1
|
Granizo E, Kriukova I, Escudero-Villa P, Samokhvalov P, Nabiev I. Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1520. [PMID: 39330676 PMCID: PMC11435064 DOI: 10.3390/nano14181520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light-matter coupling. An overview of various methods and techniques used to achieve strong light-matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light-matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed.
Collapse
Affiliation(s)
- Evelyn Granizo
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Pedro Escudero-Villa
- Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
| | - Pavel Samokhvalov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- BioSpectroscopie Translationnelle (BioSpecT)-UR 7506, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
2
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
3
|
Zhou B, Sheng X, Cao J, Xie H, Li X, Huang L, Yang M, Zhong M, Liu YN. A novel electrochemical sensor based on dual-functional MMIP-CuMOFs for both target recognition and signal reporting and its application for sensing bisphenol A in milk. Food Chem 2024; 437:137756. [PMID: 37897829 DOI: 10.1016/j.foodchem.2023.137756] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
In this work, novel magnetic molecularly imprinted CuMOFs (MMIP-CuMOFs) were synthesized and applied to construct an electrochemical bisphenol A sensor. The constructed sensor used an electrode modified with reduced graphene oxide (RGO/GCE) as the sensing platform to improve its stability and sensitivity. The Fe3O4 nanoparticles in magnetic MOFs simplified the preparation process. Moreover, the combination of CuMOFs and molecular imprinting methodology was beneficial for improving the detection specificity, and the electroactive copper hexacyanoferrate generated by the reaction of Cu2+ in CuMOFs with potassium ferricyanide was used as the signal probe. The sensor showed a good linear relationship in the range of 0.5 to 500 nmol/L, with a low detection limit of 0.18 nmol/L. In addition, the sensor had good selectivity, repeatability (RSD = 2.59 %), and a good recovery rate for actual milk sample detection (99.8-102.49 %). This technique holds great promise for the detection of detrimental substances in food.
Collapse
Affiliation(s)
- Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xingxin Sheng
- College of Construction Equipment, GuiZhou Polytechnic of Construction, Guiyang, Guizhou 551499, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Hao Xie
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Lijun Huang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Ming Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| | - Ming Zhong
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
4
|
Kumar P, Shimali, Chamoli S, Khondakar KR. Advances in optical and electrochemical sensing of bisphenol a (BPA) utilizing microfluidic Technology: A mini perspective. Methods 2023; 220:69-78. [PMID: 37951559 DOI: 10.1016/j.ymeth.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Continuous exposure to toxic pollutants highlights the need for sensitive detection technologies that can be rapidly applied in the current world for quick screening of real samples. Bisphenol A (BPA) is one of the most common environmental contaminants, and it has the potential to harm both the environment and human health, notably causing reproductive disorders, cancer, heart disease, infertility, mental disorders, etc. Thus, significant attention has been paid to the detection of BPA and microplastics to promote food safety, environmental health, and human health on a sustainable earth. Among the current technologies, microfluidic based systems have garnered a lot of interest as future diagnostic tools for healthcare applications. Microfluidic devices can be deployed for quick screening and real-time monitoring, with inherent advantages like portability, miniaturisation, highly sensing tool and ease of integration with various detection systems. Optical and electrochemical sensors are two major analytical tools found in almost all microfluidic-based devices for ultrasensitive BPA and microplastics determination. In this review, we have evaluated and discussed microfluidic-based detection methods for BPA and microplastics.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand, 248007, India
| | - Shimali
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand, 248007, India
| | - Shivangi Chamoli
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | | |
Collapse
|
5
|
Tavassoli M, Khezerlou A, Khalilzadeh B, Ehsani A, Kazemian H. Aptamer-modified metal organic frameworks for measurement of food contaminants: a review. Mikrochim Acta 2023; 190:371. [PMID: 37646854 DOI: 10.1007/s00604-023-05937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The measurement of food contaminants faces a great challenge owing to the increasing demand for safe food, increasing consumption of fast food, and rapidly changing patterns of human consumption. As different types of contaminants in food products can pose different levels of threat to human health, it is desirable to develop specific and rapid methods for their identification and quantification. During the past few years, metal-organic framework (MOF)-based materials have been extensively explored in the development of food safety sensors. MOFs are porous crystalline materials with tunable composition, dynamic porosity, and facile surface functionalization. The construction of high-performance biosensors for a range of applications (e.g., food safety, environmental monitoring, and biochemical diagnostics) can thus be promoted through the synergistic combination of MOFs with aptamers. Accordingly, this review article delineates recent innovations achieved for the aptamer-functionalized MOFs toward the detection of food contaminants. First, we describe the basic concepts involved in the detection of food contaminants in terms of the advantages and disadvantages of the commonly used analytical methods (e.g., DNA-based methods (PCR/real-time PCR/multiplex PCR/digital PCR) and protein-based methods (enzyme-linked immunosorbent assay/immunochromatography assay/immunosensor/mass spectrometry). Afterward, the progress in aptamer-functionalized MOF biosensors is discussed with respect to the sensing mechanisms (e.g., the role of MOFs as signal probes and carriers for loading signal probes) along with their performance evaluation (e.g., in terms of sensitivity). We finally discuss challenges and opportunities associated with the development of aptamer-functionalized MOFs for the measurement of food contaminants.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51666-14711, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada.
