly sensitive detection of brain-derived neurotrophic factor (BDNF), a well-known depression marker. The immunosensor was fabricated by modifying indium tin oxide-coated polyethylene terephthalate (ITO-PET) with N-doped graphene-polyaniline (NG-PANI) and gold nanoparticles (AuNPs) to enhance the conductivity and protein loading capacity. Subsequently, BDNF was immobilized onto the electrode surface via gold-sulfur bonds, followed by the attachment of biotinylated antibody (Biotin-Ab) and horseradish peroxidase-avidin (HRP-Avidin) to create the final immunosensor (HRP-Avidin-Biotin-Ab-BDNF-AuNPs/NG-PANI/ITO-PET). The proposed immunosensor exhibited a linear range of determination (0.781-400 pg/mL) with a low limit of detection (LOD) of 0.261 pg/mL (S/N = 3) and excellent reproducibility (RSD = 1.4%) and stability (92.7%, RSD = 3.1%). Additionally, the immunosensor demonstrated good anti-interference performance and good recovery (98.1-107%). To evaluate the practical utility of the immunosensor, BDNF levels were quantified in the serum of mice with depression induced by chronic unpredictable mild stress (CUMS). The results indicated that the serum BDNF levels were significantly decreased in the depression model group compared with the control group, highlighting the potential of this immunosensor for clinical detection of BDNF in depression diagnosis and treatment.
Collapse
Affiliation(s)
- Hong Wei
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Bolu Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, Gansu, China
| | - YuanYuan Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Yanping Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Yan Chen
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Min Guo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Xiaohui Mo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Fangdi Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China.
| | - Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Kaur H, Chittineedi P, Bellala RS, Bellala VM, Singh S, Kumari R, Chandra P, Pandrangi SL, Singh SP. Clinically Deployable Bioelectronic Sensing Platform for Ultrasensitive Detection of Transferrin in Serum Sample. BIOSENSORS 2023; 13:406. [PMID: 36979618 PMCID: PMC10046405 DOI: 10.3390/bios13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Varying levels of transferrin (Tf) have been associated with different disease conditions and are known to play a crucial role in various malignancies. Regular monitoring of the variations in Tf levels can be useful for managing related diseases, especially for the prognosis of certain cancers. We fabricated an immunosensor based on graphene oxide (GO) nanosheets to indirectly detect Tf levels in cancer patients. The GO nanosheets were deposited onto an indium tin oxide (ITO)-coated glass substrate and annealed at 120 °C to obtain reduced GO (rGO) films, followed by the immobilization of an antibody, anti-Tf. The materials and sensor probe used were systematically characterized by UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were also used for the stepwise sensor probe characterizations and Tf detection in serum samples, respectively. The anti-Tf/rGO/ITO immunosensor DPV output demonstrated an excellent Tf detection capability in the linear range of 0.1 mg mL-1 to 12 mg mL-1 compared to the enzyme-linked immunosorbent assay (ELISA) detection range, with a limit of detection (LOD) of 0.010 ± 0.007 mg mL-1. Furthermore, the results of the fabricated immunosensor were compared with those of the ELISA and autobioanalyzer techniques, showing an outstanding match with < 5% error and demonstrating the immunosensor's clinical potential.
Collapse
Affiliation(s)
- Harleen Kaur
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | | | - Venkata Madhavi Bellala
- Department of Pathology, GITAM Institute of Medical Sciences and Research, Visakhapatnam 530045, India
| | - Sandeep Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | - Surinder P. Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
9
|
Electrochemical Nano-Imprinting of Trimetallic Dendritic Surface for Ultrasensitive Detection of Cephalexin in Pharmaceutical Formulations. Pharmaceutics 2023; 15:pharmaceutics15030876. [PMID: 36986737 PMCID: PMC10058315 DOI: 10.3390/pharmaceutics15030876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Cephalexin (CFX), a first-generation cephalosporin, is used to treat various infectious diseases. Although antibiotics have achieved considerable progress in the eradication of infectious diseases, their incorrect and excessive usage has contributed to various side effects, such as mouth soreness, pregnancy-related pruritus, and gastrointestinal symptoms, including nausea, epigastric discomfort, vomiting, diarrhoea, and haematuria. In addition to this, it also causes antibiotic resistance, one of the most pressing problems in the medical field. The World Health Organization (WHO) claims that cephalosporins are currently the most commonly used drugs for which bacteria have developed resistance. Hence, it is crucial to detect CFX in complex biological matrices in a highly selective and sensitive way. In view of this, a unique trimetallic dendritic nanostructure comprised of cobalt, copper, and gold was electrochemically imprinted on an electrode surface by optimising the electrodeposition variables. The dendritic sensing probe was thoroughly characterised using X-ray photoelectron spectroscopy, scanning electron microscopy, chronoamperometry, electrochemical impedance spectroscopy, and linear sweep voltammetry. The probe displayed superior analytical performance, with a linear dynamic range between 0.05 nM and 105 nM, limit of detection of 0.04 ± 0.01 nM, and response time of 4.5 ± 0.2 s. The dendritic sensing probe displayed minimal response to interfering compounds, such as glucose, acetaminophen, uric acid, aspirin, ascorbic acid, chloramphenicol, and glutamine, which usually occur together in real matrices. In order to check the feasibility of the surface, analysis of a real sample was carried out using the spike and recovery approach in pharmaceutical formulations and milk samples, yielding current recoveries of 93.29–99.77% and 92.66–98.29%, respectively, with RSD < 3.5%. It only took around 30 min to imprint the surface and analyse the CFX molecule, making it a quick and efficient platform for drug analysis in clinical settings.