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada.
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC, V2N4Z9, Canada.
| |
Collapse
|
6
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
7
|
Co-immobilization of laccase and PEG modified COFs into Cu doped gel beads to achieve synergistic effect of photocatalysis and enzymatic catalysis for pollutants removal. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Wang W, Wu J, Zhao Z, Li Q, Huo B, Sun X, Han D, Liu M, Cai LC, Peng Y, Bai J, Gao Z. Ultrasensitive Automatic Detection of Small Molecules by Membrane Imaging of Single Molecule Assays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54914-54923. [PMID: 36459426 DOI: 10.1021/acsami.2c15373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Determination of trace amounts of targets or even a single molecule target has always been a challenge in the detection field. Digital measurement methods established for single molecule counting of proteins, such as single molecule arrays (Simoa) or dropcast single molecule assays (dSimoa), are not suitable for detecting small molecule, because of the limited category of small molecule antibodies and the weak signal that can be captured. To address this issue, we have developed a strategy for single molecule detection of small molecules, called small molecule detection with single molecule assays (smSimoa). In this strategy, an aptamer is used as a recognition element, and an addressable DNA Nanoflower (DNF) attached on the magnetic beads surface, which exhibit fluorescence imaging, is employed as the output signal. Accompanied by digital imaging and automated counting analysis, E2 at the attomolar level can be measured. The smSimoa breaks the barrier of small molecule detection concentration and provides a basis for high throughput detection of multiple substances with fluorescence encoded magnetic beads.
Collapse
Affiliation(s)
- Weiya Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zunquan Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Qiaofeng Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Xuan Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Mingzhu Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Ling Chao Cai
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| |
Collapse
|
9
|
Pioz MJ, Espinosa RL, Laguna MF, Santamaria B, Murillo AMM, Hueros ÁL, Quintero S, Tramarin L, Valle LG, Herreros P, Bellido A, Casquel R, Holgado M. A review of Optical Point-of-Care devices to Estimate the Technology Transfer of These Cutting-Edge Technologies. BIOSENSORS 2022; 12:bios12121091. [PMID: 36551058 PMCID: PMC9776401 DOI: 10.3390/bios12121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 06/07/2023]
Abstract
Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords "biosensor", "optic", and "device" to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.
Collapse
Affiliation(s)
- María Jesús Pioz
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- University of Nebrija, C/del Hostal, Campus Berzosa, 28248 Madrid, Spain
| | - Rocío L. Espinosa
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - María Fe Laguna
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Beatriz Santamaria
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Metch, Chem & Industrial Design Engineering Department, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Ana María M. Murillo
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Álvaro Lavín Hueros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sergio Quintero
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luis G Valle
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Pedro Herreros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Alberto Bellido
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Multiplex Molecular Diagnostics S.L. C/ Munner 10, 08022 Barcelona, Spain
| | - Rafael Casquel
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Holgado
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
10
|
A Review of Apta-POF-Sensors: The Successful Coupling between Aptamers and Plastic Optical Fibers for Biosensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aptamers represent the next frontier as biorecognition elements in biosensors thanks to a smaller size and lower molecular weight with respect to antibodies, more structural flexibility with the possibility to be regenerated, reduced batch-to-batch variation, and a potentially lower cost. Their high specificity and small size are particularly interesting for their application in optical biosensors since the perturbation of the evanescent field are low. Apart from the conventional plasmonic optical sensors, platforms based on silica and plastic optical fibers represent an interesting class of devices for point-of-care testing (POCT) in different applications. The first example of the coupling between aptamers and silica optical fibers was reported by Pollet in 2009 for the detection of IgE molecules. Six years later, the first example was published using a plastic optical fiber (POF) for the detection of Vascular Endothelial Growth Factor (VEGF). The excellent flexibility, great numerical aperture, and the large diameter make POFs extremely promising to be coupled to aptamers for the development of a sensitive platform easily integrable in portable, small-size, and simple devices. Starting from silica fiber-based surface plasmon resonance devices, here, a focus on significant biological applications based on aptamers, combined with plasmonic-POF probes, is reported.
Collapse
|
11
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
12
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Advanced Optical Sensing of Phenolic Compounds for Environmental Applications. SENSORS 2021; 21:s21227563. [PMID: 34833640 PMCID: PMC8619556 DOI: 10.3390/s21227563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
Phenolic compounds are particularly dangerous due to their ability to remain in the environment for a long period of time and their toxic effects. They enter in the environment in different ways, such as waste from paper manufacturing, agriculture (pesticides, insecticides, herbicides), pharmaceuticals, the petrochemical industry, and coal processing. Conventional methods for phenolic compounds detection present some disadvantages, such as cumbersome sample preparation, complex and time-consuming procedures, and need of expensive equipment. Therefore, there is a very large interest in developing sensors and new sensing schemes for fast and easy-to-use methods for detecting and monitoring the phenolic compound concentration in the environment, with special attention to water. Good analytical properties, reliability, and adaptability are required for the developed sensors. The present paper aims at revising the most generally used optical methods for designing and fabricating biosensors and sensors for phenolic compounds. Some selected examples of the most interesting applications of these techniques are also proposed.
Collapse
|
14
|
Ly NH, Son SJ, Jang S, Lee C, Lee JI, Joo SW. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. NANOMATERIALS 2021; 11:nano11102619. [PMID: 34685057 PMCID: PMC8541515 DOI: 10.3390/nano11102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Facile detection of indoor semi-volatile organic compounds (SVOCs) is a critical issue to raise an increasing concern to current researchers, since their emissions have impacted the health of humans, who spend much of their time indoors after the recent incessant COVID-19 pandemic outbreaks. Plasmonic nanomaterial platforms can utilize an electromagnetic field to induce significant Raman signal enhancements of vibrational spectra of pollutant molecules from localized hotspots. Surface-enhanced Raman scattering (SERS) sensing based on functional plasmonic nanostructures has currently emerged as a powerful analytical technique, which is widely adopted for the ultra-sensitive detection of SVOC molecules, including phthalates and polycyclic aromatic hydrocarbons (PAHs) from household chemicals in indoor environments. This concise topical review gives updated recent developments and trends in optical sensors of surface plasmon resonance (SPR) and SERS for effective sensing of SVOCs by functionalization of noble metal nanostructures. Specific features of plasmonic nanomaterials utilized in sensors are evaluated comparatively, including their various sizes and shapes. Novel aptasensors-assisted SERS technology and its potential application are also introduced for selective sensing. The current challenges and perspectives on SERS-based optical sensors using plasmonic nanomaterial platforms and aptasensors are discussed for applying indoor SVOC detection.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam 13120, Korea;
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam 13120, Korea;
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 05006, Korea;
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul 02713, Korea;
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon 13810, Korea
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, Korea
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| |
Collapse
|
15
|
Cennamo N, Pasquardini L, Arcadio F, Lunelli L, Vanzetti L, Carafa V, Altucci L, Zeni L. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta 2021; 233:122532. [PMID: 34215035 PMCID: PMC8133803 DOI: 10.1016/j.talanta.2021.122532] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
A specific aptameric sequence has been immobilized on short polyethyleneglycol (PEG) interface on gold nano-film deposited on a D-shaped plastic optical fiber (POFs) probe, and the protein binding has been monitored exploiting the very sensitive surface plasmon resonance (SPR) phenomenon. The receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein has been specifically used to develop an aptasensor. Surface analysis techniques coupled to fluorescence microscopy and plasmonic analysis have been utilized to characterize the biointerface. Spanning a wide protein range (25 ÷ 1000 nM), the SARS-Cov-2 spike protein was detected with a Limit of Detection (LoD) of about 37 nM. Different interferents (BSA, AH1N1 hemagglutinin protein and MERS spike protein) have been tested confirming the specificity of our aptasensor. Finally, a preliminary test in diluted human serum encouraged its application in a point-of-care device, since POF-based aptasensor represent a potentially low-cost compact biosensor, characterized by a rapid response, a small size and could be an ideal laboratory portable diagnostic tool.