Collapse
|
10
|
Jha NG, Dkhar DS, Singh SK, Malode SJ, Shetti NP, Chandra P. Engineered Biosensors for Diagnosing Multidrug Resistance in Microbial and Malignant Cells. BIOSENSORS 2023; 13:235. [PMID: 36832001 PMCID: PMC9954051 DOI: 10.3390/bios13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To curtail pathogens or tumors, antimicrobial or antineoplastic drugs have been developed. These drugs target microbial/cancer growth and survival, thereby improving the host's health. In attempts to evade the detrimental effects of such drugs, these cells have evolved several mechanisms over time. Some variants of the cells have developed resistances against multiple drugs or antimicrobial agents. Such microorganisms or cancer cells are said to exhibit multidrug resistance (MDR). The drug resistance status of a cell can be determined by analyzing several genotypic and phenotypic changes, which are brought about by significant physiological and biochemical alterations. Owing to their resilient nature, treatment and management of MDR cases in clinics is arduous and requires a meticulous approach. Currently, techniques such as plating and culturing, biopsy, gene sequencing, and magnetic resonance imaging are prevalent in clinical practices for determining drug resistance status. However, the major drawbacks of using these methods lie in their time-consuming nature and the problem of translating them into point-of-care or mass-detection tools. To overcome the shortcomings of conventional techniques, biosensors with a low detection limit have been engineered to provide quick and reliable results conveniently. These devices are highly versatile in terms of analyte range and quantities that can be detected to report drug resistance in a given sample. A brief introduction to MDR, along with a detailed insight into recent biosensor design trends and use for identifying multidrug-resistant microorganisms and tumors, is presented in this review.
Collapse
Affiliation(s)
- Niharika G. Jha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S. Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Sumit K. Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Shweta J. Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Nagaraj P. Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Panjab, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
11
|
Singh N, Dkhar DS, Chandra P, Azad UP. Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis. BIOSENSORS 2023; 13:bios13020166. [PMID: 36831931 PMCID: PMC9953246 DOI: 10.3390/bios13020166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 05/17/2023]
Abstract
Nanobiosensors are devices that utilize a very small probe and any form of electrical, optical, or magnetic technology to detect and analyze a biochemical or biological process. With an increasing population today, nanobiosensors have become the broadly used electroanalytical tools for the timely detection of many infectious (dengue, hepatitis, tuberculosis, leukemia, etc.) and other fatal diseases, such as prostate cancer, breast cancer, etc., at their early stage. Compared to classical or traditional analytical methods, nanobiosensors have significant benefits, including low detection limit, high selectivity and sensitivity, shorter analysis duration, easier portability, biocompatibility, and ease of miniaturization for on-site monitoring. Very similar to biosensors, nanobiosensors can also be classified in numerous ways, either depending on biological molecules, such as enzymes, antibodies, and aptamer, or by working principles, such as optical and electrochemical. Various nanobiosensors, such as cyclic voltametric, amperometric, impedimetric, etc., have been discussed for the timely monitoring of the infectious and fatal diseases at their early stage. Nanobiosensors performance and efficiency can be enhanced by using a variety of engineered nanostructures, which include nanotubes, nanoparticles, nanopores, self-adhesive monolayers, nanowires, and nanocomposites. Here, this mini review recaps the application of two-dimensional (2D) materials, especially graphitic carbon nitride (g-C3N4), graphene oxide, black phosphorous, and MXenes, for the construction of the nanobiosensors and their application for the diagnosis of various infectious diseases at very early stage.
Collapse
Affiliation(s)
- Nandita Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, CG, India
| | - Daphika S. Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
- Correspondence: (P.C.); (U.P.A.)
| | - Uday Pratap Azad
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, CG, India
- Correspondence: (P.C.); (U.P.A.)
| |
Collapse
|
12
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Singh SP, Chandra P. Nano-Engineered Surface Comprising Metallic Dendrites for Biomolecular Analysis in Clinical Perspective. BIOSENSORS 2022; 12:1062. [PMID: 36551029 PMCID: PMC9775260 DOI: 10.3390/bios12121062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 09/28/2023]
Abstract
Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a lot of interests in the recent years because of their interesting hierarchical structures and distinctive features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches with a plethora of pointed ends, ridges, and edges. These features provide them with larger active surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used in the fabrication of sensors. This review begins with the properties and various synthetic approaches of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety of real matrices. Finally, to enlighten future research, the limitations and future potential of these newly discovered materials are discussed.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Daphika S. Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Surinder P. Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
13
|
Afshari N, Al-Gazally ME, Rasulova I, Jalil AT, Matinfar S, Momeninejad M. Sensitive bioanalytical methods for telomerase activity detection: a cancer biomarker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4174-4184. [PMID: 36254582 DOI: 10.1039/d2ay01315k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Telomerase is an enzyme that protects the length of telomeres by adding guanine-rich repetitive sequences. In tumors, gametes, and stem cells, telomerase activity is exerted. Telomerase activity can be a cancer biomarker for therapeutic and diagnosis approaches. So, a number of studies concentrating on the discovery of telomerase activity were reported. Bioanalytical devices, in comparison with other tests, have numerous advantages including low expense, simplicity, and excellent sensitivity and specificity. In this article we reviewed recent studies on the subject of various bioanalytical methods based on different nanomaterials. Optical, electrochemical, and quartz crystal microbalance (QCM) are prominent analytical techniques that are mentioned in this paper.