Collapse
Affiliation(s)
- Nunzio Cennamo
- Department of Engineering, University of Campania “L. Vanvitelli”, Via Roma 29, 81031, Aversa, Italy
| | - Laura Pasquardini
- Indivenire srl, Via Alla Cascata 56/C, 38123, Trento, Italy,Corresponding author
| | - Francesco Arcadio
- Department of Engineering, University of Campania “L. Vanvitelli”, Via Roma 29, 81031, Aversa, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler-SD-MST, Via Sommarive 18, 38123, Trento, Italy,CNR Institute of Biophysics, Via alla Cascata 56, Povo, 38123, Trento, Italy
| | - Lia Vanzetti
- Fondazione Bruno Kessler-SD-MNF, Via Sommarive 18, 38123, Trento, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Vico L. De Crecchio 7, 80138, Napoli, Italy,Biogem Institute of Molecular Biology and Genetics, Via Camporeale, 83031, Ariano Irpino, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania “L. Vanvitelli”, Via Roma 29, 81031, Aversa, Italy,Corresponding author
| |
Collapse
|
16
|
Liu L, Zhang X, Zhu Q, Li K, Lu Y, Zhou X, Guo T. Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs. LIGHT, SCIENCE & APPLICATIONS 2021; 10:181. [PMID: 34493704 PMCID: PMC8423748 DOI: 10.1038/s41377-021-00618-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of detecting endocrine disruptors. However, a long-lasting challenge unaddressed is how to achieve ultrahigh sensitive, continuous, and in situ measurement with a portable device for in-field and remote environmental monitoring. Here we demonstrate a simple-to-implement plasmonic optical fiber biosensing platform to achieve an improved light-matter interaction and advanced surface chemistry for ultrasensitive detection of endocrine disruptors. Our platform is based on a gold-coated highly tilted fiber Bragg grating that excites high-density narrow cladding mode spectral combs that overlap with the broad absorption of the surface plasmon for high accuracy interrogation, hence enabling the ultrasensitive monitoring of refractive index changes at the fiber surface. Through the use of estrogen receptors as the model, we design an estradiol-streptavidin conjugate with the assistance of molecular dynamics, converting the specific recognition of environmental estrogens (EEs) by estrogen receptor into surface-based affinity bioassay for protein. The ultrasensitive platform with conjugate-induced amplification biosensing approach enables the subsequent detection for EEs down to 1.5 × 10-3 ng ml-1 estradiol equivalent concentration level, which is one order lower than the defined maximal E2 level in drinking water set by the Japanese government. The capability to detect EEs down to nanogram per liter level is the lowest limit of detection for any estrogen receptor-based detection reported thus far. Its compact size, flexible shape, and remote operation capability open the way for detecting other endocrine disruptors with ultrahigh sensitivity and in various hard-to-reach spaces, thereby having the potential to revolutionize environment and health monitoring.
Collapse
Affiliation(s)
- Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xuejun Zhang
- Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kaiwei Li
- Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Yun Lu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Liquid crystal-based biosensors as lab-on-chip tools: Promising for future on-site detection test kits. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Huang S, Chen R, Zhao S, Wang C, Jia Q, Wang M, Zhang Z, He L, Zhang Z. Diverse metal ions-doped titanium-based metal-organic frameworks as novel bioplatforms for sensitively detecting bisphenol A. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Dos Santos CA, de Souza Cruz DR, da Silva WR, de Jesus GK, Santos AF, da Cunha GC, Wisniewski A, Romão LPC. Heterogeneous electro-Fenton process for degradation of bisphenol A using a new graphene/cobalt ferrite hybrid catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23929-23945. [PMID: 33398742 DOI: 10.1007/s11356-020-11913-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
A simple, efficient, environmentally friendly, and inexpensive synthesis route was developed to obtain a magnetic nano-hybrid (GH) based on graphene and cobalt ferrite. Water with a high content of natural organic matter (NOM) was used as solvent and a source of carbon. The presence of NOM in the composition of GH was confirmed by FTIR and Raman spectroscopy, which evidenced the formation of graphene, as also corroborated by XRD analyses. The diffractograms and TEM images showed the formation of a hybrid nanomaterial composed of graphene and cobalt ferrite, with crystallite and particle sizes of 0.83 and 4.0 nm, respectively. The heterogeneous electro-Fenton process (EF-GH) achieved 100% degradation of bisphenol A (BPA) in 50 min, with 80% mineralization in 7 h, at pH 7, using a current density of 33.3 mA cm-2. The high catalytic performance was achieved at neutral pH, enabling substantial reduction of the costs of treatment processes. This work contributes to understanding the role of NOM in the synthesis of a magnetic nano-hybrid based on graphene and cobalt ferrite, for use in heterogeneous catalysis. This nano-hybrid has excellent potential for application in the degradation of persistent organic pollutants found in aquatic environments.
Collapse
Affiliation(s)
| | | | - Wenes Ramos da Silva
- Chemistry Department, Federal University of Sergipe (UFS), São Cristovão, SE, 49100-000, Brazil
| | - Gleyce Kelly de Jesus
- Chemistry Department, Federal University of Sergipe (UFS), São Cristovão, SE, 49100-000, Brazil
| | - Alessandra Ferreira Santos
- Chemical Engineering Department, Federal University of Sergipe (UFS), São Cristovão, SE, 49100-000, Brazil
| | - Graziele Costa da Cunha
- Chemistry Department, Federal University of Sergipe (UFS), São Cristovão, SE, 49100-000, Brazil
| | - Alberto Wisniewski
- Chemistry Department, Federal University of Sergipe (UFS), São Cristovão, SE, 49100-000, Brazil
| | - Luciane Pimenta Cruz Romão
- Chemistry Department, Federal University of Sergipe (UFS), São Cristovão, SE, 49100-000, Brazil.
- Institute of Chemistry, UNESP, National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Materials (INCT-DATREM), P.O. Box 355, Araraquara, SP, 14800-900, Brazil.
| |
Collapse
|
20
|
Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M. Plasmonic biosensors for food control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Mao K, Zhang H, Pan Y, Yang Z. Biosensors for wastewater-based epidemiology for monitoring public health. WATER RESEARCH 2021; 191:116787. [PMID: 33421639 DOI: 10.1016/j.watres.2020.116787] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Public health is attracting increasing attention due to the current global pandemic, and wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring of public health by analysis of a variety of biomarkers (e.g., chemicals and pathogens) in wastewater. Rapid development of WBE requires rapid and on-site analytical tools for monitoring of sewage biomarkers to provide immediate decision and intervention. Biosensors have been demonstrated to be highly sensitive and selective tools for the analysis of sewage biomarkers due to their fast response, ease-to-use, low cost and the potential for field-testing. This paper presents biosensors as effective tools for wastewater analysis of potential biomarkers and monitoring of public health via WBE. In particular, we discuss the use of sewage sensors for rapid detection of a range of targets, including rapid monitoring of community-wide illicit drug consumption and pathogens for early warning of infectious diseases outbreaks. Finally, we provide a perspective on the future use of the biosensor technology for WBE to enable rapid on-site monitoring of sewage, which will provide nearly real-time data for public health assessment and effective intervention.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Yuwei Pan
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| |
Collapse
|
22
|
Application of Aptamer-based Biosensor in Bisphenol A Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Wu L, Jin X, Zhao T, Wang H, Dai Z. Impact factors of the degradation of bisphenol A by nitrocellulose membrane under illumination. J Environ Sci (China) 2021; 100:193-202. [PMID: 33279032 DOI: 10.1016/j.jes.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 06/12/2023]
Abstract
Nitrocellulose membrane (NCM) can produce hydroxyl radicals under illumination, which promotes the oxidative degradation of organic pollutants. In this paper, NCM was used to oxidize bisphenol A (BPA) under simulated sunlight. The effects of pH, temperature, light intensity, anion and cation on the degradation of BPA were analyzed. The photodegradation process of BPA was discussed. The optimal photolysis rate was 0.031 min-1 when the temperature was 30°C, the light intensity was 2.67 × 104 Lux, and the pH value was 9.0. The alkaline environment, temperature and light intensity can promote the photodegradation of BPA. Except for nitrate ions, anions and cations can inhibit the photodegradation of BPA. Compared with cations, anions have a greater inhibitory effect on BPA degradation. The degradation products of BPA by NCM were analyzed by gas chromatographic/mass. This study may provide useful information for the BPA degradation by NCM in complex water samples.