Collapse
Affiliation(s)
- Nasim Afshari
- Department of Microbiology, Islamic Azad University Science & Research Branch, Tehran, Iran
| | | | - Iroda Rasulova
- "Kasmed" Private Medical Centre, Tashkent, Uzbekistan
- School of Medicine, Akfa University, Tashkent, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Solmaz Matinfar
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Momeninejad
- Department of Social Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
14
|
Hu X, Yu C, Dong T, Yang Z, Fang Y, Jiang Z. Biomarkers and detection methods of bipolar disorder. Biosens Bioelectron 2022; 220:114842. [DOI: 10.1016/j.bios.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022]
|
15
|
An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples. BIOSENSORS 2022; 12:bios12100791. [PMID: 36290931 PMCID: PMC9599568 DOI: 10.3390/bios12100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022]
Abstract
In this work, 2-AG was successfully detected in human plasma samples using a new sandwich-type electrochemical immune device based on poly-β-cyclodextrin P(β-CD) functionalized with AuNPs-DDT and toluidine blue. The P(β-CD) ensured the bioactivity and stability of the immobilized 2-AG antibody by providing a broad surface for the efficient immobilization of the biotinylated antibody. To complete the top section of the immunosensor (reporter), an HRP-conjugated antibody of 2-AG (secondary antibody (Ab2)) was attached to the surface of a glassy carbon electrode (GCE) modified by P(β-CD), as well as a primarily biotinylated antibody (Ab1). The biosensor fabrication process was monitored using field-emission scanning electron microscope (FE-SEM) and EDS methods. Using the differential pulse voltammetry technique, the immunosensor was utilized for detection of 2-AG in real samples. The suggested interface increased the surface area, which allowed for the immobilization of a large quantity of anti-2-AG antibody while also improving biocompatibility, stability, and electrical conductivity. Finally, the suggested immunosensor’s limit of quantitation was determined to be 0.0078 ng/L, with a linear range of 0.0078 to 1.0 ng/L. The results showed that the suggested bioassay can be utilized for diagnosis of 2-AG in clinical samples as a unique and ultrasensitive electrochemical biodevice.
Collapse
|
16
|
Nawaz MAH, Akhtar MH, Ren J, Akhtar N, Hayat A, Yu C. Black phosphorus nanosheets/poly(allylamine hydrochloride) based electrochemical immunosensor for the selective detection of human epididymis protein 4. NANOTECHNOLOGY 2022; 33:485502. [PMID: 35998539 DOI: 10.1088/1361-6528/ac8bd8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this work, an electrochemical immunosensor based on black phosphorus nanosheets (BPNS)/poly(allylamine hydrochloride) (PAH) nanocomposite modified glassy carbon electrode was developed for the detection of ovarian cancer biomarker HE4. PAH has been applied to retain BPNS in its original honeycomb structure and to anchor biomolecules electrostatically on the transducer surface. The as synthesized nanocomposite was characterized by zeta potential analysis, scanning electron microscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy. Subsequently, the performance of the electrochemical immunosensor was evaluated through cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Under the optimal condition, the developed electrochemical immunosensor permitted to detect HE4 with a linear range of 0.1-300 ng ml-1and a detection limit of 0.01 ng ml-1. The developed sensor exhibited good selectivity and specificity to HE4 with negligible interference effect from common biomolecules like bovine serum albumin, lysozyme, protamine, glucose, fructose, hemoglobin and fetal bovine serum. Further, practical application of developed electrochemical immunosensor was demonstrated in spiked human serum which showed satisfactory recovery percentages.