Collapse
Affiliation(s)
- Li Wu
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China; Collaborative Innovation Center for Coal-Bed Methane and Shale Gas of Henan, Jiaozuo 454000, China
| | - Xinmiao Jin
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Tongqian Zhao
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Haipo Wang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhifeng Dai
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
24
|
Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01511-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Pan J, Liu Z, Chen J. An amplifying DNA circuit coupled with Mg 2+-dependent DNAzyme for bisphenol A detection in milk samples. Food Chem 2021; 346:128975. [PMID: 33429296 DOI: 10.1016/j.foodchem.2020.128975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
As bisphenol A (BPA) is harmful to human health, it is of great significance to develop a new method for BPA detection. Herein, we designed a BPA biosensor by integrating an amplifying DNA circuit with Mg2+-dependent DNAzyme into the sensing system. The BPA-aptamer binding activated a DNA circuit for signal amplification based on toehold-mediated strand displacement. A catalytic Mg2+-dependent DNAzyme was formed through synergistically DNA hybridization, which can cleave the dual-labeled substrate DNA into two segments. The separation of the fluorophore and quencher produces a high fluorescence response for BPA detection. This biosensor exhibited a superior sensitivity with a detection limit of 50 fM. The method is selective and robust, which can work even in milk samples with satisfactory accuracy. The biosensor analytical results were also verified by liquid chromatography coupled with mass spectrometry (LC-MS) and no obvious difference existed between the two methods.
Collapse
Affiliation(s)
- Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
26
|
Vindas K, Buhot A, Livache T, Garrigue P, Sojic N, Leroy L, Engel E. Enhancing the sensitivity of plasmonic optical fiber sensors by analyzing the distribution of the optical modes intensity. OPTICS EXPRESS 2020; 28:28740-28749. [PMID: 33114785 DOI: 10.1364/oe.399856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Improving the sensitivity of plasmonic optical fiber sensors constitutes a major challenge as it could significantly enhance their sensing capabilities for the label-free detection of biomolecular interactions or chemical compounds. While many efforts focus on developing more sensitive structures, we present here how the sensitivity of a sensor can be significantly enhanced by improving the light analysis. Contrary to the common approach where the global intensity of the light coming from the core is averaged, our approach is based on the full analysis of the retro-reflected intensity distribution that evolves with the refractive index of the medium being analyzed. Thanks to this original and simple approach, the refractive index sensitivity of a plasmonic optical fiber sensor used in reflection mode was enhanced by a factor of 25 compared to the standard method. The reported approach opens exciting perspectives for improving the remote detection as well as for developing new sensing strategies.