Collapse
Affiliation(s)
- Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Mahmood Hassan Akhtar
- Department of Chemistry, National University of Technology (NUTech) IJP Road, Islamabad, Pakistan
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
17
|
Kumar R, Dkhar DS, Kumari R, Supratim Mahapatra D, Srivastava A, Dubey VK, Chandra P. Ligand conjugated lipid-based nanocarriers for cancer theranostics. Biotechnol Bioeng 2022; 119:3022-3043. [PMID: 35950676 DOI: 10.1002/bit.28205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022]
Abstract
Cancer is one of the major health-related issues affecting the population worldwide and subsequently accounts for the second-largest death. Genetic and epigenetic modifications in oncogenes or tumor suppressor genes affect the regulatory systems that lead to the initiation and progression of cancer. Conventional methods, including chemotherapy/radiotherapy/appropriate combinational therapy and surgery, are being widely used for theranostics of cancer patients. Surgery is useful in treating localized tumors, but it is ineffective in treating metastatic tumors, which spread to other organs and result in a high recurrence rate and death. Also, the therapeutic application of free drugs is related to substantial issues such as poor absorption, solubility, bioavailability, high degradation rate, short shelf-life, and low therapeutic index. Therefore, these issues can be sorted out using nano lipid-based carriers (NLBCs) as promising drug delivery carriers. Still, at most, they fail to achieve site targeted drug delivery and detection. This can be achieved by selecting a specific ligand/antibody for its cognate receptor molecule expressed on the surface of cancer cell. In this review, we have mainly discussed the various types of ligands used to decorate NLBCs. A list of the ligands used to design nanocarriers to target malignant cells has been extensively undertaken. The approved ligand decorated lipid-based nanomedicines with their clinical status has been explained in tabulated form to provide a wider scope to the readers regarding ligand coupled NLBCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Divya Supratim Mahapatra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
18
|
Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
20
|
Gao S, Li Q, Zhang S, Sun X, Zheng X, Qian H, Wu J. One-step high-throughput detection of low-abundance biomarker BDNF using a biolayer interferometry-based 3D aptasensor. Biosens Bioelectron 2022; 215:114566. [PMID: 35863136 DOI: 10.1016/j.bios.2022.114566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Although biosensors for signal monitoring have been extensively developed, their application in one-step high-throughput detection of low-abundance disease biomarkers remains challenging. This study presents a 3D aptasensor based on a biolayer interferometry (BLI) technique, followed by the sensitive and rapid detection of the specific biomarker brain-derived neurotrophic factor (BDNF) for early screening of glaucoma, an irreversible disease that causes blindness. The developed 3D aptasensor enabled one-step batch conversion of the low-abundance biomarker BDNF binding into optical interference signal, which was mainly attributed to the following factors: (1) A dimeric aptamer with extremely high targeting affinity was constructed as a biorecognition molecule, (2) highly sensitive 3D matrix sensors were integrated as signal transduction elements, and (3) the BLI Octet system with automated, high-throughput, and real-time online monitoring capabilities was used for reporting. The 3D aptasensor exhibited a broad detection window from 0.41 to 250 ng/mL BDNF, with a limit of detection of 0.2 ng/mL. Furthermore, detection of BDNF in glaucoma patient serum using the aptasensor showed good agreement with ELISA findings as well as the clinical diagnosis of the patient, demonstrating the feasibility of the system as a screening tool for glaucoma. This one-step high-throughput screening approach provides a valuable solution for the early diagnosis of glaucoma and may reduce the risk of blindness in visually impaired people.
Collapse
Affiliation(s)
- Shunxiang Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qian Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin Zheng
- Department of Laboratory Medicine, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Husun Qian
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China.
| |
Collapse
|
21
|
Saputra HA, Chung JH, Yoon SH, Seo KD, Park DS, Shim YB. Disposable amperometric immunosensor with a dual monomers-based bioconjugate for granzyme B detection in blood and cancer progress monitoring of patients. Biosens Bioelectron 2022; 198:113846. [PMID: 34871833 DOI: 10.1016/j.bios.2021.113846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022]
Abstract
A disposable amperometric biosensor with a dual monomers-based bioconjugate was developed for granzyme B (GzmB) detection and for monitoring of the cancer progression of patients before and after immunotherapy. The biosensor was fabricated by immobilizing a GzmB monoclonal antibody (Ab1) on a poly3'-(2-aminopyrimidyl)-2,2':5',2''-terthiophene/gold nanoparticle (pPATT/AuNP) layer. The bioconjugate nanoparticles were synthesized through self-assembly of a monomer mixture of 2,2:5,2-terthiophene-3-(p-benzoic acid) (TBA) and PATT onto AuNPs, followed by chemical binding of brilliant cresyl blue (BCB) on TBA and GzmB polyclonal antibody (Ab2) on the PATT layer. Each sensing layer was investigated by surface analysis and electrochemical experiments. The sensor performance was assessed with selectivity, stability, reproducibility, detection limit, and real sample analysis. Under the optimized conditions, the dynamic range of GzmB was in two slopes from 3.0 to 50.0 pg/ml and from 50.0 to 1000.0 pg/ml with a detection limit of 1.75 ± 0.14 pg/ml (RSD ≤5.2%). GzmB monitoring was performed for the patient's serum samples, where a low level of GzmB was observed for lung cancer patients before immunotherapy (10.51 ± 0.99 pg/ml, RSD ≤6.2%), and the level was increased after therapy (17.19 ± 2.22 pg/ml, RSD ≤2.6%). Moreover, a significantly higher level was present in healthy persons (34.40 ± 3.92 pg/ml, RSD ≤1.4%). The cancer progression of patients before and after therapy was evaluated by monitoring GzmB levels in human serum using the proposed sensor.
Collapse
Affiliation(s)
- Heru Agung Saputra
- Institute of BioPhysio Sensor Technology (IBST) and Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan-si, 626-770, Republic of Korea
| | - Seong Hoon Yoon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan-si, 626-770, Republic of Korea
| | - Kyeong-Deok Seo
- Institute of BioPhysio Sensor Technology (IBST) and Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST) and Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Yoon-Bo Shim
- Institute of BioPhysio Sensor Technology (IBST) and Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
22
|
Liu M, Yang J, Wang J, Liu Z, Hu C. Light-Addressable Paper-Based Photoelectrochemical Analytical Device with Tunable Detection Throughput for On-Site Biosensing. Anal Chem 2022; 94:583-587. [DOI: 10.1021/acs.analchem.1c04907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jia Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Sammi A, Divya, Mahapatra S, Kumar R, Chandra P. Nano-Bio-engineered Silk Matrix based Devices for Molecular Bioanalysis. Biotechnol Bioeng 2021; 119:784-806. [PMID: 34958139 DOI: 10.1002/bit.28021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Silk is a fibrous protein, has been a part of human lives for centuries and was used as suture and textile material. Silk is mainly produced by members of certain arthropods such as spiders, butterflies, mites, and moths. However, recent technological advances have revolutionized silk as a biomaterial for various applications ranging from heat sensors to robust fibers. The biocompatibility, mechanical resilience, and biodegradability of the material make it a suitable candidate for biomaterials. Silk can also be easily converted into several morphological forms, including fibers, films, sponges, and hydrogels. Provided these abilities, silk have received excellent traction from scientists worldwide for various developments, one of them being its use as a bio-sensor. The diversity of silk materials offers various options, giving scientists the freedom to choose from and personalize them as per their needs. In this review, we foremost look upon the composition, production, properties, and various morphologies of silk. The numerous applications of silk and its derivatives for fabricating biosensors to detect small molecules, macromolecules, and cells have been explored comprehensively. Also, the data from various globally developed sensors using silk have been described into organized tables for each category of molecules, along with their important analytical details. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aditi Sammi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
24
|
Dorandish S, Atali S, Ray R, Al Khashali H, Coleman KL, Guthrie J, Heyl D, Evans HG. Differences in the Relative Abundance of ProBDNF and Mature BDNF in A549 and H1299 Human Lung Cancer Cell Media. Int J Mol Sci 2021; 22:ijms22137059. [PMID: 34209215 PMCID: PMC8267635 DOI: 10.3390/ijms22137059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 01/02/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and shown to promote tumorigenesis. The purpose of this study was to explore the relative abundance of pro-brain-derived neurotrophic factor (proBDNF) and mature BDNF (mBDNF) in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher levels of proBDNF were detected in the media of A549 cells than in H1299 cell media. Using inhibitors, we found that the levels of proBDNF and mBDNF in the media are likely regulated by PI3K, AKT, and NFκB. However, the largest change in these levels resulted from MMP2/9 inhibition. Blocking p53 function in A549 cells resulted in increased mBDNF and decreased proBDNF, suggesting a role for p53 in regulating these levels. The ratio of proBDNF/mBDNF was not affected by MMP2 knockdown but increased in the media of both cell lines upon knockdown of MMP9. Downregulation of either MMP2 or MMP9 by siRNA showed that MMP9 siRNA treatment of either A549 or H1299 cells resulted in decreased cell viability and increased apoptosis, an effect diminished upon the same treatment with proBDNF immunodepleted media, suggesting that MMP9 regulates the cytotoxic effects induced by proBDNF in lung cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hedeel Guy Evans
- Correspondence: ; Tel.: +1-(734)-487-1425; Fax: +1-(734)-487-1496
| |
Collapse
|
25
|
Vallan L, Istif E, Gómez IJ, Alegret N, Mantione D. Thiophene-Based Trimers and Their Bioapplications: An Overview. Polymers (Basel) 2021; 13:1977. [PMID: 34208624 PMCID: PMC8234281 DOI: 10.3390/polym13121977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/15/2023] Open
Abstract
Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.
Collapse
Affiliation(s)
- Lorenzo Vallan
- Laboratoire de Chimie des Polymères Organiques (LCPO—UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France;
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| | - I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Daniele Mantione
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| |
Collapse
|
26
|
Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021; 11:17301-17319. [PMID: 34094508 PMCID: PMC8114542 DOI: 10.1039/d1ra00589h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic Brain Injury (TBI) being one of the principal causes of death and acquired disability in the world imposes a large burden on the global economy. Mild TBI (mTBI) is particularly challenging to assess due to the frequent lack of well-pronounced post-injury symptoms. However, if left untreated mTBI (especially when repetitive) can lead to serious long-term implications such as cognitive and neuropathological disorders. Computer tomography and magnetic resonance imaging commonly used for TBI diagnostics require well-trained personnel, are costly, difficult to adapt for on-site measurements and are not always reliable in identifying small brain lesions. Thus, there is an increasing demand for sensitive point-of-care (POC) testing tools in order to aid mTBI diagnostics and prediction of long-term effects. Biomarker quantification in body fluids is a promising basis for POC measurements, even though establishing a clinically relevant mTBI biomarker panel remains a challenge. Actually, a minimally invasive, rapid and reliable multianalyte detection device would allow the efficient determination of injury biomarker release kinetics and thus support the preclinical evaluation and clinical validation of a proposed biomarker panel for future decentralized in vitro diagnostics. In this respect electrochemical biosensors have recently attracted great attention and the present article provides a critical study on the electrochemical protocols suggested in the literature for detection of mTBI-relevant protein biomarkers. The authors give an overview of the analytical approaches for transduction element functionalization, review recent technological advances and highlight the key challenges remaining in view of an eventual integration of the proposed concepts into POC diagnostic solutions.