Collapse
|
27
|
Rajabnejad SH, Badibostan H, Verdian A, Karimi GR, Fooladi E, Feizy J. Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Yang L, Zhao Z, Hu J, Wang H, Dong J, Wan X, Cai Z, Li M. Copper Oxide Nanoparticles with Graphitic Carbon Nitride for Ultrasensitive Photoelectrochemical Aptasensor of Bisphenol A. ELECTROANAL 2020. [DOI: 10.1002/elan.201900638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liqin Yang
- College of Chemistry and Chemical EngineeringXingtai University, Xingtai Hebei 054001 China
| | - Zhiju Zhao
- College of Chemistry and Chemical EngineeringXingtai University, Xingtai Hebei 054001 China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jie Hu
- Xingtai University, Xingtai Hebei 054001 China
| | - Huibin Wang
- Xingtai University, Xingtai Hebei 054001 China
| | - Junfang Dong
- College of MarxismXingtai University, Xingtai Hebei 054001 China
| | - Xiang Wan
- College of Chemistry and Chemical EngineeringXingtai University, Xingtai Hebei 054001 China
| | - Zhenyu Cai
- Xingtai University, Xingtai Hebei 054001 China
| | - Mengying Li
- Wuhan Hudiandian Technology Co., Ltd. Wuhan 430000 P. R. China
| |
Collapse
|
29
|
Yan SR, Foroughi MM, Safaei M, Jahani S, Ebrahimpour N, Borhani F, Rezaei Zade Baravati N, Aramesh-Boroujeni Z, Foong LK. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol 2020; 155:184-207. [PMID: 32217120 DOI: 10.1016/j.ijbiomac.2020.03.173] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
One of the most studied topics in analytical chemistry and physics is to develop bio-sensors. Aptamers are small single-stranded RNA or DNA oligonucleotides (5-25 kDa), which have advantages in comparison to their antibodies such as physicochemical stability and high binding specificity. They are able to integrate with proteins or small molecules, including intact viral particles, plant lectins, gene-regulation factor, growth factors, antibodies and enzymes. The aptamers have reportedly shown some unique characteristics, including long shelf-life, simple modification to provide covalent bonds to material surfaces, minor batch variation, cost-effectiveness and slight denaturation susceptibility. These features led important efforts toward the development of aptamer-based sensors, known as apta-sensors classified into optical, electrical and mass-sensitive based on the signal transduction mode. This review provided a number of current advancements in selecting, development criteria, and aptamers application with the focus on the effect of apta-sensors, specifically for disease-associated analyses. The review concentrated on the current reports of apta-sensors that are used for evaluating different food and environmental pollutants.
Collapse
Affiliation(s)
- Shu-Rong Yan
- Institute of Smart Finance, Yango University, Fuzhou 350015, China
| | | | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Shohreh Jahani
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran; Bam University of Medical Sciences, Bam, Iran
| | - Nasser Ebrahimpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Borhani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Loke Kok Foong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
30
|
Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
31
|
Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angew Chem Int Ed Engl 2020; 59:6082-6089. [PMID: 31943588 DOI: 10.1002/anie.201916154] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 01/09/2023]
Abstract
Gold clusters loaded on various supports have been widely used in the fields of energy and biology. However, the poor photostability of Au clusters on support interfaces under prolonged illumination usually results in loss of catalytic performance. Covalent organic frameworks (COFs) with periodic and ultrasmall pore structures are ideal supports for dispersing and stabilizing Au clusters, although it is difficult to encapsulate Au clusters in the ultrasmall pores. In this study, a two-dimensional (2D) COF modified with thiol chains in its pores was prepared. With -SH groups as nucleation sites, Au nanoclusters (NCs) could grow in situ within the COF. The ultrasmall pores of the COF and the strong S-Au binding energy combine to improve the dispersibility of Au NCs under prolonged light illumination. Interestingly, Au-S-COF bridging as observed in this artificial Z-scheme photocatalytic system is deemed to be an ideal means to increase charge-separation efficiency.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
32
|
Remote biosensor for the determination of trypsin by using nanoporous anodic alumina as a three-dimensional nanostructured material. Sci Rep 2020; 10:2356. [PMID: 32047212 PMCID: PMC7012875 DOI: 10.1038/s41598-020-59287-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
The determination of trypsin in the human real sample is a routine medical investigation to assess the pancreatic disease. Herein, we fabricated an interferometric reflectance spectroscopy based biosensor for the determination trypsin. For this purpose, urease and fluorescein 5(6)-isothiocyanate (FLITC) were immobilized on the nanoporous anodic alumina (NAA). The operation principle of the proposed biosensor is based on the change in the pH of the solution during the reaction of urease and urea and therefore change in the light-absorbing ability of FLITC in the presence of trypsin. The reaction of the urease enzyme with urea increased the pH of the solution because of producing ammonia. This increase in the pH of solution increased the light-absorbing ability of the immobilized FLITC on NAA and therefore the intensity of the reflected light from the NAA to the charge-coupled device detector decreased. In the presence of trypsin, the catalytic activity of immobilized urease on NAA decreased. This decrease in the activity of urease enzyme consequent on the decrease in the amount of the generated ammonia. Therefore, the immobilized FLITC on the NAA did not absorb more light and consciously, the intensity of the light reflected light into the detector increased. The proposed biosensor exhibited a good response to the concentration of trypsin in the range of 0.25–20 μg.mL−1 with the limit of detection of 0.06 μg.mL−1.