Collapse
Affiliation(s)
- Nadezda Pankratova
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Milica Jović
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Marc E Pfeifer
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| |
Collapse
|
27
|
Li J, Li H, Xu J, Zhao X, Song S, Zhang H. Myocardial infarction biomarker C-reactive protein detection on nanocomposite aptasensor. Biotechnol Appl Biochem 2020; 69:166-171. [PMID: 33370481 DOI: 10.1002/bab.2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 11/12/2022]
Abstract
Myocardial infarction (MI) is considered as one of the major life-threatening health issues worldwide. Growing number of cases every year is demanding rapid, portable, and early detection by the sensing devices for the identification of MI. This research work introduces a modified interdigitated electrode (IDE) sensing surface constructed with single-walled carbon nanotube (SWCN) to detect the cardiac biomarker, C-reactive protein (CRP). CRP-specific aptamer was conjugated with gold nanoparticle and attached on SWCN-constructed IDE surface. This probe-modified sensing surface has reached the limit of CRP detection to 10 pM on a linear regression curve with the regression coefficient of R² = 0.9223 [y = 0.9198x - 0.4326]. Further, control molecules, such as random aptamer sequence and nontarget cardiac biomarker (Troponin I), did not show the current response, indicating the specific CRP detection. This sensing strategy helps to detect the lower level of CRP and diagnose the MI at its earlier stages.
Collapse
Affiliation(s)
- Jing Li
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Xushui Huayi hospital, Baoding, Hebei, People's Republic of China
| | - Jinpeng Xu
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Xingzhou Zhao
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Shujiang Song
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Huitao Zhang
- Department of Third Emergency, Baoding First Central Hospital West Hospital, Baoding, Hebei, People's Republic of China
| |
Collapse
|
28
|
Nicotine induces P2X4 receptor, interleukin-1 beta, and brain-derived neurotrophic factor expression in BV2 microglia cells. Neuroreport 2020; 31:1249-1255. [PMID: 33165201 DOI: 10.1097/wnr.0000000000001546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Upregulation of P2X4 receptor (P2X4R), brain-derived neurotrophic factor (BDNF), and interleukin-1 beta (IL-1β) in activated microglia is associated with hyperalgesia. This study investigated whether nicotine increases pain hypersensitivity by altering the expression of these molecules in microglia. We also examined the role of interferon regulatory factor 8 (IRF8) in this process. METHODS Experiments were performed in BV2 microglial cells. IRF8 was knocked down or overexpressed using lentiviruses harboring a short hairpin RNA targeting IRF8 or an IRF8 overexpression construct, respectively. P2X4R, BDNF, and IL-1β mRNA and protein levels were evaluated by real-time PCR and western blotting, respectively, and BDNF and IL-1β secretion was assessed by ELISA. RESULTS Chronic nicotine exposure enhanced the expression of P2X4R, BDNF, and IL-1β in BV2 cells, and stimulated the release of BDNF and IL-1β in the presence of ATP. IRF8 was found to mediate the nicotine-induced increases in BDNF and IL-1β mRNA and P2X4R protein levels in BV2 cells. CONCLUSION Nicotine may increase pain hypersensitivity by promoting the expression of P2X4R, BDNF, and IL-1β through modulation of IRF8 levels in microglial cells.
Collapse
|
29
|
Chandra P. Miniaturized label-free smartphone assisted electrochemical sensing approach for personalized COVID-19 diagnosis. SENSORS INTERNATIONAL 2020; 1:100019. [PMID: 34766038 PMCID: PMC7377981 DOI: 10.1016/j.sintl.2020.100019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19, coronavirus disease is an infectious disease caused by a novel virus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). By March 2020 the novel coronavirus known to cause a pandemic has infected nearly about 119 thousand people and killed more than 4,300 around 114 countries. Apart from the current controversial opinions about the origin, spreading, and sociological impact, it is much more imperative to put a halt to this current situation. Understanding, testing, and early to rapid diagnosis may be now the only key that can contain COVID-19 by "flattening the curve". Biosensing is the platform that allows rapid, highly sensitive, and selective detection of analytes which in turn can serve the purpose for fast and precise detection of COVID-19. In this article, based on recently reported miniaturized sensing strategies, we hereby propose a promising personalized smartphone assisted electrochemical sensing platform for diagnosis of COVID-19.
Collapse
Affiliation(s)
- Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
30
|
Dhal A, Kalyani T, Ghorai S, Sahu NK, Jana SK. Recent development of electrochemical immunosensor for the diagnosis of dengue virus NSI protein: A review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
|
32
|
Konwar AN, Borse V. Current status of point-of-care diagnostic devices in the Indian healthcare system with an update on COVID-19 pandemic. SENSORS INTERNATIONAL 2020; 1:100015. [PMID: 34766037 PMCID: PMC7280827 DOI: 10.1016/j.sintl.2020.100015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Point-of-care (POC) diagnostic device is an instrument that is used to acquire particular clinical information of patients in clinical as well as resource-limited settings. The conventional clinical diagnostic procedure requires high-end and costly instruments, an expert technician for operation and result interpretation, longer time, etc. that ultimately makes it exhausting and expensive. Although there are a lot of improvements in the medical facilities in the Indian healthcare system, the use of POC diagnostic devices is still in its nascent phase. This review illustrates the status of POC diagnostic devices currently used in clinical setups along with constraints in their use. The devices and technologies that are in the research and development phase across the country that has tremendous potential to elevate the clinical diagnostics scenario along with the diagnosis of ongoing COVID-19 pandemic are emphasized. The implications of using POC diagnostic devices and the future objectives for technological advancements that may eventually uplift the status of healthcare and related sectors in India are also discussed here. Need for POC devices in the Indian healthcare system. Barriers in using POC devices. Categorical classification of POC devices used in clinical settings. Current Indian research and developments in POC diagnosis along with update on COVID-19.
Collapse
Affiliation(s)
- Aditya Narayan Konwar
- NanoBioSens Lab, Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | - Vivek Borse
- NanoBioSens Lab, Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| |
Collapse
|
33
|
Wu C, Shan Y, Wu X, Wang S, Liu F. Quantitative protein detection using single molecule imaging enzyme-linked immunosorbent assay (iELISA). Anal Biochem 2019; 587:113466. [DOI: 10.1016/j.ab.2019.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
|
34
|
Anithaa AC, Asokan K, Lavanya N, Sekar C. Nicotinamide adenine dinucleotide immobilized tungsten trioxide nanoparticles for simultaneous sensing of norepinephrine, melatonin and nicotine. Biosens Bioelectron 2019; 143:111598. [PMID: 31442753 DOI: 10.1016/j.bios.2019.111598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 01/25/2023]
Abstract
Herein, we report the anionic surfactant, ethylene diamine tetraacetic acid (EDTA), mediated synthesis of WO3 nanoparticles and its subsequent modification through gamma irradiation (GI) and electrochemical immobilization with nicotinamide adenine dinucleotide (NAD). Glassy carbon electrode (GCE) modified with GI-WO3 NPs and the enzyme NAD exhibited strong electro-oxidation of three important biomolecules such as norepinephrine (NEP), melatonin (MEL) and nicotine (NIC) in 0.1 M phosphate buffer saline (PBS) at physiological pH of 7. Square wave voltammetry (SWV) studies exhibited three well-defined peaks at potentials of 120, 570 and 840 mV, corresponding to the oxidation of NEP, MEL and NIC respectively, indicating that simultaneous determination of these compounds is feasible at the NAD/GI EDTA-WO3/GCE. The proposed sensor displayed a wide linear range of 0.010-1000 μM with the lowest detection limit of 1.4 nM for NEP, 2.6 nM for MEL and 1.7 nM for NIC respectively. Furthermore, the modified electrode was successfully applied to detect NEP, MEL and NIC in pharmaceutical and cigarette samples with excellent selectivity and reproducibility.
Collapse
Affiliation(s)
- A C Anithaa
- Dept. of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, TN, India
| | - K Asokan
- Materials Science Division, Inter-University Accelerator Centre, New Delhi, 110067, India
| | - N Lavanya
- Dept. of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, TN, India
| | - C Sekar
- Dept. of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, TN, India.
| |
Collapse
|
35
|
Karthika A, Karuppasamy P, Selvarajan S, Suganthi A, Rajarajan M. Electrochemical sensing of nicotine using CuWO 4 decorated reduced graphene oxide immobilized glassy carbon electrode. ULTRASONICS SONOCHEMISTRY 2019; 55:196-206. [PMID: 30878204 DOI: 10.1016/j.ultsonch.2019.01.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A novel and selective electrochemical sensing of nicotine is studied using copper tungstate decorated reduced graphene oxide nanocomposite (CuWO4/rGO) nafion (Nf) immobilized GC electrode (GCE). The CuWO4/rGO nanocomposite is synthesized using sonication method and characterized by HR-TEM (High resolution transmission electron microscopy), SEM (Scanning electron microscopy), FT-IR (Fourier transform infrared spectroscopy), SAED (Selected area of electron diffraction pattern), XRD (X-ray diffraction), Raman spectroscopy, Thermo gravimetric analysis (TGA) and EDX (Energy dispersive X-ray diffraction) techniques. The CuWO4/rGO/Nf immobilized GCE shows better electrocatalytic response for the detection of nicotine as compared to bare GCE. A better selectivity and sensitivity is achieved using CuWO4/rGO/Nf immobilized GCE to detect 0.1 µM nicotine in the presence of 100-fold excess concentrations of different interferents. The present CuWO4/rGO/Nf immobilized GCE electrochemical sensor exhibits an ample range of sensing from 0.1 µM to 0.9 µM and the low detection limit is found to be 0.035 µM (S/N = 3). Comparable results are achieved for the determination of nicotine in various real samples such as cigarettes (Gold flake and Wills) and urine samples with improved recoveries.