Collapse
|
33
|
Yang Y, Liang J, Jin W, Li Y, Xuan M, Wang S, Sun X, Chen C, Zhang J. The design and growth of peanut-like CuS/BiVO4 composites for photoelectrochemical sensing. RSC Adv 2020; 10:14670-14678. [PMID: 35497162 PMCID: PMC9051948 DOI: 10.1039/d0ra01307b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/18/2020] [Indexed: 01/14/2023] Open
Abstract
In this study, the CuS/BiVO4-X (where X represents the mass percentage of CuS associated with CuS/BiVO4; X = 2%, 5% and 7%) p–n heterostructures were fabricated using a two-step hydrothermal method.
Collapse
Affiliation(s)
- Yang Yang
- Clinical Bioinformatics Experimental Center
- Henan Provincial People's Hospital
- People's Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Junting Liang
- Clinical Bioinformatics Experimental Center
- Henan Provincial People's Hospital
- People's Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Wenwen Jin
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Yingyue Li
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Menghui Xuan
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Shijie Wang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Xiaoqian Sun
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center
- Henan Provincial People's Hospital
- People's Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
34
|
Allsop T, Neal R. A Review: Evolution and Diversity of Optical Fibre Plasmonic Sensors. SENSORS 2019; 19:s19224874. [PMID: 31717377 PMCID: PMC6891812 DOI: 10.3390/s19224874] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022]
Abstract
The purpose of this review is to bring to the attention of the wider research community how two quite different optical sensory techniques were integrated resulting in a sensor device of exceptional sensitivity with wide ranging capability. Both authors have collaborated over a 20 year period, each researching initially surface plasmon resonance (SPR) and optical fibre Bragg grating devices. Our individual research, funded in part by EPSRC and industry into these two areas, converged, resulting in a device that combined the ultra-sensitive working platform of SPR behavior with that of fibre Bragg grating development, which provided a simple method for SPR excitation. During this period, they developed a new approach to the fabrication of nano-structured metal coatings for plasmonic devices and demonstrated on fibre optic platform, which has created an ultra-sensitive optical sensing platform. Both authors believe that the convergence of these two areas will create opportunities in detection and sensing yet to be realised. Furthermore, giving the reader "sign-post" research articles to help to construct models to design sensors and to understand their experimental results.
Collapse
Affiliation(s)
- Thomas Allsop
- School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK
- Correspondence: ; Tel.: +44-1482-464540
| | - Ron Neal
- School of Computing, Communications and Electronics, University of Plymouth, Plymouth PL4 8AA, UK;
| |
Collapse
|
35
|
Sypabekova M, Korganbayev S, González-Vila Á, Caucheteur C, Shaimerdenova M, Ayupova T, Bekmurzayeva A, Vangelista L, Tosi D. Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection. Biosens Bioelectron 2019; 146:111765. [PMID: 31606689 DOI: 10.1016/j.bios.2019.111765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
An aptasensor based on etched tilted fiber Bragg grating (eTFBG) is developed on a single-mode optical fiber targeting biomolecule detection. TFBGs were chemically etched using hydrofluoric acid (HF) to partially remove the fiber cladding. The sensor response was coarsely interrogated, resulting on a sensitivity increase from 1.25 nm/RIU (refractive index unit) at the beginning of the process, up to 23.38 nm/RIU at the end of the etching, for a RI range from 1.3418 to 1.4419 RIU. The proposed aptasensor showed improved RI sensitivity as compared to the unetched TFBG, without requiring metal depositions on the fiber surface or polarization control during the measurements. The proposed sensor was tested for the detection of thrombin-aptamer interactions based on silane-coupling surface chemistry, with thrombin concentrations ranging from 2.5 to 40 nM. Functionalized eTFBGs provided a competitive platform for biochemical interaction measurements, showing sensitivity values ranging from 2.3 to 3.3 p.m./nM for the particular case of thrombin detection.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan.
| | - Sanzhar Korganbayev
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Álvaro González-Vila
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000, Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000, Mons, Belgium
| | - Madina Shaimerdenova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Takhmina Ayupova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Aliya Bekmurzayeva
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- School of Medicine, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| |
Collapse
|