Collapse
Affiliation(s)
- A Karthika
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu, India
| | - P Karuppasamy
- Anna University Regional Campus - Tirunelveli, Tirunelveli 627007, Tamilnadu, India
| | - S Selvarajan
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu, India
| | - A Suganthi
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu, India; Mother Teresa Women's University, Kodaikanal 624 102, Tamilnadu, India.
| | - M Rajarajan
- Madurai Kamaraj University, Madurai 625 02, Tamilnadu, India.
| |
Collapse
|
36
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Kumar A, Purohit B, Maurya PK, Pandey LM, Chandra P. Engineered Nanomaterial Assisted Signal‐amplification Strategies for Enhancing Analytical Performance of Electrochemical Biosensors. ELECTROANAL 2019. [DOI: 10.1002/elan.201900216] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ashutosh Kumar
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Buddhadev Purohit
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of Haryana Mahendragarh 123031 Haryana India
| | - Lalit Mohan Pandey
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| | - Pranjal Chandra
- Laboratory of bio-physio sensors and nanobioengineering, Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati Guwahati 781039 Assam India
- Department of Biosciences and BioengineeringIndian Institute of Technology Guwahati, Guwahati 781039 Assam India
| |
Collapse
|
38
|
Prajapati DG, Kandasubramanian B. Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. MACROMOL CHEM PHYS 2019; 220:1800561. [PMID: 32327916 PMCID: PMC7168478 DOI: 10.1002/macp.201800561] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Biosensors are analytical devices which find extensive applications in fields such as the food industry, defense sector, environmental monitoring, and in clinical diagnosis. Similarly, intrinsically conducting polymers (ICPs) and their composites have lured immense interest in bio-sensing due to their various attributes like compatibility with biological molecules, efficient electron transfer upon biochemical reactions, loading of bio-reagent, and immobilization of biomolecules. Further, they are proficient in sensing diverse biological species and compounds like glucose (detection limit ≈0.18 nm), DNA (≈10 pm), cholesterol (≈1 µm), aptamer (≈0.8 pm), and also cancer cells (≈5 pm mL-1) making them a potential candidate for biological sensing functions. ICPs and their composites have been extensively exploited by researchers in the field of biosensors owing to these peculiarities; however, no consolidated literature on the usage of conducting polymer composites for biosensing functions is available. This review extensively elucidates on ICP composites and doped conjugated polymers for biosensing functions of copious biological species. In addition, a brief overview is provided on various forms of biosensors, their sensing mechanisms, and various methods of immobilizing biological species along with the life cycle assessment of biosensors for various biosensing applications, and their cost analysis.
Collapse
Affiliation(s)
- Deepak G. Prajapati
- Nano Texturing LaboratoryDepartment of Metallurgical and Materials EngineeringDefence Institute of Advanced TechnologyMinistry of DefenceGirinagarPune411025India
| | - Balasubramanian Kandasubramanian
- Nano Texturing LaboratoryDepartment of Metallurgical and Materials EngineeringDefence Institute of Advanced TechnologyMinistry of DefenceGirinagarPune411025India
| |
Collapse
|
39
|
Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens Bioelectron 2019; 128:9-16. [DOI: 10.1016/j.bios.2018.12.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019; 9:57. [PMID: 30729081 PMCID: PMC6352626 DOI: 10.1007/s13205-019-1577-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/13/2023] Open
Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
Collapse
Affiliation(s)
- Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| | - Sahil Nagpal
- Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Mahero Ayesha Shah
- Julius Maximilians Universität Würzburg, Faculty of medicine Uniklinik, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ananya Srivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana Mahendergarh, Haryana, 123031 India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities 2004 Folwell Ave, Saint Paul, MN 55108 USA
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
41
|
Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film. Biosens Bioelectron 2019; 126:1-6. [DOI: 10.1016/j.bios.2018.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 12/20/2022]
|
42
|
Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019. [PMID: 30729081 DOI: 10.1007/s13205-019-1577-z/figures/5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
Collapse
Affiliation(s)
- Kuldeep Mahato
- 1Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| | - Sahil Nagpal
- 2Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Mahero Ayesha Shah
- 3Julius Maximilians Universität Würzburg, Faculty of medicine Uniklinik, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ananya Srivastava
- 4Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Pawan Kumar Maurya
- 5Department of Biochemistry, Central University of Haryana Mahendergarh, Haryana, 123031 India
| | - Shounak Roy
- 6School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Amit Jaiswal
- 6School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Renu Singh
- 7Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities 2004 Folwell Ave, Saint Paul, MN 55108 USA
| | - Pranjal Chandra
- 1Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
43
|
Wang L, Meng T, Yu G, Wu S, Sun J, Jia H, Wang H, Yang X, Zhang Y. A label-free electrochemical biosensor for ultra-sensitively detecting telomerase activity based on the enhanced catalytic currents of acetaminophen catalyzed by Au nanorods. Biosens Bioelectron 2019; 124-125:53-58. [DOI: 10.1016/j.bios.2018.09.098] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/16/2018] [Accepted: 09/29/2018] [Indexed: 01/14/2023]
|